
ORIGINAL ARTICLE

Deadlock-free multi-attribute dispatching method
for AGV systems

Xianping Guan & Xianzhong Dai

Received: 24 September 2008 /Accepted: 25 February 2009 /Published online: 17 March 2009
Springer-Verlag London Limited 2009

Abstract This paper aims at developing a flexible, effi-
cient, and deadlock-free dispatching method for automated
guided vehicle systems. For this purpose, a deadlock-free
multi-attribute dispatching method with dynamically ad-
justable weights (AWMA) is proposed. Traveling distance,
input, and output buffer statuses are selected as dispatching
attributes according to the efficiency and deadlock avoid-
ance requirement. The weight for each attribute is dynam-
ically adjusted according to the processing load and
transportation load of the system. To ensure the system to
be deadlock-free, a deadlock avoidance policy based on
remaining capacity concept is introduced. It works by
temporarily forbidding critical tasks according to the
system state, which will otherwise cause system deadlock.
The AWMA method is formed by integrating the deadlock
avoidance policy into the multi-attribute dispatching proce-
dure. To validate the effectiveness of the proposed method,
several simulation experiments were carried out to compare
three commonly used dispatching methods with the
proposed one under different system settings. The simula-
tion results indicate that the deadlock avoidance policy can
guarantee the system to be deadlock-free and that the
proposed method is efficient.

Keywords Automated guided vehicles . Dispatching .

Multi-attribute . Deadlock avoidance . Remaining capacity

1 Introduction

Market demands are becoming highly specific and rapidly
changing nowadays. To stay competitive, manufacturers are
required to accommodate various products in a timely and
cost-effective manner. A new manufacturing paradigm,
reconfigurable manufacturing system (RMS), has been
proposed to meet this requirement. To cope with fluctuant
production, RMS undergoes frequent configuration changes
and supervisory controller reconfigurations [1–3]. This
leads to changes of material flow patterns as well and thus
calls for flexible and efficient material handling system.
Automated guided vehicle system (AGVS) is a kind of
flexible and efficient material handling system with
intelligent control capability, which satisfies the material
handling requirement of RMS. As dispatching is one of the
most important issues for AGVS management and control
[4–6], this paper concentrates on dispatching method for
AGVS under RMS job shop environment.

Dispatching methods take decisions on task allocations
in real time. To make dispatching decision, the decision
parameters should be specified. These parameters are often
called attributes in the literature. Egbelu and Tanchoco [7]
proposed several single attribute dispatching rules. As
single attribute only reflects one aspect of the system, it
cannot efficiently adapt to various system settings. To
synthesize multiple aspects of the system, multi-attribute
methods have been adopted [8–12]. Jeong and Randhawa
[8] proposed several multi-attribute dispatching rules using
three attributes: vehicle empty travel distance, remaining
spaces in input buffers, and remaining spaces in outgoing
buffers. When multi-attribute rules are used, it is difficult to
specify the weights for the attributes. In [8], neural network
learning method was used to decide the weights. Naso and
Turchiano [9] utilized simulation and genetic algorithm to

Int J Adv Manuf Technol (2009) 45:603–615
DOI 10.1007/s00170-009-1996-9

X. Guan (*) :X. Dai
Key Laboratory of Measurement and Control of CSE
(School of Automation, Southeast University),
Ministry of Education, Southeast University,
Nanjing 210096, China
e-mail: gxp334@126.com

X. Dai
e-mail: xzdai@seu.edu

learn the weight of each attribute. These learning
approaches have to be done off-line, so they are not
responsive to requirement variety and system resource
changes. On the other hand, suitable training data are
difficult to acquire. Bilge et al. [10] used output buffer
length and travel time to pick up as two attributes of
dispatching rule, and the loads of the processing and
transportation subsystem were used to adjust the weight
of each attribute. However, the load of individual equip-
ment is not different and deadlock is not considered. Guan
and Dai [11] proposed a multi-attribute dispatching method
with dynamically adjustable weights. Although this method
is flexible and efficient, it does not ensure the system to be
deadlock-free.

Block and deadlock may occur if the dispatching rules
are not properly designed. In [6], several block and
deadlock situations were listed. Liu and Hung [13] listed
the four conditions for deadlock to occur, and they
recognized two kinds of deadlock in AGVS: (1) deadlock
caused by sharing guide path segments and (2) deadlock
caused by finite queuing capacity. The first kind is called
routing deadlock and the second dispatching deadlock in
this paper. There are three commonly used deadlock
handling methods: (1) prevention; (2) avoidance; and (3)
detection and resolution. While handling deadlock, it is
difficult to ensure the system to be deadlock-free and to
keep the dispatching flexible and efficient at the same time.
Generally, deadlock avoidance is more flexible than
deadlock prevention and more efficient than deadlock
detection and resolution. Therefore, deadlock avoidance
method is adopted in this paper. Zone control methods are
commonly used to avoid deadlock in automated guided
vehicle (AGV) routing [14–19]. Yoo et al. [14] proposed
graph theory-based method for deadlock avoidance of
AGVS, but this method only dealt with AGVS routing
deadlock and the given algorithm can only resolve
deadlock caused by two AGVs. Srivastava et al. [15]
developed an intelligent agent-based AGV controller for a
flexible manufacturing system, and zone control method
was employed to handle deadlock and collision of AGVS.
Liu and Hung [13] proposed a deadlock-free dispatching
method for multi-load AGV systems. However, this method
does not consider the distance aspect and only suits for
layout with a main loop. Moreover, this method does not
ensure the system to be deadlock-free. Wu and Zhou [20]
used colored resource-oriented Petri net to model both the
AGV system and part processing system, which were
integrated using macro transitions. Upon this integrated
model, they proposed a maximally permissive deadlock
avoidance policy. As analyzed in [14], Petri net modeling
has the disadvantages of complexity and difficulty to adapt
to system changes. Lehmann et al. [21] adopted resource
assignment matrix to predict deadlock and avoided dead-

lock by adjusting assignment of some entities. When buffer
capacity is considered, the assignment matrix is difficult to
use. In a word, there is a lack of flexible, efficient, and
deadlock-free dispatching method for AGVS.

