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Abstract In this work, the kinematic analysis of a five-
degrees-of-freedom decoupled parallel manipulator is
approached by means of the theory of screws. The
architecture of the parallel manipulator under study is
such that the translational motion of the moving plat-
form, with respect to the fixed platform, is controlled by
means of a central limb provided with two active pris-
matic joints while its rotational motion is controlled by
means of a three-degrees-of-freedom spherical parallel
manipulator. The forward position analysis is presented
in semiclosed form solution applying recursively the
Sylvester dialytic elimination method. On the other
hand, the velocity and acceleration analyses are carried
out using the theory of screws. Simple and compact
expressions to compute the velocity state and the re-
duced acceleration state of the moving platform, with
respect to the fixed platform, are easily derived in this
contribution by taking advantage of the Klein form of
the Lie algebra se(3). Finally, only few and slight modi-
fications to the proposed method of kinematic analyses
are required in order to approach the position, velocity,
and acceleration analyses of parallel manipulators with
similar topologies.
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1 Introduction

Due to their compact topology, parallel manipulators
are more accurate and stiffer than their serial counter-
parts. Owing to these merits, over the past few decades,
a growing interest devoted to the development of paral-
lel kinematic machines, with heavy payload capacities,
has been reported day to day in the literature. In fact,
among flight simulators, which seems to be the first
transcendental application [1], parallel manipulators
have found interesting applications such as walking
machines, pointing devices, machine tools, microma-
nipulators, and so on. On the other hand, the limitations
of parallel manipulators with identical limbs cannot be
ignored. Consider, for instance, that, in this kind of
mechanism, the rotation and position capabilities of
the moving platform are highly coupled, resulting in
the forward finite kinematics, and their control and
calibration, being rather complicated, in addition to a
limited and complex-shaped workspace.

The dexterity and workspace of a parallel manipula-
tor can be improved by assembling a serial manipulator
to its moving platform, a natural and evident possibil-
ity. For example, a spherical wrist can be connected
at the moving platform of a Tricept, yielding a six-
degrees-of-freedom (dof) spatial mechanism [2]; other
combinations were reported in [3, 4]. Furthermore,
taking into account that, if the spherical wrist is an
open chain, then, in order to improve the stiffness,
the serial manipulator can be replaced by a parallel
manipulator, producing a series-parallel manipulator;
see, for instance, [5–8]. Another possibility consists of
transforming the motion of the moving platform, with
respect to the fixed platform, in decoupled motions;
thus, the translational and rotational motions of the



Int J Adv Manuf Technol (2009) 45:830–840 831

moving platform can be computed separately; this op-
tion was investigated in Hunt and Primrose [9] for in-
fully parallel manipulators and was applied by Zlatanov
et al. [10] in the design of a six-dof, three-legged parallel
manipulator. Jin et al. [11] proposed a versatile, three-
legged parallel manipulator, with six dof, in which, by
choosing the scheme of actuation, it is possible to gen-
erate decoupled and hybrid motions over the moving
platform. Taking into account that the forward posi-
tion analysis of parallel manipulators with decoupled
motions can be easily derived in closed or semiclosed-
form solution, Gallardo-Alvarado et al. [12] introduced
a family of nonoverconstrained redundantly actuated
parallel manipulators. Furthermore, as is shown in [13–
15], closed-form solutions for solving the kinematics of
parallel manipulators with fewer than six dof, known
as defective or limited-dof parallel manipulators, over
the moving platform can be easily derived using simple
geometric procedures.

Limited-dof parallel manipulators, after the success
of the robot Delta [16], have been finally recognized, in
both industrial and academic communities, as interest-
ing inventions with potential applications in many areas
such as machine tools [17–22], hyperredundant manip-
ulators [23], haptic devices based on parallel mecha-
nisms [24, 25], microrobotics [26–29], and so on. In that
way, five-dof parallel manipulators represent an excel-
lent option for the development of multiaxis machine
tools that will possibly replace, surely, the traditional
Cartesian machine tools; for details about interest-
ing prototypes based on parallel kinematic devices,
the reader is invited to visit the web site http://www.
parallemic.org/ hosted by Dr. Ilian Bonev. On the other
hand, following that fashion, it is notorious how most
researchers are focused on the study of the so-called
two rotations + three translations parallel mechanisms,
2R3T for brevity. Certainly, the restriction of one ro-
tation, usually normal to the moving platform, is the
main attraction of such a trend. However, interesting
applications using 3R2T parallel mechanisms, such as
the kinematic simulation of the human spinal column,
recently attracted the attention of some kinematicians
[30–32]. In this work, the position, velocity, and accel-
eration analyses of 3R2T limited-dof parallel manipu-
lators are approached by means of simple geometric
procedures and the theory of screws.

