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Abstract This paper reports the development of an
intelligent model for the electric discharge machining
(EDM) process using finite-element method (FEM) and
artificial neural network (ANN). A two-dimensional axi-
symmetric thermal (FEM) model of single-spark EDM
process has been developed based on more realistic
assumptions such as Gaussian distribution of heat flux,
time- and energy-dependent spark radius, etc. to predict the
shape of crater cavity, material removal rate, and tool wear
rate. The model is validated using the reported analytical
and experimental results. A neural-network-based process
model is proposed to establish relation between input
process conditions (discharge power, spark on time, and
duty factor) and the process responses (crater geometry,
material removal rate, and tool wear rate) for various
work—tool work materials. The ANN model was trained,
tested, and tuned using the data generated from the
numerical (FEM) simulations. The ANN model was found
to accurately predict EDM process responses for chosen
process conditions. It can be used for the selection of
optimum process conditions for EDM process.

Keywords Electric discharge machining (EDM) .

Process modeling and simulation . Finite-element method
(FEM) . Backpropagation neural networks (BPNN)

Nomenclature
Cp workpiece-specific heat (J/kg K)
Fa fraction of power going to the anode

Fc fraction of power going to the cathode
I discharge current (A)
Kt workpiece thermal conductivity (W/m K)
MRR material removal rate (mm3/min)
qw heat flux at cathode surface (W/m2)
r radial coordinate
Rpc spark radius at cathode surface (µm)
t time (s)
T temperature (K)
Ta ambient temperature (K)
Tm melting temperature (K)
Td spark on time (µs)
TWR tool wear rate (mm3/min)
V discharge voltage (V)
x input variable
xmax maximum value of input variable
xn normalized value of input variable
z depth or axial coordinate
ρ workpiece density (kg/m2)

1 Introduction

Electric discharge machining (EDM) is a nontraditional
manufacturing process that uses electric spark discharges to
machine electrically conductive materials. In today’s man-
ufacturing scenario, EDM contributes a prime share in the
manufacture of complex-shaped dies, molds, and critical
parts used in automobile, aerospace, and other industrial
applications [1]. It is, thus, important to improve the
process productivity and finishing capability to produce
complex part shapes accurately in the shortest possible lead
times.
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During the EDM process, discharge phenomenon occurs
over a very short period of a few microseconds in a narrow
space filled with dielectric fluid. Occurrence of spark
causes evaporation and melting of the material from both
the electrodes. Owing to the complex nature of the process
involving physics of the EDM spark (plasma), it is difficult
to observe the process experimentally and quantify the
mechanism of material removal [2]. Researchers worldwide
are thus focusing their attention on developing EDM
process models for accurate prediction of crater shapes,
material removal rate (MRR), and tool wear rate (TWR).
Literature reports extensive studies on various aspects of
EDM process such as different machine types (wire cut/die
sinking), tooling, control circuits, selection of process
conditions based on experimental analysis, online machine
control, and studies on the microstructure of the machined
workpiece [3, 4]. These studies are, however, applicable to
specific tool–work materials, machines, and shop conditions.
The key issues in die-sinking EDM process include
economical machining and accurate reproduction of complex
tool shape into the die cavity. The focus of the present work
is on developing an intelligent process model for EDM for
accurate prediction of crater cavity, MRR, and TWR using
finite-element method (FEM) and artificial neural network
(ANN). This model will help in the selection of optimum
process parameters to improve the process productivity and
finishing capability during application.

The rest of the paper is organized as follows. “Section 2”
presents a review of relevant papers on the numerical
analysis of single-spark EDM process and the use of ANN
for process modeling. Overview of the developed integrated
process model for EDM using FEM and ANN is presented
in “Section 3.” “Section 4” describes, in details, the thermal
analysis of EDM process using FEM while in “Section 5”
the influence of various input process parameters on
process performance parameters is discussed. Development
of ANN-based process model is presented in “Section 6.”
“Section 7” summarizes the conclusions and contributions
from this work.