To ensure the system to be deadlock-free and to allow
the maximum flexibility of dispatching, a deadlock avoid-
ance policy based on remaining capacity concept is
proposed in this paper. This deadlock avoidance policy is
integrated into the multi-attribute dispatching method
proposed in [11]. Thus, the deadlock-free multi-attribute
dispatching method with dynamic adjustable weights is
formed. The method is expected to be flexible, efficient,
and deadlock-free. To verify the expectation, a simulation
system is designed and several experiments are carried out
to compare three commonly used methods with the method
proposed in this paper under various conditions.

This paper is organized as follows. Problem statement is
given in Section 2 and the deadlock-free multi-attribute
dispatching method with dynamically adjustable weights
(AWMA) is described in the next section. In Section 4,
several experiments are carried out to compare three
commonly used dispatching methods with the one proposed
in this paper under various system settings. Section 5
concludes this paper.

2 Problem statement

2.1 Description of the target system

Manufacturing system using AGVS as the transportation
subsystem is generally composed of a processing subsystem
and a transportation subsystem. The processing subsystem
includes processing machines, input, and output buffers. The
transportation subsystem includes several AGVs and a guide
path network. As there are many kinds of such systems, this
paper focuses on RMS systems under job shop environment.
First, some assumptions are given for the target system:

1. Jobs are randomly generated according to the job mix
and arrive according to Poisson process; each job
enters the system through input workstation and
leaves the system through output workstation after
completing all operations.

2. Jobs in input buffers are input to processing machines
according first come first input rule, and jobs in output
buffers can be taken at any order as required.

3. A processing machine processes one job at a time, and
processing operations cannot be interrupted.

4. The guide path is unidirectional.
5. One AGV carries one job at a time, and it travels

alone the shortest path between pickup and drop down
positions at constant speed.

604 Int J Adv Manuf Technol (2009) 45:603–615

6. Equipments failures are not considered.
7. Loading and unloading time for each job are the same

for every workstation; when there is one AGV which
is loading or unloading at a workstation, other AGVs
with the same operation aim (loading or unloading)
have to wait.

8. An AGV will stay at where it has finished its task if
no more tasks are assigned to it, and it does not
influence the travel of other AGVs.

9. Battery charge is not considered.
10. Change time for processing different jobs is assumed

to be zero.

An example system is shown in Fig. 1. Generally,
suppose there are NM +2 workstations, WS, in the system,
among which there is one input workstation 0 and one
output workstation NM +1; others are processing worksta-
tion. Each workstation m has one input buffer with
capacity CI (m), one output buffer with capacity CO (m).
Each processing workstation has a processing machine.
The input buffer of the input workstation and the output
buffer of the output workstation are not considered. There
is one guide path network Gg=(Vg,Eg) in the system. The
node set Vg includes pickup nodes Pm∈ P, drop down
nodes dm∈D, and other connecting nodes. The segments
e∈Eg on the network are unidirectional. For a given guide
path network, the minimum distance from nodes i to node
j is DS(i,j), which is obtained using Dijkstra algorithm. If
the speed of AGV is v, then the travel time from node i to
node j is Tv(i,j)=DS(i,j)/v. Suppose there are NR AGVs in
the system. AGVs travel on the segment of network
following the direction shown by the arrows in the figure.

The jobs arrive at the system through input workstation.
And after completing required number of operations, they
leave the system through output workstation. During a
certain time period length, WT, there are NJ jobs waiting
for processing. During a job j staying in the system, it
needs transporting by AGV and processing by machine
alternatively. After a sequence of such transporting task,
Tjk, and processing task, Ojk, it leaves the system.
Different jobs may have different task sequences, as
shown in Fig. 2. For each transporting or processing task,
one entity should be assigned to carry out the task. As it is
assumed that the processing task has been assigned, this
paper concentrated on the assignment of transporting task.
The dispatching procedure can be utilized to accomplish
this task. The dispatching procedure is discussed in more
detail in the next sections.

2.2 Dispatching for AGV systems

To make dispatching decision, several issues must be
considered.

1. When to make dispatching decision?

There are two events which cause the call of dispatching
procedure: (1) the arrival of new transporting task and (2)
an AGV has completed its current task. When a job arrives,
or when a job completes its current processing operation, it
needs to be transported to the next workstation for further
processing or to leave the system. When an AGV unloads
its current job, it is free to carry out another task. If one of
the events mentioned above occurs, the dispatching
procedure should be called.

Fig. 1 The layout of the system

Int J Adv Manuf Technol (2009) 45:603–615 605

2. Which tasks and vehicles are involved?

Jobs that arrive at the input workstation and the ones that
have finished their current processing operations and have
been output to output buffers are considered as tasks
waiting for dispatching. Idle AGVs are considered ready
for receiving tasks.

3. How to decide task assignment?

For this issue, some values between tasks and AGVs
should be computed. Such values are called utility values.
This is critical for decision. Multi-attribute rule is used in
this paper. After utility values calculation, task assignment
decision should be made. Because deadlock will severely
deteriorate the system performance, deadlock handling
policy in required. So the general dispatching procedure is
given in Fig. 3. The main models in this procedure, that is,
utility value matrix calculation and task assignment, are
given in the next section in more detail.