2 Description of the parallel manipulator

The parallel manipulator under study, see Fig. 1, con-
sists of a moving platform and a fixed platform con-
nected to each other by means of four active extendible
limbs, and since this mechanism does not have passive

Fig. 1 The parallel manipulator under study

legs, it offers the two main advantages of a parallel ma-
nipulator: accuracy and stiffness. At once, the moving
platform is connected at the limbs by means of four
distinct spherical joints, whereas the fixed platform is
connected at the limbs by means of a central prismatic
joint and three distinct universal joints. The position
of the moving platform is controlled using a central
limb, which is a simple prismatic + prismatic + spheri-
cal (PPS-type) kinematic chain, while its orientation is
controlled by means of a spherical parallel manipulator
composed of three universal + prismatic + spherical
(UPS-type) kinematic chains. According to a revised
version of the Kutzbach–Grübler formula, the mecha-
nism under study possesses five dof, and therefore, the
prismatic pairs have the privilege to be selected as the
active joints of the parallel manipulator.

The proposed topology is so simple that the moving
platform has the ability to perform independent trans-
lational and rotational displacements. Furthermore, it
is interesting to mention that, due to the spherical joints
attached at the moving platform, the parallel manipula-
tor can be considered as a nonoverconstrained parallel
manipulator and, therefore, does not require additional
conditions of manufacture.

3 Finite kinematics of the parallel manipulator

In this section, the inverse and forward position analy-
ses of the mechanism under study are presented. The
inverse position analysis consists of finding the length

http://www.parallemic.org/
http://www.parallemic.org/
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of each limb of the parallel manipulator given the pose,
position, and orientation of the moving platform with
respect to the fixed platform.

Clearly, given the pose of the moving platform, the
coordinates of the centers of the spherical joints Si =
(Xi, Yi, Zi) i = 1, 2, 3 and the center S4 = (X4, Y4, Z4)

of the moving platform are easily computed using the
global reference frame XYZ, see Fig. 1, as follows
⎡
⎢⎢⎣

Xi

Yi

Zi

1

⎤
⎥⎥⎦ =

[
R τ

01×3 1

]
⎡
⎢⎢⎣

xi

yi

zi

1

⎤
⎥⎥⎦ i = 1, . . . , 4, (1)

where R is the rotation matrix, τ is the position vector
of the origin of the moving reference frame xyz with
respect to the origin of the global reference frame XYZ,
and si = (xi, yi, zi) i = 1, . . . , 4 are the coordinates of
the centers of the spherical joints expressed in the
moving reference frame xyz. Furthermore, once the
points Si are computed, it follows that

q2
i = (Si − Bi) · (Si − Bi) i = 1, 2, 3, (2)

where Bi i = 1, 2, 3 are the nominal positions of the
universal joints.

Finally, the generalized coordinates q4 and q5 are
obtained as follows:

q4 = S4 · ĵ (3)

and

q5 = (S4 − B4) · î, (4)

where B4 is the origin of the global reference frame
XYZ and î and ĵ are unit vectors along the X and Y
axes, respectively.

On the other hand, the forward position analysis, a
more challenging task, consists of finding the pose of
the moving platform, with respect to the fixed platform,
of the parallel manipulator given a set {q1, q2, . . . , q5} of
generalized coordinates that are indicated in Fig. 1. The
forward position analysis is approached using the well-
known Sylvester dialytic elimination method, and it is
included here only for the sake of completeness; for a
detailed explanation of kinematic applications of such
a method, the reader is referred to [33].