2 Literature review

Since early 1970s, researchers worldwide have attempted
mathematical modeling of EDM process (plasma channel)
to understand the electric discharge phenomena and the
mechanism of cathode and anode erosion. Two different
mechanisms have been reported to analyze the material
removal in EDM process viz. electromechanical analysis
[5] and electrothermal analysis [6–18]; the former mecha-
nism being applicable for short pulses typically less than
5µs. Material removal in EDM process is primarily due to
the intense heat generated by a plasma arc produced

between the cathode and the anode. As a result, the
electrothermal analysis of EDM process is considered more
relevant in the present context.

Literature reports various two-dimensional heat flow
models of EDM process considering semifinite [6, 10–14]
or infinite [8] cylindrical electrodes. Several assumptions
such as cylindrical spark plasma [6–14], uniform (disk) heat
source [6, 8, 10–13], distributed point heat source [9],
constant [6, 8, 12, 14] or expanding heat flux radius [7, 13,
15], and constant thermophysical properties [6, 8, 10–13]
over temperature range were employed. These simplifying
assumptions severely limit the applicability of the results.

In late 1980s, DiBitonto and co-workers developed a
point heat source model [16] for cathode erosion and disk-
shaped heat source model with Gaussian distribution of
heat flux for anode [17], considering average thermophys-
ical properties. The spark radius for anode was approxi-
mated based on the results of underwater welding
experiments.

Salah et al. [18] developed a steady-state heat diffusion
model considering Gaussian-distributed heat source and
reported that consideration of temperature-dependent ther-
mal conductivity is important in the thermal analysis of
EDM process. Marafona and Chousal [19] developed an
electrothermal model based on Joule effect using FEM. The
resulting melting volume per discharge pulse was compared
with experimental data reported by DiBitonto et al. [16].

Recently, Yeo et al. [20] critically compared various
EDM thermal models reported by Beck [10, 11], DiBitonto
et al. [16], Jilani and Pandey [12, 13], Snoyes and Van
Dijck [6], and Van Dijck and Dutre [8] with the
experimental results (AGIE SIT data) published by DiBi-
tonto et al. [16] in terms of the predicted geometry of the
crater due to single spark and material removal at the
cathode. It has been reported that DiBitonto’s model
predicts results closer to the experimental data as compared
to all the other models which overpredict significantly.
However, DiBitonto’s process model has limited applica-
bility due to simplifying assumptions such as the approx-
imation of heat source at cathode as a point and crater
cavity of hemispherical shape, which is not realistic.

In general, it can be concluded that the reported
theoretical models based on thermal analysis have limited
applicability, as they are based on the assumptions like the
use of constant spark radius, approximation of heat source
to a point, or disk-shaped (uniform) and constant thermal
properties of work–tool materials. A need thus exists to
develop a more comprehensive numerical model based on
thermal analysis of EDM spark to predict accurately the
crater cavity by modifying above-stated assumptions.

Literature shows few attempts in using ANN for
modeling of EDM process. Tsai and Wang [21] have used
six different network configurations and have reported that
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training and testing by using adaptive-network-based fuzzy
inference system provides better accuracy compared with
other configurations. Wang et al. [22] and Su et al. [23]
have developed a hybrid approach for modeling and
optimization of EDM process using ANN and genetic
algorithm (GA) to obtain process parameters for optimal
performances such as MRR and surface roughness. Amalnik
and Farzad [24] reported the use of backpropagation neural
network (BPNN) and radial basis function network (RBFN)
for prediction of EDM process parameters (MRR and TWR).
Panda and Bhoi [25] used Levenberg–Marquardt back-
propagation technique to predict the MRR. Mandal et al.
[26] have used BPNN based on the experimental data and
further optimized the process parameters using nonsorting
GA.