3 Deadlock-free multi-attribute dispatching method

The aim of this paper was to develop a flexible, efficient,
and deadlock-free dispatching method for AGVS. Hence, a
deadlock-free AWMA method is proposed. First, the utility
values between tasks and AGVs are calculated. Multi-
attribute dispatching rule is adopted to synthesize multiple
aspects of the system. Traveling distance, input, and output
buffer statuses are chosen as dispatching attributes. The
weights of the attributes are dynamically adjusted according
to the processing load and the transportation load of the
system. Thus, the method can adapt to different system
settings and task loads. Then, the deadlock-free dispatching
procedure is given. To handle the deadlock situation, the
remaining capacity concept is proposed. The deadlock
avoidance policy works by temporarily forbidding those
critical tasks that may lead to system deadlock. In addition,
the deadlock-free property of this policy is proven.

3.1 Multi-attribute utility values calculation

To decide the utility values between tasks and AGVs, the
attributes for dispatching must be chosen. As different
attributes reflect different system conditions, combination
of several attributes may give more comprehension of the
system. Traveling distance, input, and output buffer statuses
are chosen as dispatching attributes. To decide the weights
of the attributes, system load condition is taken into
account. As distance reflects transportation load, and input
and output buffer statuses reflect processing load, so the

Fig. 3 The dispatching procedure

Fig. 2 The task sequences of the system

606 Int J Adv Manuf Technol (2009) 45:603–615

weight of distance is mainly influenced by transportation
load, and the weights of input and output buffer statuses are
mainly determined by processing load. The utility value
between a task i and an AGV j can be calculated formally
as:

f i; jð Þ ¼ WD fD þWI fI þWO fO ð1Þ
where fD, fI, fO are the values for the three attributes and
WD, WI, WO are weights for the attributes. The parameters
of this formula need to be calculated. The value of each
attribute is calculated according to the status of the related
entity and the weight of each attribute according to the
system load and load of each entity.

To make decision, some parameters of the system are
computed.

The total processing load is:

NP ¼
XNJ

j¼1

Xnj

k¼1

lqjPjkWT ð2Þ

where l is the job arrive rate, qj is the mix of job type j, Pjk

is the processing time of operation Ojk, and WT is the
planned run time length.

The total transportation load is:

NT ¼ KR

XNJ

j¼1

Xnj

k¼0

lqjðtjkþtl þ tuÞWT

 !
ð3Þ

where KR is AGV travel factor, which reflects AGV’s
loaded and empty travel rate, tjk is the time needed for
transporting task Tjk, with tjk ¼ TvðpMjk ; dMjðkþ1ÞÞ, tl is
loading time for a task, tu is unloading time, NJ is the
number of jobs to the system, nj is the number of operations
of job j.

The total processing ability of the system is:

CM ¼ NM �WT ð4Þ
where NM is the number of processing machines in the
system.

The total transportation ability of the system is:

CV ¼NR �WT ð5Þ
where NR is the number of AGVs in the system.

So the processing load factor of the system is:

Lp ¼ NP=CM ¼
XNJ

j¼1

Xnj

k¼1

lqjPjk

�
NM; ð6Þ

and the transportation load factor of the system is:

Lt ¼ NT=CV ¼ KR

XNJ

j¼1

Xnj

k¼0

lqj tjk þ t1 þ tu
� ��

NR: ð7Þ

The processing load for each workstation can be
computed as follows:

lm ¼
XNJ

j¼1

Xnj

k¼1

lqjPjkXjkm ð8Þ

with Xjkm ¼ 1; ifðMjk ¼ mÞ
0; otherwise

�
.

So the load factor for each workstation can be defined
as:

Km ¼ lm
LP

: ð9Þ

The load factors of input and output workstations are
defined as 1.

The transporting tasks can be denoted as Tjk=(Mp,Md),
with Mp as the source workstation and Md as the destination
workstation. The attribute value for input buffer for
workstation m can be given as:

fin mð Þ ¼ cI mð Þ
CI mð Þ ð10Þ

where CI(m) is the input buffer capacity of the workstation
m and cI(m) is the current number of jobs in the input buffer
of workstation m.

The attribute value for output buffer is given as:

foutðmÞ ¼ cOðmÞ
COðmÞ ð11Þ

where CO(m) is the output buffer capacity of the worksta-
tion m and cO(m) is the current number of jobs in the output
buffer of workstation m.

To avoid deadlock situations, emphasis is given to the
full output buffers and empty input buffers, so the attribute
value for input buffer is adjusted as:

fI ¼ Fi 1� fin Mdð Þð Þ; if cI Mdð Þ ¼ 0
1� fin Mdð Þ; others

�
ð12Þ

and the one for output buffer as:

fO ¼ FoðfoutðMpÞÞ; if cOðMpÞ ¼ COðMpÞ
foutðMpÞ; others

�
ð13Þ

with Fi, Fo as constants greater than 1 and is often set Fo>
Fi. The weight for each attribute should be adaptive to the
system load to make load balance for the system resources.
So the distance weight is set as W′D=Lt, the input buffer
weight as W′I=Lp, and the output buffer weight as W′O=Lp.
These weights can be normalized as:

WD ¼ W
0
D

W
0
D þW

0
I þW

0
O

ð14Þ

Int J Adv Manuf Technol (2009) 45:603–615 607

WI ¼ W
0
I

W
0
D þW

0
I þW

0
O

ð15Þ

WO ¼ W
0
O

W
0
D þW

0
I þW

0
O

: ð16Þ

So the value for task Tjk can be given as:

fjk ¼ WIfIKMd þWOfOKMp ð17Þ
where KMd and KMP are calculated according to Eq. 9.

For task Tjk to AGV R located at position PR, the
distance value is:

fD ¼ MD�TvðpR; pMpÞ
MD

ð18Þ

where MD=max(Tv(i,j)) is the maximum travel time
between nodes in the path network. So the utility value
between task Tjk and AGV R is:

f Tjk ;R
� � ¼ fjk þWDfD: ð19Þ

3.2 Deadlock-free multi-attribute dispatching procedure

To make deadlock-free dispatching, several definitions are
given.