According to the reference frame XYZ, the center of
the moving platform, point S4, is obtained directly using
only the generalized coordinates q4 and q5 as follows:

S4 = q5 î + q4 ĵ. (5)

Once the center of the moving platform is deter-
mined, in what follows, the coordinates of the spheri-

cal joints of the spherical parallel manipulator will be
computed.

Three linear equations emerge immediately taking
into account that

S1 + S2 + S3 − 3S4 = 0 (6)

On the other hand, the length of the limbs of the
spherical parallel manipulator are restricted to

(Si − Bi) · (Si − Bi) − q2
i = 0 i = 1, 2, 3 (7)

Furthermore, the radius r of the moving platform
brings the following constraints:

(Si − S4) · (Si − S4) − r2 = 0 i = 1, 2, 3 (8)

Thus, from expressions 7 and 8, it follows that

(Si − Bi) · (Si − Bi) − q2
i − (Si − S4) · (Si − S4) + r2 = 0

(9)

Equations 6 and 9 represent a linear system of
six equations in nine unknowns. This linear system is
solved in terms of the variables X1, Y2, and Z3. Fur-
thermore, three compatibility equations can be written
as follows:

(S1 − S2) · (S1 − S2) − a2 = 0
(S2 − S3) · (S2 − S3) − a2 = 0
(S1 − S3) · (S1 − S3) − a2 = 0

⎫⎬
⎭ (10)

where a is the length of the side of the equilateral
triangle formed over the moving platform by the three
spherical joints of the spherical parallel manipulator.

Finally, after a few computations, a higher nonlinear
system of three equations in the unknowns X1, Y2, and
Z3 is obtained as follows:

K′
1Y2

2 + K′
2 Z 2

3 + K′
3Y2

2 Z3 + K′
4Y2 Z 2

3

+ K′
5Y2 Z3 + K′

6Y2 + K′
7 Z3 + K′

8 = 0 (11a)

K′′
1 X2

1 + K′′
2 Z 2

3 + K′′
3 X2

1 Z3 + K′′
4 X1 Z 2

3

+ K′′
5 Y2 Z3 + K′′

6 X1 + K′′
7 Z3 + K′′

8 = 0 (11b)

K′′′
1 X2

1 + K′′′
2 Y2

2 + K′′′
3 X2

1 Y2 + K′′′
4 X1Y2

2

+ K′′′
5 X1Y2 + K′′′

6 X1 + K′′′
7 Y2 + K′′′

8 = 0. (11c)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where K′∗, K′′∗ , and K′′′∗ are coefficients that are com-
puted according to the parameters and generalized
coordinates of the spherical parallel manipulator. The
solution of this type of equation is well-known, see for
instance [33–35], and it is recalled here only for the
sake of completeness. In what follows, the nonlinear
system of Eq. 11 is reduced systematically into a 16th-
polynomial expression in the unknown X1.
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With the purpose to eliminate Z3, Eqs. 11a and 11b
are rewritten, respectively, as follows:

p1 Z 2
3 + p2 Z3 + p3 = 0 (12)

and

p4 Z 2
3 + p5 Z3 + p6 = 0, (13)

where pi i = 1, 2, 3 are second-order polynomials in Y2

while pi i = 4, 5, 6 are second-order polynomials in X1.
Multiplying Eqs. 12 and 13, respectively, by p4 and

p1, and subtracting, it follows that

(p1p5 − p2p4)Z3 + p1p6 − p3p4 = 0 (14)

Similarly, multiplying Eq. 12 by p6 and Eq. 13 by p3,
and subtracting, one obtains

(p3p4 − p1p6)Z3 + p3p5 − p2p6 = 0 (15)

Considering Eqs. 14 and 15 as two linear homo-
geneous equations in the unknowns Z3 and 1, then,
casting into a matrix form such equations, it is possible
to write

M1

[
Z3

1

]
=

[
0
0

]
(16)

where

M1 =
[

p1p5 − p2p4 p1p6 − p3p4

p3p4 − p1p6 p3p5 − p2p6

]

Thus, in order to avoid arbitrary solutions, one elim-
inant is obtained when det M1 = 0, canceling the vari-
able Z3. Indeed,

p7Y4
2 + p8Y3

2 + p9Y2
2 + p10Y2 + p11 = 0, (17)

where pi i = 7, 8, . . . , 11 are fourth-order polynomials
in X1.