Most of the above-reported ANN models have been
trained based on the experimental data obtained on specific
machines for typical work–tool materials. Scant research
work is reported on accurate prediction of crater shapes and
surface roughness during the finish machining of complex
dies/mold cavities using EDM process.

A need exists to develop an intelligent process model of
the EDM process considering thermophysical character-
istics to accurately predict crater shapes, MRR, and TWR
for a variety of work–tool materials and EDM process
conditions. The present work is an attempt towards the
development of such integrated EDM process model using
FEM and ANN.

3 Integrated process model development

Figure 1 shows the overall methodology for the develop-
ment of integrated process model of EDM. It is primarily
comprised of two stages, viz. numerical (FEM) analysis of
the EDM process considering the thermophysical character-
istics of the process and the development of ANN-based
process model based on the data generated using numerical
(FEM) simulations. This approach of model development
has a peculiar merit that it is based on the accurate finite-

element analysis and not on experimental data collection,
which could be costly, time consuming, and error prone.

Various steps in the development of process model are
discussed in the sections to follow.

4 Numerical modeling of the EDM process

4.1 The EDM process

In EDM process, a controlled spark is generated between
two metal electrodes (tool and the workpiece) immersed in
a dielectric medium which are separated from each other
with a small gap usually of the order of 10µm [27]. DC
voltage (80–200 V) is applied between the tool and the
workpiece. For coarse machining operations, the tool is
usually the anode and the workpiece is the cathode, while
the polarities are reversed for fine machining operations.
Controlled pulsing of direct current between the tool and
the workpiece produces spark discharges forming a plasma
channel between the cathode and anode. The spark occurs
at the spot where the tool and the workpiece surface are
closest. During the on time of EDM pulse (of the order of
microsecond), intense heat is generated which causes
melting and vaporization of the metal. Due to the large
amount of plasma pressure (3 kbar) [16], the molten metal
holds back at its place. As soon as the spark duration time
is over, the spark collapses and the dielectric gushes in to
fill the void. This sudden removal of pressure results in a
violent ejection of the molten metal from the work surface
resulting in the formation of small craters on the surface.
Owing to the complex nature of the process involving spark
plasma, dielectric medium, flushing conditions, etc., it is
difficult to carry out the experimental observations.

4.2 Thermal analysis of the EDM process

During the process, high electric potential applied between
cathode and anode ionizes the dielectric medium producing
a plasma arc. The primary mechanism of material removal

Fig. 1 Integrated process model
development
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in EDM process is the thermal heating of work surface due
to intense heat generated by the plasma. The highly charged
ionized particles of the plasma raise the temperature of the
electrodes (tool, work) beyond their melting point, some-
times even more than that of boiling point. For the thermal
analysis of the process, conduction is thus considered as the
primary mode of heat transfer between the ions of plasma
and the molecules of work–tool [6–9].

In the present work, Fourier heat conduction equation
with necessary boundary conditions is taken as the
governing equation. Transient nonlinear analysis of the
single-spark operation of EDM process has been carried
out. During the process, spark discharges may occur over
work surface at locations where the interelectrode gap is
minimum. All discharges can be considered to be identical.
The present analysis is thus carried out for a single-spark
operation. A small cylindrical portion of the workpiece
around the spark is chosen for analysis. Figures 2 and 3
show the two-dimensional axisymmetric process continuum
and the associated boundary conditions.

The following assumptions have been made during the
thermal analysis.

4.2.1 Assumptions

& Workpiece and tool materials are homogeneous and
isotropic in nature.

& The material properties of the workpiece and tool are
temperature dependent.

& Heat transfer is purely by conduction. Radiation and
convection heat losses are neglected.

& EDM spark channel is considered as a cylindrical
column.

& The spark radius is assumed to be a function of
discharge current and time.

& Flushing efficiency is considered to be 100%. There is
no deposition of recast layer on the machined surfaces.