Number of input AGVs, LI(m)
The number of input AGVs of a workstation m is

defined as the number of AGVs that have been assigned
tasks, and the destination workstation of the tasks is m.

Number of output AGVs, LO(m)
The number of output AGVs of a workstation m is

defined as the number of AGVs that have been assigned
tasks, and the source workstation of the tasks is m.

Remaining capacity, RM(m)
The remaining capacity of workstation m is defined as

the number of AGVs that workstation m can accommodate
additionally, which can be calculated as:

RM mð Þ ¼ CI mð Þ þ CO mð Þ þ 1� cI mð Þ � cO mð Þ
� pr mð Þ � LI mð Þ þ LO mð Þ ð20Þ

with pr(m)=1 if there is one job on the processing machine
of workstation m, otherwise pr(m)=0.

Blocked AGV
An AGV is called blocked if the AGV has accepted a

task and the remaining capacity of the destination worksta-
tion of the task is non-positive.

Active AGV
An AGV is called active if it is not blocked.
Number of blocked AGVs, NB

The number of blocked AGVs in the system.

As Moorthy stated, “Deadlock in a broad sense is a
situation in which at least a part of the system stalls” [19],
so system deadlock can be given as follows:

System deadlock
When all entities in the system stall and cannot progress

with their process, the system is in deadlock.
Deadlock is a definite state. On the other hand, only

under certain constraints, the states that will inevitably lead
to deadlock can be confirmed. In Section 2, several
assumptions of the system have been given. Here, further
assumptions about dispatching conditions are listed: Only
idle AGVs can receive tasks; once tasks are assigned, they
cannot be cancelled or reassigned; path block or deadlock is
not considered. Then, the deadlock discussion in this paper
is under all above conditions.

Under such conditions, once task assignment is made,
the next system state is definite. Whether the system gets
into deadlock or not can be decided after a task assignment
and cannot change if there is no further task assignment.
That is, only task assignment can change the state of
deadlock. Thus, the deadlock state can be extended to the
whole time length after the previous task assignment and
before the next task assignment. Thus, different states can
be divided into different task assignment states.

Extended system state, q
System state during the whole time length between two

consequence task assignments is regarded as an extended
system state.

So a system state is called deadlocked if the system gets
into deadlock at the end of the extended system state. If
deadlocked, then no further task assignment can be made.
Hereafter, when system state is discussed, it refers to
extended system state. Under certain system state, the
number of blocked AGVs will not change. Only task
assignment can change system state and, thus, the number
of blocked AGVs in the system.

According to the definitions, it is easy to get the
following lemma.

Lemma 1
The system gets into deadlock if and only if NB=NR.
Proof 1
As the AGVs are the only active part in the system, so if

all the AGVs stall, then no job is able to progress with its
tasks. The whole system will eventually stall. According to
the definition of blocked AGV, a blocked AGV cannot
unload its accepted job and it needs other active AGVs to
activate it; otherwise, it remains blocked. So if NB=NR,
then no AGV can get active and no further task assignment
can be made, so eventually, all the AGVs will stall. Then,
the system gets into deadlock.

Proof 2
If the system is in deadlock, then all the AGVs must be

blocked. Otherwise, if there is at least one active AGV, it

608 Int J Adv Manuf Technol (2009) 45:603–615

will eventually turn idle and can receive other task. So the
system is not deadlocked under this state; this contradicts
with the condition that the system is in deadlock. So if the
system is deadlocked, NB=NR.■

According to Lemma 1, the following definition is given.
Deadlock of AGV dispatching
The deadlock of AGV dispatching is defined as the

situation when all AGVs are blocked and no further task
assignment can be made from then on.

To ensure the system to be deadlock-free, deadlock
avoidance policy is required.

Suppose the task list waiting for assignment is TL={1,2,
…,NT} and the available AGV list is RL={1,2,…,NV}, A is
the assignment matrix, with each element as:

aði; jÞ ¼ 1; if task Ti is assigned to AGV Rj

0; others

�
; Ti 2 TL; Rj 2 RL:

ð21Þ
Initially, every element in matrix A is set to 0. Then,

according to Eq. 19, the utility value for each task–AGV
pair f(i,j) is calculated.

So to avoid deadlock, what is only needed is to make
sure there is at least one active AGV in the system. When
NB=NR−1, the dispatching procedure should make sure
that the only active AGV will not get blocked, or if it gets
blocked, it can make another blocked AGV active. Then,
the deadlock avoidance policy can be formed. If the number
of blocked AGVs NB=NR−1, some tasks should temporar-
ily be forbidden; otherwise, deadlock may occur.

So when NB=NR−1, the forbidden task set is defined as:

FL ¼ fTijLI ðTiðpÞÞ ¼ 0;RMðTiðdÞÞ � 0; Ti 2 TLg:
Then the available task set is given as: AL=TL\FL.
Task–AGV pair with max utility value is selected and

fixed:

ðk; rÞ ¼ Argmax
i;j

f ði; jÞ; Ti 2 AL;Rj 2 RL: ð22Þ

Then set a(k,r)=1, and TL=TL\{Tk}, RL=RL\{Rr}, then
the available task set AL can be updated. If both AL and

RL are not empty, the procedure is repeated. The dispatch-
ing procedure with deadlock avoidance policy is given as
follows.