With the purpose to eliminate the unknown Y2,
Eq. 11c is rewritten as follows:

p12Y2
2 + p13Y2 + p14 = 0, (18)

where pi i = 12, 13, 14 are second-order polynomials in
X1.

Multiplying Eq. 17 by p12 and Eq. 18 by p7Y2
2 , the

subtraction of the resulting equations yields

(p13p7 − p12p8)Y3
2 + (p14p7 − p12p9)Y2

2

− p12p10Y2 − p12p11 = 0 (19)

Moreover, multiplying Eq. 18 by Y2:

p12Y3
2 + p13Y2

2 + p14Y2 = 0 (20)

Furthermore, multiplying Eq. 17 by p12Y2 + p13 and
Eq. 18 by p7Y3

2 + p8Y3
2 , and after subtracting, one

obtains

(p12p9 − p7p14)Y3
2 + (p12p10 + p13p9 − p8p14)Y2

2

+ (p12p11 + p13p10)Y2 + p13p11 = 0 (21)

Equations 18–21 can be considered as a homoge-
neous linear system of four equations in the unknowns
Y3

2 , Y2
2 , Y2, and 1, that are casting in a matrix form as

follows:

M2

⎡
⎢⎢⎣

Y3
2

Y2
2

Y1
2

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ (22)

where M2 is a square matrix given by

M2 = [m1 m2 m3 m4] (23)

with columns

m1 =

⎡
⎢⎢⎣

0
p13p7 − p12p8

p12

p12p9 − p7p14

⎤
⎥⎥⎦

m2 =

⎡
⎢⎢⎣

p12

p14p7 − p12p9

p13

p12p10 + p13p9 − p8p14

⎤
⎥⎥⎦

m3 =

⎡
⎢⎢⎣

p13

−p12p10

p14

p12p11 + p13p10

⎤
⎥⎥⎦

m4 =

⎡
⎢⎢⎣

p14

−p12p11

0
p13p11

⎤
⎥⎥⎦

Henceforth, a 16th univariate polynomial expression
in the unknown X1 is obtained taking into account
that, in order to avoid arbitrary solutions, necessarily,
det M2 = 0. Moreover, Y2 and Z3 are determined solv-
ing the quadratic equation Eq. 11. Furthermore, the
remaining coordinates are computed using Eqs. 6 and 9.

Once the coordinates of the centers of the spherical
joints are computed, the pose of the moving platform,
with respect to the fixed platform, is determined ac-
cording to the resulting transformation matrix T:

T =
[

R S4

01×3 1

]
. (24)
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A simple method to compute the rotation matrix R
based upon the coordinates of three distinct points of a
rigid body is reported in Gallardo-Alvarado et al. [36].

Finally, it is prudent to mention that the Sylvester
dialytic elimination method in general is not free
of spurious solutions; thus, the correctness of the
obtained solutions must be verified, substituting it into
Eqs. 6–8. Furthermore, the determination of the actual
configuration of the parallel manipulator, a necessary
step to approach the infinitesimal kinematics of the
mechanism, can be achieved using sensors.

4 Infinitesimal kinematics of the parallel manipulator

In this section, the velocity and acceleration analyses of
the parallel manipulator are carried out by means of the
theory of screws, which is isomorphic to the Lie algebra
se(3). The benefits of using this mathematical resource
in analyzing parallel manipulators are innegable; see,
for instance, [37–43]. In this work, two fundamental
operations of the Lie algebra play a central role, the
Lie product and the Klein form.