& Only a fraction of total spark energy is dissipated as
heat into the workpiece; the rest is lost into the
dielectric convection and radiation.

& Heat flux is assumed to be Gaussian-distributed. The
zone of influence of the spark is assumed to be
axisymmetric in nature.

4.2.2 Governing equation

For the thermal analysis of EDM process, Fourier heat
conduction equation is taken as the governing equation
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where r and z are the coordinates of cylindrical work
domain; T is temperature; Kt is thermal conductivity; ρ is
density; Cp is specific heat capacity of workpiece material.

4.2.3 Boundary conditions

Figure 3 shows the associated boundary conditions applied.
In EDM process, the workpiece is immersed in dielectric
medium; the temperature of the domain is thus assumed to
be ambient temperature (Ta) to start with. The boundaries of
the domain away from the spark domain are considered as
insulated. Heat flux (qw) boundary condition is applied on
the top surface of the workpiece where the spark occurs.

4.2.4 Heat input

Important factors which contribute to the accurate calcula-
tion of material removal rate in single-spark EDM model
include the amount of heat input, radius of plasma spark,
and thermophysical properties of material. Researchers
have assumed two forms of heat input models, viz. pointFig. 2 Schematic of process continuum

Fig. 3 Boundary conditions for solution
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source model with hemispherical crater cavity [16] or
uniformly distributed heat flux model [6–13]. Both these
are simplistic as in actual practice neither is there a point
source (like laser beam) nor is there any uniform (constant)
application of heat on the workpiece. A spark radius exists
at the cathode electrode [2]. Consideration of average
thermophysical material properties and constant EDM
spark radius make the reported models [6–13] simplistic
and restrict their further applicability.

In this present work, the Gaussian distribution of heat
input proposed by Patel et al. [17] has been used to
approximate the heat from the plasma. The heat qw entering
the workpiece due to EDM spark is represented by

qw rð Þ ¼ qo exp �4:5
r

Rpc

� �2
( )

ð2Þ

Using this equation, the maximum heat flux qo can be
calculated [28] as below.

qo ¼ 4:56FcVI

pR2
pc

ð3Þ

Where Fc is the fraction of total EDM spark power going to
the cathode; V is discharge voltage (V); I is discharge
current (A); Rpc is spark radius (µm) at the work surface.

4.2.5 Spark radius

Spark radius is an important factor in the modeling of EDM
process. In practice, it is extremely difficult to experimen-
tally measure spark radius due to very short pulse duration
of the order of few microseconds [2]. Different approaches
have been proposed by researchers in the literature.

Erden [29] have proposed an empirical equation to
calculate the radius in EDM process, as a function of
discharge power and time. These equations are applicable
for a specific pair of work and tool material and need
empirical constants which are difficult to estimate.

DiBitonto et al. [16] approximated spark as a point for
cathode erosion and calculated the plasma radius at anode
erosion [17], which is a function of time. The empirical
constants used for calculation of spark radius were based on
the experimental results of underwater welding.

Pandey and Jilani [15] proposed an approach to calculate
the discharge radius in the EDM process based on the
boiling point temperature of work material, energy density,
and the thermal diffusivity of work material. It is developed
for steel and copper pair and has limited applicability.
Shankar et al. [30] empirically determined the spark radius
as a function of current.

The EDM spark is controlled by discharge energy and
spark on time [2]. Ikai and Hashiguchi [31] have derived a
semiempirical equation of spark radius namely “equivalent

heat input radius” as a function of discharge current (I) and
spark on time (Td), which is more realistic as compared to
other approaches.

Rpc ¼ 2:04e� 3ð ÞI0:43T0:44
d ð4Þ

In the present work, this approach has been used to
calculate equivalent heat input at cathode/anode using
Eqs. 2, 3, and 4. The heat flux equation derived and used
for further analysis in this work is

qw tð Þ ¼ 3:4878� 105FcVI0:14

T0:88
d

exp �4:5
t

Td

� �0:88
( )

ð5Þ

where Td is time at the end of electric discharge (µs).