Dispatching procedure with deadlock avoidance
policy:

Input: TL,RL,NB,RM,LO,LI;
Output: A, updated TL,RL,NB,RM,LO,LI;
Step 1: Calculate utility value matrix f using Eq. 19.
Set a(i,j)=0 for every element of A.
Step 2:

if NB ¼ NR � 1
FL ¼ fTijLIðTiðpÞÞ ¼ 0;RMðTiðdÞÞ � 0; Ti 2 TLg
AL ¼ TLnFL

else

AL=TL

endif
Step 3:

while AL 6¼ 6&RL 6¼ 6

ðk; rÞ ¼ Arg max
i;j

f i; jð Þ; Ti 2 AL;Rj 2 RL

aðk; rÞ ¼ 1

LO Tk pð Þð Þ ¼ LO Tk pð Þð Þ þ 1

if RM Tk pð Þð Þ < 0

NB ¼ NB � 1

Workstation number Input buffer capacity Output buffer capacity

WS1 3 3

WS2 3 3

WS3 3 4

WS4 4 3

WS5 3 3

WS6 4 4

WS7 3 4

WS8 4 3

Table 1 The buffer capacity of
each workstation

Table 2 The process information of job set 1

Job type Operation sequence and process time (s) Mix (%)

A 1(180)5(120)4(240)6(180) 2(240)7(180) 20

B 7(180)5(240)4(120)8(180)6(180) 2(120) 20

C 3(120)2(240)5(180)6(120)8(120) 20

D 4(180)3(240)8(120)5(120) 1(180) 20

E 3(180)1(240)5(120) 6(240)7(180) 20

Int J Adv Manuf Technol (2009) 45:603–615 609

endif

RMðTkðpÞÞ ¼ RMðTkðpÞÞ þ 1

L1 Tk dð Þð Þ ¼ L1 Tk dð Þð Þ þ 1

RM Tk dð Þð Þ ¼ RM Tk dð Þð Þ � 1

if RM Tk dð Þð Þ < 0

NB ¼ NB þ 1

endif

TL ¼ TLn Tkf g;RL ¼ RLn Rrf g
if NB ¼ NR � 1

FL ¼ T1jL1 Ti pð Þð Þ ¼¼ 0&RM Ti dð Þð Þ � 0;Ti 2 TLf g
AL ¼ TLnFL

else

AL=TL
endif

endwhile

Step 4: Return (A,TL,RL,NB,RM,LO,LI).

The deadlock avoidance policy is relatively independent
of the dispatching method. So it can be adapted to other
dispatching methods.

As task forbidden policy is employed, cares should be
taken to the situation when all tasks are forbidden and no
task can be assigned any more. So to be deadlock-free,
there must be more than one AGV in the system. This
condition can be easily satisfied because generally, several
AGVs are used in the system. Then, the following theorem
can be given.

Theorem 1
If NR>1, the dispatching procedure with deadlock

avoidance policy is deadlock-free.
Proof 3
First, it can be proven that all AGVs will not be blocked.

Then, it can be proven that all tasks will not be forbidden.

Obviously, if there are two or more active AGVs in the
system, then no task will be forbidden and the system is
deadlock-free. So only the situation when there is just one
active AGV in the system needs to be considered.

Suppose the only active AGV is Rj. For any task Ti=(Mp,
Md), with Mp=Ti(p), Mp=Ti(d). According to the value of
LI(MP) and RM(Md). There are four possible cases:

case 1: LI(Mp)>0 and RM(Md)>0,
case 2: LI(Mp)>0 and RM(Md)>0,
case 3: LI(Mp)>0 and RM(Md)>0,
case 4: LI(Mp)>0 and RM(Md)>0.

In case 1, the source workstation has input AGV, and the
remaining capacity of the destination workstation is greater
than 0. If task Ti is assigned to Rj, then Rj will not blocked;
according to Lemma 1, the system is not in deadlock.

In case 2, the source workstation has input AGV, and the
remaining capacity of the destination workstation is less
than or equal to 0. If task Ti is assigned to Rj, then Rj will
get blocked. As LI(Mp)>0, and Rj will load Ti on MP, so one
space can be made for input AGVs of workstation Mp to
unload; thus, one of the input AGVs, say Rk, will turn to
active, so there is still one active AGV in the system;
according to Lemma 1, the system is not in deadlock.

In case 3, the source workstation has no input AGV, and the
remaining capacity of the destination workstation is greater
than 0. If task Ti is assigned to Rj, then Rj will not blocked;
according to Lemma 1, the system is not in deadlock.

In case 4, the source workstation has no input AGV, and
the remaining capacity of the destination workstation is less
than or equal to 0. If task Ti is assigned to Rj, then Rj will
get blocked. And because LI(Mp)=0, no blocked AGV can
be turned to active. Then, all AGVs will get blocked;
system deadlock occurs. But under this case, task Ti will be
forbidden and Ti will not be assigned to AGV Rj. So Rj will
not get blocked.■

Proof 4
On the other side, the situation that all tasks are

forbidden will not last forever. As NR>1, then if there is
only one active AGV, there must be one or more blocked
AGVs. Then, the output tasks of the workstation where the
blocked AGV located will not be forbidden.

From Proofs 3 and 4, by using the deadlock avoidance
policy, the system keeps one or more active AGVs and not
all tasks will be forbidden forever; thus, the system will not
get into deadlock. So the dispatching procedure is
deadlock-free.■

Table 3 The process information of job set 2

Job type Operation sequence and process time (s) Mix (%)

F 1(270)5(180)4(360)6(270) 2(360)7(270) 20

G 7(270)5(360)4(180)8(270)6(270) 2(180) 20

H 3(180)2(360)5(270)6(180)8(180) 20

I 4(270)3(360)8(180)5(180) 1(270) 20

J 3(270)1(360)5(180) 6(360)7(270) 20

Number Number of AGVs Job set Job arrive rate (p/h) AGV speed (m/s)

1 9 2 100 6

2 9 1 100 7

Table 4 The two settings
for the simulation cases with
heavy load

610 Int J Adv Manuf Technol (2009) 45:603–615

As remaining capacity concept is introduced, the
deadlock avoidance policy differs from previous policies.
From the dispatching procedure, it can be seen that critical
tasks are forbidden only when there is just one active AGV
in the system, so it is simple and flexible. Thus, the
proposed method is expected to be flexible, efficient, and
deadlock-free. To verify this expectation, simulation experi-
ments are carried out in the next section.