Let $1 = (ŝ1, sO1) and $2 = (ŝ2, sO2) be two elements
of the Lie algebra se(3). The Lie product, [∗ ∗], is
defined as follows:

[$1 $2] =
[

ŝ1 × ŝ2

ŝ1 × sO2 − ŝ2 × sO1

]
(25)

whereas the Klein form, {∗; ∗}, is defined as follows:

{$1; $2} = ŝ1 · sO2 + ŝ2 · sO1. (26)

It is said that the screws $1 and $2 are reciprocal if
{$1; $2} = 0; for instance, this condition occurs when

1. The primal parts of the screws, unit vectors ŝ1 and
ŝ2, are concurrent

2. The vectors ŝ1 and ŝ2 are orthogonal, respectively,
to the vectors sO2 and sO1

4.1 Velocity analysis

Let VC = [ω, vC]T be the velocity state of the moving
platform, with respect to the fixed platform, where the
primal part, P(VC) = ω, is the angular velocity of the
moving platform and the dual part, D(VC) = vC, is the
linear velocity of its center S4. Then, the velocity state
VC can be written in screw form; the corresponding
infinitesimal screws are depicted in Fig. 2, through any
of the UPS-type limbs, as follows:

JiΩi = VC i = 1, 2, 3 (27)

Fig. 2 The infinitesimal screws of the connector limbs of the
parallel manipulator

where

Ji = [
0$1

i ,
1$2

i ,
2$3

i ,
3$4

i ,
4$5

i ,
5$6

i

]
is the i-th Jacobian

of the i-th limb, in which k$k+1
i denotes the infinites-

imal screw between two consecutive bodies k and
k + 1 of the i-th limb
Ωi = [

0ω
i
1, 1ω

i
2, 2ω

i
3, 3ω

i
4, 4ω

i
5, 5ω

i
6

]T is a matrix con-
taining the joint velocity rates in which kω

i
k+1 de-

notes the relative velocity rate, associated to the
corresponding screw, of two consecutive bodies k
and k + 1 of the i-th limb, and particularly, 2ω

i
3 = q̇i

is the i-th generalized speed.

On the other hand, in order to satisfy an algebraic
requirement, the PPS-type limb is modeled as a R*PPS-
type limb where the extra revolute joint R* is a fictitious
kinematic pair and, therefore, its corresponding joint
velocity rate is zero. With this consideration in mind,
the velocity state can be written in screw form through
the R*PPS-type limb as follows:

J4Ω4 = VC (28)

where

J4 = [
0$1

4,
1$2

4,
2$3

4,
3$4

4,
4$5

4,
5$6

4

]
is the Jacobian of

the R*PPS-type limb
Ω4 = [

0ω
4
1, 1ω

4
2, 2ω

4
3, 3ω

4
4, 4ω

4
5, 5ω

4
6

]T is a matrix con-
taining the joint velocity rates of the R*PPS-type
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limb in which 1ω
4
2 = q̇4 and 2ω

4
3 = q̇5 are the gener-

alized speeds of the limb.

The inverse velocity analysis consists of finding the
joint velocity rates of the parallel manipulator for a
given velocity state VC. This analysis is carried out by
computing �i i = 1, . . . , 4 directly from expressions 27
and 28. In what follows, the forward velocity analysis
is simplified by taking advantage of the properties of
reciprocal screws via the definition of the Klein form.

Applying the Klein form of the i-th screw 4$5
i to both

sides of Eq. 27, it follows that

{
0$1

i ; 4$5
i

}
0ω

i
1 + {

1$2
i ; 4$5

i

}
1ω

i
2 + {

2$3
i ; 4$5

i

}
q̇i

+ {
3$4

i ; 4$5
i

}
3ω

i
4 + {

4$5
i ; 4$5

i

}
4ω

i
5

+ {
5$6

i ; 4$5
i

}
5ω

i
6 = {

4$5
i; VC

}
(29)

Taking into account that the primal part of the i-th
screw 4$5

i is concurrent to the primal parts of the screws
associated with the revolute joints in the same limb,
then all the terms of the left side of Eq. 29 vanish
excepting the term associated with the prismatic joint;
in fact,

{
2$3

i ; 4$5
i

} = 1, and therefore, the reductions of
terms in Eq. 29 lead to

{
4$5

i; VC
} = q̇i i = 1, 2, 3 (30)

Similarly, considering that 0$1
4 is a fictitious screw

associated with a fictitious revolute joint, it is possible
to restrict 0ω

4
1 = 0, and taking into proper account that

the screws associated with the spherical joint attached
at the moving platform have concurrent primal parts,
then the application of the Klein form of the screw 3$4