4.2.6 Energy distribution

Energy distribution is another important factor in the
thermal analysis of EDM process. The total spark power
gets divided into three parts, a portion conducted away by
the cathode, portion conducted away by the anode, and the
rest being dissipated in the dielectric. Few experimental
studies have been reported in literature to determine these
fractions of heat.

Shankar et al. [30] proposed that 40–45% of the heat
input is absorbed by the workpiece made of 5 Cr die steel,
which is calculated based on an empirical analysis using
water as the dielectric and copper as the tool electrode.
However, further research on spark energy distribution
suggested that about 50–60% of the total heat generated
during spark discharge dissipates into the cathode and
anode and the rest is being dissipated into the dielectric
medium through convection and radiation [32].

DiBitonto and co-workers [16, 17] used the data that
were gathered over a long period of time and for different
operating conditions. Comparing experimental and analyt-
ical results, it has been recommended that the energy
distribution should be chosen as 18.3% for cathode (Fc) and
8±1% for anode (Fa) for good correlation between
analytical and experimental results. In the present work,
the same values of Fc and Fa have been chosen.

4.3 Solution methodology

The governing equation (Eq. 1) with boundary conditions
outlined earlier was solved by FEM to predict the
temperature distribution at the end of each transient heat
transfer analysis cycle. ANSYS™ 10.0, an FEM solver was
used. A 2-D continuum of size 0.5×0.5 mm was considered
for the analysis. Four-noded, axisymmetric, thermal solid
element (PLANE 55) was used for discretization of the
continuum. Nonlinear material properties, viz. temperature-
dependent thermal conductivity, were employed. Conver-
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gence conditions were tested by increasing the number of
elements in the mesh. ANSYS Parametric Design Language
[33] was used to build the single-spark EDM model and to
automate the problem-solving process for different input
process parameters.

Important steps are as follows:

& Create model geometry and mesh it using PLANE 55
thermal solid element. Refine the mesh at the location
where heat flux is applied.

& Apply the material properties of work–tool materials,
viz. temperature-dependent thermal conductivity, densi-
ty, and heat capacity. Set initial and bulk temperature as
300 K. Apply the heat flux at the spark location (Eq. 5).

& Compute the temperature distribution for spark on time
(Td).

& Identify the nodes showing temperature more than the
melting point of work material and eliminate them from
the mesh.

& Calculate the MRR and TWR using coordinate data of
the craters of work and tool material and the duty factor.

Figure 4 shows the temperature distribution obtained for
a typical machining condition. Figure 5 shows the bowl-
shaped crater cavity predicted by our model.

4.4 Model validation and results

The thermal model discussed above calculates performance
parameters considering the occurrence of a single spark.
Actual material removal realizable during EDM process is
governed by various factors such as ignition delays, high
frequency of sparks, flushing efficiency, phase change of
electrodes, dielectric medium, and random behavior of
debris particles. It is very difficult to incorporate these

factors into the process models. In the present work, ideal
material removal rates were computed for chosen process
conditions (Table 1) considering that all sparks are equally
effective with 100% dielectric flushing efficiency.

Recently, Yeo et al. [20] critically compared the
prediction accuracies of five thermal models reported by
Snoyes and Van Dijck [6, 7], Van Dijck and Dutre [8], Beck
[10, 11], Jilani and Pandey [12, 13], and DiBitonto et al.
[16] with the experimental data [16]. It was concluded that
results predicted by DiBitonto’s model are closer to the
experimental data compared to all the other models. It was,
therefore, decided to compare the results predicted by our
model with the theoretical and experimental results (AGIE
SIT data) reported by Yeo et al. [20]. The machining
conditions taken for carrying out our analysis were exactly
the same as those reported by Yeo et al. [20]. Table 1 shows
the comparison of the reported experimental results (AGIE
SIT), reported theoretical model results [16, 20], and the
results predicted by our model.