4 Simulation experiments

To test the dispatching method proposed in this paper, a
hypothetical system is designed and three commonly used
dispatching methods are compared with the proposed
method under different system settings.

The system consists of eight processing workstations,
one input workstation, one output workstation, several
AGVs, and a unidirectional guide path network. The layout
of the system is shown in Fig. 1. The buffer capacities of
the workstations are listed in Table 1, and the job types and
processing sequences are listed in Tables 2 and 3. The
loading and unloading time are both set as 30 s. The three
commonly used dispatching methods are:

Shortest travel time first (STTF);
Modified maximum output queue first (MOQF);
Fixed weight multi-attribute (FWMA).

The STTF method is simple single-attribute method. The
utility value between task i and AGV j is calculated as: f(i,j)=
fD. The MOQF method used here is tailored using maximum
output queue first rule first and shortest travel time first rule
next if there is a tie. The utility value of this method is:

Fig. 4 Throughput for the heavy load cases without deadlock
avoidance policy

Table 5 Simulation result for the heavy load cases

Setting Round Deadlock Deadlock time Completed jobs

AWMA

1 1 Y 9,261 8

2 Y 156,193 633

3 Y 83,418 316

4 N – 704

5 Y 148,357 586

6 Y 11,395 13

7 N – 714

8 Y 78,783 300

9 Y 8,687 5

10 Y 127,024 481

2 1 N – 1052

2 Y 46,679 237

3 Y 52,408 295

4 N – 1,051

5 Y 138,649 817

6 N – 1,032

7 Y 10,024 30

8 Y 22,260 104

9 Y 120,474 713

10 Y 50,654 285

STTF

1 1 Y 3,057 0

2 Y 3,287 0

3 Y 2,981 0

4 Y 2,639 0

5 Y 2,296 0

6 Y 2,389 0

7 Y 2,066 0

8 Y 1,908 0

9 Y 2,364 0

10 Y 2,206 0

2 1 Y 2,214 0

2 Y 2,116 0

3 Y 1,984 0

4 Y 1,916 0

5 Y 1,933 0

6 Y 1,850 0

7 Y 1,867 0

8 Y 1,449 0

9 Y 1,971 0

10 Y 1,811 0

MOQF

1 1 Y 20,880 62

2 Y 11,860 30

3 Y 5,018 0

4 Y 28,067 95

5 Y 21,663 73

6 Y 92,436 378

7 Y 12,664 35

8 Y 23,368 81

Int J Adv Manuf Technol (2009) 45:603–615 611

f i; jð Þ ¼ MfO þ fD, where M is a large enough number. In
the FWMA method, three attributes are adopted: travel
distance, output buffer status, and input buffer status, that is:
f ði; jÞ ¼ WD fD þWO fO þWI fI . Here, the weights are set as
WD ¼ WO ¼ WI ¼ 1=3, and the AWMA method is used as
described in Section 3. First, experiments without deadlock
avoidance policy are carried out to find out under what
conditions the dispatching methods will get into deadlock.
Then, different dispatching methods with deadlock avoid-
ance policy are compared to find out the efficiency of each
method.

4.1 Dispatching without deadlock avoidance policy

The results in [11] show that under normal load conditions,
the AWMA method does not lead to deadlock. But under
some extreme conditions, the AWMA will get into
deadlock. That is, when AGV speed is high, the number
of AGV is medium and the job arriving rate is high; the
method leads to system deadlock. So the deadlock
avoidance policy is necessary.

After several tries, two cases where the AWMA may
get into deadlock are selected, which are listed in
Table 4. In these cases, the AGV speed is high, the
number of AGVs is medium, and the processing load is
relatively heavy. Such cases are called heavy load cases.
Every case is carried out with ten simulation runs for each
method, each with simulation length of 48 h. In the
AWMA method, some simulation parameters are set as:
Fo=3,Fi=2,KR=1.6. The simulation result is shown in
Fig. 4 for these heavy load cases. Detailed simulation
result is given in Table 5.

The simulation results show that under some extreme
conditions, the AWMA method may get into deadlock. But
compared to other methods, the AWMA method gets into
deadlock much later, and it completes more jobs under the
same settings. Under heavy load, the other methods cannot

Number Number of AGVs Job set Job arrive rate (p/h) AGV speed (m/s)

1 5 1 12 1

2 6 1 12 1

3 7 1 12 1

4 8 1 16 1

5 9 1 16 1

6 10 1 16 1

7 6 2 12 1

8 7 2 12 1

9 8 2 12 1

10 8 2 16 1

11 9 2 16 1

12 10 2 16 1

Table 6 The 12 settings for the
simulation cases with normal
load

Table 5 (continued)

Setting Round Deadlock Deadlock time Completed jobs

9 Y 126,756 520

10 Y 5,421 1

2 1 Y 43,689 254

2 Y 16,952 89

3 Y 2,804 0

4 Y 40,968 234

5 Y 62,331 370

6 Y 27,430 159

7 Y 10,398 38

8 Y 73,887 453

9 Y 109,406 663

10 Y 22,010 117

FWMA

1 1 Y 12,749 30

2 Y 11,589 17

3 Y 8,371 12

4 Y 12,163 23

5 Y 10,799 19

6 Y 12,022 19

7 Y 11,035 20

8 Y 11,884 19

9 Y 11,002 21

10 Y 10,957 17

2 1 Y 12,980 46

2 Y 6,946 17

3 Y 7,349 15

4 Y 10,434 33

5 Y 7,493 16

6 Y 9,011 17

7 Y 9,055 28

8 Y 10,743 33

9 Y 8,607 23

10 Y 7,785 22

612 Int J Adv Manuf Technol (2009) 45:603–615

work properly, and they almost complete no jobs before get
into deadlock. The AWMA method gets into deadlock
eight times in the first setting and seven times in the
second setting. The other three methods get into
deadlock ten times in both settings. The STTF method
gets into deadlock earliest and completes no jobs. This
indicates that all methods may lead to deadlock, but the
AWMA method gets into deadlock much later and
sometimes does not get into deadlock. So the deadlock
avoidance policy is necessary.