4,
whose primal part is equal to the dual part of the screw
1$2

4 representing the lower prismatic pair of the central
limb, to both sides of Eq. 28, the reduction of terms
leads to

{
3$4

4; VC
} = q̇4 (31)

Moreover, since the primal part the screw 4$5
4 is

orthogonal to the primal part of the screw 1$2
4, the

application of the screw 4$5
4 to both sides of Eq. 28

yields the following expression:

{
4$5

4; VC
} = q̇5 (32)

Furthermore, it is straightforward to show that, ap-
plying the Klein form of the screw 5$6

4 to both sides of
Eq. 28, all the terms of such equation vanish; in other
words,

{
5$6

4; VC
} = 0 (33)

Finally, casting into a matrix–vector form Eqs. 30–33,
it follows that

JT � VC = Qvel, (34)

wherein

J = [
4$5

1,
4$5

2,
4$5

3,
3$4

4,
4$5

4,
5$6

4

]
is the active Jacobian

matrix of the parallel manipulator
Qvel = [

q̇1, q̇2, q̇3, q̇4, q̇5, 0
]T is a matrix containing

the active joint velocity rates of the parallel manip-
ulator

� =
[

03×3 I3

I3 03×3

]
is a 6 × 6 matrix called an opera-

tor of polarity that is defined by the identity matrix
I3 and the 3 × 3 zero matrix 03×3.

Expression 34 is simple, compact, and allows one to
compute the velocity state VC without the values of the
passive joint velocity rates of the parallel manipulator.
Naturally, such computation requires that the active
Jacobian J must be invertible; otherwise, the parallel
manipulator is at a singular configuration.

4.2 Acceleration analysis

Let AC = [ω̇, aC − ω × vC]T be the reduced accelera-
tion state, also known as accelerator, of the moving
platform with respect to the fixed platform, in which ω̇

is the angular acceleration of the moving platform with
respect to the fixed platform, whereas aC is the linear
acceleration of the center S4 of the moving platform.
Then, the accelerator AC can be written in screw form,
see Rico and Duffy [37], through any of the UPS-type
limbs of the parallel manipulator as follows:

Ji�̇i + $Liei = AC i = 1, 2, 3 (35)

where

Ω̇i = [
0ω̇

i
1, 1ω̇

i
2, q̈i, 3ω̇

i
4, 4ω̇

i
5, 5ω̇

i
6

]T is a matrix con-
taining the joint acceleration rates of the i-th limb
$Liei is the Lie screw of the i-th limb, which is com-
puted using the composed Lie products as follows:

$Liei = [
0ω

i
1

0$1
1ω

i
2

1$2 + . . . + 5ω
i
6

5$6
]

+ [
1ω

i
2

1$2
2ω

i
3

2$3 + . . . + 5ω
i
6

5$6
]

+ . . . + [
4ω

i
5

4$5
5ω

i
6

5$6
]
. (36)

Furthermore, the reduced acceleration state can be
written in screw form through the R*PPS-type limb as
follows:

J4�̇4 + $Lie4 = AC, (37)



836 Int J Adv Manuf Technol (2009) 45:830–840

where �̇4 = [
0ω̇

4
1, q̈4, q̈5, 3ω̇

4
4, 4ω̇

4
5, 5ω̇

4
6

]T is a matrix con-
taining the joint acceleration rates of the R*PPS-type
limb.

Given the reduced acceleration state AC, the inverse
acceleration analysis of the parallel manipulator, or in
other words, the computation of the joint acceleration
rates of the parallel manipulator, is computed directly
from expressions 35 and 37.

On the other hand, the forward acceleration analysis
of the parallel manipulator, indeed, the computation of
the reduced acceleration state of the moving platform,
with respect to the fixed platform, for a given set of
active joint acceleration rates {q̈1, q̈2, . . . , q̈5}, is com-
puted, following the trend indicated in Subsection 4.1,
from

JT � AC = Qaccel (38)

where

Qaccel =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈1 + {
4$5

1; $Lie1

}
q̈2 + {

4$5
2; $Lie2

}
q̈3 + {

4$5
3; $Lie3

}
q̈4 + {

3$4
4; $Lie4

}
q̈5 + {

4$5
4; $Lie4

}
{

5$6
4; $Lie4

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is worth mentioning that Eq. 38 does not require
the computation of the passive joint acceleration rates
of the parallel manipulator; only the values of the active
joints are required, of course, in addition to the data of
the actual configuration of the spatial mechanism, and
therefore, it is possible to affirm that the acceleration
analysis we present in this study is computationally
efficient.