Figure 6 shows the comparison of MRR predicted by our
model, Yeo’s recommended model, and the AGIE SIT
experimental data. It is seen that the values of MRR
predicted by our model are further closer to the experimen-
tal results compared to those by Yeo et al. [20] for a wide
range of discharge energy levels up to 650 mJ. It can, thus,
be concluded that our numerical model would give better
prediction of MRR compared to the reported models. This
may be due to the incorporation of more accurate and
realistic equivalent spark radius equation, which is a
function of current and discharge duration. In addition,
our model considers the transient analysis of single spark
with the expanding radius, which may also add more
accuracy to our results.

Fig. 4 Temperature distribution obtained at the end of a spark.
(machining condition: work material AISI W1 tool steel, current 10 A,
spark on time 100µs, and discharge voltage 40 V)

Fig. 5 Predicted bowl-shaped crater cavity using FEM analysis.
(crater depth 30.2µm, crater radius 70.3µm, work material AISI W1
tool steel, discharge current 10 A, spark on time 100µs, and discharge
voltage 40 V)
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In comparison, Yeo’s recommended model [16, 20]
approximated the spark as point on cathode with created
hemispherical crater cavity (see Fig. 7), which is quite
simplified compared to reality.

Figure 6 shows that, for higher values of discharge power
and discharge duration (discharge energy 952 mJ), our model
underpredicts the MRR compared to the experimental
results. This may be due to the fact that longer pulses with
higher values of current provide more surface area to heat
conduction, which might lead to reduction in heat density.
Constant value of duty factor may also result in compara-
tively less MRR.

Yeo’s recommended model predicts the shape of the
crater cavity to be hemispherical. In comparison, our model
predicts the shape of crater cavity as shallow-bowl-shaped
(see Figs. 5 and 7). Similar-shaped (bowl) crater cavities
have been experimentally observed by Das et al. [27], Dong
[34], and Schulze et al. [35] under different EDM process
conditions.

From the above comparisons, it was concluded that our
model can predict the process performance parameters
(MRR, shape of crater cavity) better and closer to the
experimental results. It will give consistent results com-
pared to the experimental data. As a result, it was proposed

Fig. 7 Comparison of predicted crater shapesFig. 6 Comparison of computed and experimental results

Table 1 Comparison of the predicted results

No. Machining conditions MRR (mm3/min)

Current (A) Pulse on time (µs) Pulse off
time (µs)

Discharge
power (mJ)

Expt. analysis
(DiBitonto et al. [16])

Theoretical analysis
(DiBitonto et al. [16])

Our model

1 2.34 5.6 1 0.33 0.3 13.82 12.13

2 2.83 7.5 1.3 0.53 1.6 17.26 16.36

3 3.67 13 2.4 1.19 3.1 21.78 20.37

4 5.3 18 2.4 2.39 8.4 35.58 34.49

5 8.5 24 2.4 5.1 23.2 63.79 62.86

6 10 32 2.4 8 32 77.18 76.37

7 12.8 42 3.2 13.44 50.5 100.33 96.68

8 20 56 3.2 28 89.7 164.65 152.81

9 25 100 4.2 62.5 125 207.2 197.92

10 36 180 4.2 162 226 304.56 262.28

11 44 240 5.6 264 246 373.09 302.6

12 58 420 7.5 609 346 494.03 356.6

13 68 560 10 952 559 579.47 364.82

Work material—steel (iron), discharge voltage=25 V, thermal conductivity (Kt)=56.1 W/m K, heat capacity (Cp)=575 J/kg K, density (ρ)=
7,545 kg/m3 , melting point temperature (Tm)=1,808 K
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to carry out parametric studies on our EDM process model
to study the effect of various input process parameters on
performance parameters with a view to develop an ANN-
based intelligent process model.