As in [11], several experiments under normal conditions
are carried out. Such cases are called normal load cases.
The settings of these cases are listed in Table 6. The
deadlock times of each method are shown in Fig. 5. The
throughput of each method is shown in Fig. 6.

The simulation result shows that under normal load, the
STTF method is the easiest to get into deadlock. It gets into
deadlock ten times in eight cases. The FWMA method is
the second easiest to get into deadlock, and the MOQF
method only gets into deadlock in three cases. The AWMA
method does not get into deadlock under normal load. This
shows the advantage of the AWMA method. As for the
efficiency, when the system resources are rich (cases 3, 6,
9), the output of the four methods is nearly the same; when
the system resources are scarce (other cases), the AWMA
method gets the best results. The STTF method performs
worst. The MOQFmethod gets better results than the FWMA
method under cases 7, 10, 11, and 12 but worse or equal under
other cases. The simulation result indicates that the AWMA
method can make efficient use of system resources.

Fig. 8 Throughput for normal load cases with deadlock avoidance
policy

Fig. 7 Throughput for heavy load cases with deadlock avoidance
policy

Fig. 6 Throughput for the normal load cases without deadlock
avoidance policy

Fig. 5 Deadlock times for each method

Int J Adv Manuf Technol (2009) 45:603–615 613

4.2 Dispatching with deadlock avoidance policy

Then experiments with deadlock avoidance policy are
carried out. The simulation settings are the same as before,
whereas deadlock avoidance policy is integrated into all the
dispatching methods. Just like before, heavy load cases are
carried out first and then normal load ones. When deadlock
avoidance policy is used, no deadlock occurs for every
method under every case. The simulation result of heavy
load cases is shown in Fig. 7 and that of normal ones in
Fig. 8.

In the heavy load cases, the MOQF method performs
slightly better than the AWMA method, and the STTF
method and the FWMA method perform much worse. The
STTF method completes the least jobs. The MOQF method
gives the output buffer attribute largest weight, so it
performs best. In the AWMA method, the load factors are
adjusted relatively balanced, so this method performs also
well. As the distance is relatively less important in these
settings, the STTF method performs worst. So when load is
heavy, the most important attributes are those related to
block or deadlock.

In the normal load cases, the AWMA method gets the
best results when resources are scarce. When resources are
rich, all methods perform nearly the same. When resources
are scarce, the STTF method performs the worst. It can be
seen that single-attribute method is generally less compet-
itive than multi-attribute one. Deadlock avoidance policy
can greatly improve efficiency of those methods that easily
get into deadlock. For the AWMA method does not get into
deadlock under normal load, the performance of this
method is not improved by the deadlock avoidance policy.
But it is necessary to adopt the deadlock avoidance policy
to ensure the system to be deadlock-free.

5 Conclusion

The aim of this work was to develop a flexible, efficient,
and deadlock-free dispatching method for automated
guided vehicle systems. A deadlock-free AWMA method
was proposed. This method differs from previous methods
in that it is able to easily adapt to different system settings
and ensure the system to be deadlock-free. In this method,
multi-attribute dispatching rule was adopted and the weight
of each attribute was adjusted according to the system
resources and loads of the related aspects. The weights of
attributes with scarce resource and heavy loads would get
larger values, so load balance can be achieved. To
guarantee the system to be deadlock-free, a deadlock
avoidance policy based on remaining capacity concept
was adopted. This policy works by temporarily forbidding
critical tasks according to the system state. Then, the

deadlock-free dispatching procedure was given. Further-
more, the deadlock-free property of this method was
proven. To show the efficiency of the proposed method,
several simulation experiments were carried out on various
situations under a hypothetical system. The simulation
results show that when deadlock avoidance policy is
employed, the AWMA method does not get into deadlock
under any conditions. Under normal conditions, the
AWMA method performs better than other three commonly
used methods when system resources are scarce. This
indicates that the proposed method can make efficient use
of the system resources and avoid deadlock.

Future works include considering the traffic problem and
extending to AGV systems with bidirectional guide path or
free path. So combined deadlock avoidance policy for both
dispatching and routing is desirable.

Acknowledgments The work reported in this paper is supported by
the National Basic Research Program (973Program) of China under
grant no 2002CB312204. The authors would like to thank the
anonymous reviewers for their helpful comments and suggestions.

References

1. Li J, Dai X, Meng Z (2008) Improved net rewriting system-based
approach to model reconfiguration of reconfigurable manufacturing
systems. Int J Adv Manuf Technol 37:1168–1189. doi:10.1007/
s00170-007-1037-5

2. Li J, Dai X, Meng Z (2009) Automatic reconfiguration of Petri
Net controllers for reconfigurable manufacturing systems with an
improved net rewriting system-based approach. IEEE Trans
Autom Sci Eng 6(1):156–167. doi:10.1109/TASE.2008.2006857

3. Dou J, Dai X, Meng Z (2009) Graph theory-based approach to
optimize single-product flow-line configurations of RMS. Int J
Adv Manuf Technol. doi:10.1007/s00170-008-1541-2

4. Le-Anh T, De Koster MBM (2006) A review of design and
control of automated guided vehicle systems. Eur J Oper Res
171:1–23. doi:10.1016/j.ejor.2005.01.036

5. Vis IFA (2006) Survey of research in the design and control of
automated guided vehicle systems. Eur J Oper Res 170(3):677–
709. doi:10.1016/j.ejor.2004.09.020