Once the reduced acceleration state is computed by
means of Eq. 38, the angular acceleration of the moving
platform, with respect to the fixed platform, is obtained
as the primal part of the accelerator AC, indeed ω̇ =
P(AC), while the linear acceleration of the center of the
moving platform, vector aC, expressed in the reference
frame XYZ using the dual part of AC results in

aC = D(AC) + ω × vC. (39)

Finally, it is straightforward to show that, with slight
modifications, the method of kinematic analyses here
presented is available for other five-dof parallel ma-
nipulators with similar architectures, for example, the
parallel manipulators shown in Fig. 3.

Fig. 3 Some 3R2T parallel
manipulators

5 Case study

In this section, a numerical example is provided. The
case study consists of solving the forward kinematics of
a 3R2T parallel manipulator, and its validation using a
different mathematical resource than the one proposed
in this work.

Given the parameters and generalized coordinates
listed in Table 1, it is required to determine the follow-
ing kinematic properties of the parallel manipulator:

1. All the real feasible locations of the moving plat-
form, with respect to the fixed platform, at the
beginning of the motion

2. Select the home position of the parallel manipula-
tor
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Table 1 Parameters of the numerical example

r = 0.25, a = 0.433
B1 = (−0.25, 0, 0.433), B2 = (0.5, 0, 0),
B3 = (−0.25, 0, −0.433), B4 = (0, 0, 0)

q1 = 0.559 + 0.1 sin(t), q2 = 0.579 + 0.025 sin(t),
q3 = 0.559 + 0.05 sin2(t)
q4 = 0.075 sin(t), q5 = 0.5 − 0.1 sin2(t)
0 ≤ t ≤ 2π

3. According to the periodical functions, see Table 1,
assigned to the five generalized coordinates qi,
compute the time history of the linear and angular
infinitesimal kinematic properties of the moving
platform, with respect to the fixed platform, ex-
pressed in a global reference frame attached at the
fixed platform

According to Eq. 11, a nonlinear system of three
equations in the unknowns X1, Y2, and Z3 is obtained
at the beginning of the motion, or in other words, when
the time t is equal to zero, as follows:

1.25X2
1 + 19.250Y2

2 + 9.749Z 2
3 + .5X1Y2

− 25.115Y2 Z3 − .866X1 Z3 − .84X1 − 25.66Y2

+ 18.147Z3 + 8.696 = 0

1.25X2
1 + 7.250Y2

2 + 9.749Z 2
3 + 3.5X1Y2

− 9.526Y2 Z3 − .866X1 Z3 − .977X1 − 6.841Y2

+ 7.676Z3 + 1.844 = 0

5.X2
1 + 8.Y2

2 + 2.999Z 2
3 + 8.X1Y2 − 6.928Y2 Z3

− 3.464X1 Z3 − 3.636X1 − 10.182Y2

+ 4.408Z3 + 3.228 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(40)

Applying the Sylvester dialytic elimination method
with the purpose to solve Eq. 40, the resulting values
of the variables X1, Y2, and Z3 are listed in Table 2.
Furthermore, ignoring imaginary and spurious solu-
tions, only two real solutions are available for the for-
ward position analysis: one solution yields the following

Table 2 Resulting values for X1, Y2 and Z3

X1 Y2 Z3

0.145e−1+.358i .243−0.504e−10i −.445+0.319e−1i
0.145e−1−.358i .243+0.504e−10i −.445−0.319e−1i
−0.069 .514 −.180
−.173 .514 −.240
−.375+.203i .638−.138i 0.728e−2+0.389e−1i
−.375−.203i .638+.138i 0.728e−2−0.389e−1i
0.928e−2−0.649e−1i .638−.138i −.212−.278i
0.928e−2+0.649e−1i .638+.138i −.212+.278i

coordinates of the centers of the spherical joints at-
tached at the moving platform:

S1 = (−0.069, 0.492, 0.240)

S2 = (0.242, 0.514, −0.060)

S3 = (−0.173, 0.492, −0.180)

S4 = (0, 0.5, 0)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(41)

while the other solution indicates that

S1 = (−0.173, 0.492, 0.180)

S2 = (0.242, 0.514, 0.060)

S3 = (−0.069, 0.492, −0.240)

S4 = (0, 0.5, 0)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(42)

Fig. 4 Forward kinematics of
the moving platform using
screw theory
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Fig. 5 Forward kinematics of the moving platform using
ADAMS©

Due to the decoupled motion, the center of the
moving platform, point S4, depends on the generalized
coordinates q4, associated to the lower prismatic joint,
and on q5, associated to the extendible vertical length of
the central limb, and therefore, there is only a unique
instantaneous position for this spherical joint. On the
other hand, due to the in general inevitable presence
of multiple solutions, the centers of the remaining
spherical joints can reach two different positions, and
therefore, the determination of the actual configuration
of the mechanism is a mandatory task in order to
approach the infinitesimal kinematics of the parallel
manipulator. This task can be achieved using sensors. In
this way, it is opportune to emphasize that this section
reports an academic numerical example, and therefore,
there are no particular reasons to select one of the two
computed configurations as the actual configuration of
the parallel manipulator. With this consideration in
mind, taking Eq. 42 as the home position of the parallel
manipulator, the relevant results of the angular and lin-
ear kinematic properties of the moving platform, with
respect to the fixed platform, using the methodology of
analysis introduced in Section 4, are provided in Fig. 4.
Furthermore, in order to verify the numerical results
obtained by means of screw theory, a simple model was
implemented in the kinematic and dynamic simulation
program ADAMS©, and the results generated with
this commercial software are shown in Fig. 5. Finally,
please note that the results generated using screw the-
ory are in excellent agreement with those obtained with
ADAMS©.

6 Conclusions

In this work, the position, velocity, and acceleration
analyses of a five-dof decoupled parallel manipulator,
belonging to the class known as 3R2T parallel manipu-
lators, are successfully approached by means of simple
geometric procedures and the theory of screws. The
position and orientation of the moving platform are
controlled, respectively, by means of a single PPS-type
serial kinematic chain and a three-UPS spherical par-
allel manipulator. The moving platform is connected at
the limbs of the parallel manipulator by means of four
distinct spherical joints, and therefore, this mechanism
can be considered as a nonoverconstrained parallel ma-
nipulator, a significative advantage from a manufactur-
ing point of view. Furthermore, since all the limbs play
the role of active legs, then the parallel manipulator
under study brings the two main advantages of most
parallel manipulators: accuracy and stiffness.
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The architecture of the parallel manipulator is so
simple that the forward finite kinematics, a challeng-
ing intensive task for most parallel manipulators, is
shortened considerably by establishing simple geomet-
ric kinematic constraints. Consider, for instance, that
the forward position analysis is presented in semiclosed
form solution by applying recursively the Sylvester dia-
lytic elimination method, which allows one to compute
the 16 solutions, included reflected solutions, for the
mechanism at hand. Certainly, this procedure is well-
known; however, it is included in this contribution for
the sake of completeness and as a necessary step to
approach the infinitesimal kinematics of the parallel
manipulator under study.

Simple and compact expressions are derived in this
contribution by using the theory of screws for solving
the velocity and acceleration analyses of the parallel
manipulator. It is worth mentioning that the Klein form
of the Lie algebra, se(3), allows one to solve the forward
acceleration analysis without computing the passive
joint acceleration rates of the parallel manipulator. A
numerical example is included in order to illustrate
the simplicity of the proposed method of infinitesimal
kinematic analysis. Furthermore, the numerical results
obtained via screw theory are verified with the aid of
special software like ADAMS©.

Finally, as is pointed by Zhua et al. [32], the kinemat-
ics of 3R2T parallel manipulators, due to their short his-
tory, has not been studied very well. Therefore, in this
work, the reader can find an option to systematically ap-
proach the position, velocity, and acceleration analyses
of this class of limited-dof parallel manipulators.
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