5 Parametric studies on EDM process

Parametric studies were carried out by the numerical
simulations using the EDM process model developed
(“Section 4”). The aim was to understand the influence of
input process parameters (discharge current, spark on time,
discharge voltage, and duty factor) on the process perfor-
mance measures such as MRR, TWR, and surface
roughness (crater depth). The generated data from these
numerical simulations were used for the development of
ANN-based EDM process model.

The following ranges of the input process parameters
identified from the published research [1, 3, 16–26, 31] and
machining handbook [43] were chosen for our study.

& Discharge current: 5–10–20–30–40 A
& Discharge duration: 25–50–100–300–500–700µs
& Duty factor: 50–65–80%
& Breakdown voltage: 30–40–50 V
& Work materials: AISI W1 tool steel, AISI P20 mold

steel
& Tool materials: graphite, copper

One hundred eighty numerical simulations (90 for each
work–tool material pair) were carried out in all for the
range of input process parameters outlined above. Based on
the temperature distribution resulting due to the single
spark, MRR, TWR, and crater sizes were computed.
Material properties of AISI W1 tool steel and graphite
(Tables 2 and 3) were used. Table 4 shows representative
results for a typical work–tool material pair (AISI W1 tool
steel and graphite).

Effects of important process parameters (discharge
current, discharge voltage, spark on time, duty factor) on
the performance parameters (MRR, TWR, crater depth)
were studied. These are discussed in the following sections.

5.1 Effect of discharge current

Discharge current is one of the important process param-
eters in EDM as it directly governs the spark energy.
Figure 8 shows that MRR increases monotonically with
increase in discharge current and duty factor. These trends
match with the experimental results reported by Chen and
Mahdivian [37]. Higher values of discharge current and
duty factor are recommended for rough machining, while
lower values are recommended for finishing operations.

Figure 9 shows that, at higher values of discharge
current, the tool electrode erodes faster affecting the cost
and productivity of the EDM process.

Figure 10 shows that the crater depth (surface roughness)
increases with the discharge current and voltage. It is
observed that, in the low discharge current range, the crater
depth increases rapidly with current but tapers off further,
indicating the production of shallow and wider craters at
high currents. The trend of variation of crater depth with
current is also seen in the reported experimental results
[38]. Lesser values of discharge currents and voltages are
recommended for finishing applications of EDM process to
limit the depth of the craters.

5.2 Effect of duty factor

Duty factor is defined as the ratio of spark on time to the
total spark time. It governs the generation of number of
sparks per unit time; higher duty factor indicates more

Table 3 Material properties of graphite [36]

Temperature (T) K Thermal conductivity (Kt) W/mK

300 91.3

400 90.2

500 84.6

600 78

700 71.7

800 65.9

900 60.9

1,000 56.5

1,200 49.48

1,300 49.48

1,400 49.48

Heat capacity Cp=715 J/kg K, density ρ=2,190 kg/m3 , melting point
Tm=3,948 K

Table 2 Material properties of AISI W1 tool steel [36]

Temperature (T) K Thermal conductivity (Kt) W/m K

323 45.19

373 48.3

533 41.5

673 38.1

813 34.6

948 29.4

1,088 24.2

1,188 24.2

1,288 24.2

Composition: C 1.0%, Mn 0.35%, Si 0.3%, Cr 0.15%; heat capacity
Cp=461 J/kg K, density ρ=7,830 kg/m3 , melting point Tm=1,708 K
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number of sparks per unit time. Figures 8 and 9 show that
increase in duty factor monotonically increases MRR and
TWR. Higher values of duty factor can be used for
roughing application at the expense of more tool erosion.