6. Qiu L, Hsu W (2002) Scheduling and routing algorithms for
AGVs: a survey. Int J Prod Res 40(3):745–760. doi:10.1080/
00207540110091712

7. Egbelu PJ, Tanchoco JMA (1984) Characterization of automatic
guided vehicle dispatching rules. Int J Prod Res 22(3):359–374.
doi:10.1080/00207548408942459

8. Jeong BH, Randhawa SU (2001) A multi-attribute dispatching
rule for automated guided vehicle systems. Int J Prod Res 39
(13):2817–2832. doi:10.1080/00207540110051860

9. Naso D, Turchiano B (2005) Multicriteria meta-heuristics for AGV
dispatching control based on computational intelligence. IEEE T Syst
Man Cy B 35(2):208–226. doi:10.1109/TSMCB.2004.842249

10. Bilge U, Esenduran G, Varol N, Ozturk Z, Aydin B, Alp A (2006)
Multi-attribute responsive dispatching strategies for automated
guided vehicles. Int J Prod Econ 100(1):65–75. doi:10.1016/j.
ijpe.2004.10.004

11. Guan X, Dai X (2008) Multi-attribute dispatching method with
dynamically adjustable weights for multirobot transportation

614 Int J Adv Manuf Technol (2009) 45:603–615

http://dx.doi.org/10.1007/s00170-007-1037-5
http://dx.doi.org/10.1007/s00170-007-1037-5
http://dx.doi.org/10.1109/TASE.2008.2006857
http://dx.doi.org/10.1007/s00170-008-1541-2
http://dx.doi.org/10.1016/j.ejor.2005.01.036
http://dx.doi.org/10.1016/j.ejor.2004.09.020
http://dx.doi.org/10.1080/00207540110091712
http://dx.doi.org/10.1080/00207540110091712
http://dx.doi.org/10.1080/00207548408942459
http://dx.doi.org/10.1080/00207540110051860
http://dx.doi.org/10.1109/TSMCB.2004.842249
http://dx.doi.org/10.1016/j.ijpe.2004.10.004
http://dx.doi.org/10.1016/j.ijpe.2004.10.004

systems. Proceedings of the IEEE International Conference on
Information and Automation (ICIA2008), Zhangjiajie, China, pp
1368–1373

12. Kim CW, Tanchoco JMA, Koo PH (1999) AGV dispatching
based on workload balancing. Int J Prod Res 37(17):4053–4066.
doi:10.1080/002075499189925

13. Liu FH, Hung PC (2002) Control strategy for dispatching multi-load
automated guided vehicles in a deadlock-free environment. J Math
Model Algorithms 1:117–134. doi:10.1023/A:1016564209985

14. Yoo JW, Sim ES, Cao C, Park JW (2005) An algorithm for
deadlock avoidance in an AGV System. Int J Adv Manuf Technol
26:659–668. doi:10.1007/s00170-003-2020-4

15. Srivastava SC, Choudhary AK, Kumar S, Tiwari MK (2008)
Development of an intelligent agent-based AGV controller for a
flexible manufacturing system. Int J Adv Manuf Technol 36:780–
797. doi:10.1007/s00170-006-0892-9

16. Fanti MP (2002) Event-based controller to avoid deadlock and
collisions in zone-control AGVS. Int J Prod Res 40(6):1453–
1478. doi:10.1080/00207540110118073

17. Lee JH, Lee BH, Choi MH (1998) A real-time traffic control
scheme of multiple AGV systems for collision free minimum time
motion: a routing table approach. IEEE T Syst Man Cy A 28
(3):347–358. doi:10.1109/3468.668966

18. Yeh MS, Yeh WC (1998) Deadlock prediction and avoidance
for zone-control AGVS. Int J Prod Res 36(10):2879–2889.
doi:10.1080/002075498192526

19. Moorthy RL, Wee HG, Ng WC, Teo CP (2003) Cyclic
deadlock prediction and avoidance for zone-controlled AGV
system. Int J Prod Econ 83:309–324. doi:10.1016/S0925-5273
(02)00370-5

20. Wu N, Zhou M (2005) Modeling and deadlock avoidance of
automated manufacturing systems with multiple automated guided
vehicles. IEEE Trans Syst Man Cybern B 35(6):1193–1202.
doi:10.1109/TSMCB.2005.850141

21. Lehmann M, Grunow M, Günther HO (2006) Deadlock
handling for real-time control of AGVs at automated container
terminals. OR Spectrum 28:631–657. doi:10.1007/s00291-006-
0053-4

Int J Adv Manuf Technol (2009) 45:603–615 615

http://dx.doi.org/10.1080/002075499189925
http://dx.doi.org/10.1023/A:1016564209985
http://dx.doi.org/10.1007/s00170-003-2020-4
http://dx.doi.org/10.1007/s00170-006-0892-9
http://dx.doi.org/10.1080/00207540110118073
http://dx.doi.org/10.1109/3468.668966
http://dx.doi.org/10.1080/002075498192526
http://dx.doi.org/10.1016/S0925-5273(02)00370-5
http://dx.doi.org/10.1016/S0925-5273(02)00370-5
http://dx.doi.org/10.1109/TSMCB.2005.850141
http://dx.doi.org/10.1007/s00291-006-0053-4
http://dx.doi.org/10.1007/s00291-006-0053-4

	Deadlock-free multi-attribute dispatching method for AGV systems
	Abstract
	Introduction
	Problem statement
	Description of the target system
	Dispatching for AGV systems

	Deadlock-free multi-attribute dispatching method
	Multi-attribute utility values calculation
	Deadlock-free multi-attribute dispatching procedure

	Simulation experiments
	Dispatching without deadlock avoidance policy
	Dispatching with deadlock avoidance policy

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