5.3 Effect of spark on time (discharge duration)

Spark discharge duration is another important process
parameter in EDM, which decides the time for the

Fig. 9 Variation of TWR with discharge currentFig. 8 Variation of MRR with discharge current

Table 4 Numerical simulation (FEM) results

Sr. no. Process parameters Performance parameters

Current (A) Spark on
time (µs)

Discharge
voltage (V)

Duty
factor (%)

MRR
(mm3/min)

TWR
(mm3/min)

Crater depth–work
material (µm)

Crater radius –work
material (µm)

1 5 25 30 50 36.4 0 17.3 30.4

2 5 25 40 50 50.4 2.23 20.4 31.7

3 5 25 50 50 62.2 6.23 22 34.4

4 5 50 30 50 33.8 0 20.4 37.6

5 10 50 40 50 103.8 6.44 29.9 54.8

6 10 50 50 50 126.6 15.72 33.1 57.8

7 10 100 30 50 72 0 31.5 64.6

8 10 100 40 50 101.1 0.65 36.2 70.3

9 20 100 30 50 159 1.56 38 89.2

10 20 100 40 50 212.7 7.71 42.8 95.5

11 20 100 50 50 258.3 22.1 46 100

12 20 300 30 50 141 0 50.8 126

13 30 300 40 50 328 2.72 65.4 168

14 30 300 50 50 414 21.59 73.3 179

15 30 500 40 50 319.2 0 76.5 196

16 30 500 50 50 418.2 4.27 86 211

17 40 500 50 50 548.4 18.36 86 238

18 40 700 30 50 273.4 0 71.7 222

19 40 700 40 50 413.6 0 86 247

20 40 700 50 50 552.9 4.29 100.3 266

Work material (cathode), AISI W1 tool steel; tool material (anode), graphite
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discharge energy to be applied on the work surface during
the total spark time (on+off). The spark off time is
generally decided by the “duty factor”.

Figure 11 shows the variation of MRR with spark on
time for a typical machining condition for AISI W1 tool
steel and graphite work–tool pair. The amount of MRR
initially increases with spark on time, attains maximum
value, and shows a decreasing trend further, possibly due to
the constant duty factor and decrease in flux density. A
similar trend is also shown in the experimental results
reported by Panda and Bhoi [25]. As the current increases,
the peak of the curves shifts towards the right side

indicating increase in MRR with current and spark on time
simultaneously. This trend of variation, in effect, justifies
the use of equivalent spark radius proposed in our model
(see “Section 4.2,” Eq. 4), which is a function of both
discharge current as well as the spark on time.

Similar to MRR, the TWR also increases with the
discharge duration until it reaches maximum value and then
decreases possibly due to the constant duty factor and
decrease in flux density (see Fig. 12). The trend of variation
of TWR with spark on time is also demonstrated by the
experimental results reported by Patel et al. [17]. There is
very little tool wear with discharge duration more than 300µs
suggesting suitable conditions for finishing operation.

Figures 13 and 14 show that both the crater depth and
crater radius increase with spark on time; the rate of increase,
however, tapers off subsequently. A higher value of spark on
time produces deeper and wider craters but causes reduction
in MRR. Results reported in Table 4 (no. 3–4, 6–7, 11–12,

Fig. 13 Variation of crater depth with spark on time

Fig. 12 Variation of TWR with spark on time

Fig. 11 Variation of MRR with spark on time

Fig. 10 Variation of crater depth with discharge current
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and 14–15) clearly show this trend, viz. increase in the crater
radius with spark on time, but with a significant reduction in
MRR. Increase in crater radius and crater depth will cause
increase in the material removed per pulse. However, for a
constant duty factor, as the spark on time increases, the
number of sparks per unit time decreases. This in turn will
reduce the MRR. In addition, problems of arcing, ignition
delays, and improper flushing of debris due to long discharge
duration will further contribute to the reduction in MRR.

5.4 Effect of discharge voltage

Discharge voltage is an important process parameter which
governs the heat flux applied on the cathode surface. Table 4
shows the variation of MRR and TWR with discharge voltage
for various values of discharge current and spark on time.
MRR and TWR are both seen to increase with the discharge
voltage. Higher values of discharge voltage increase the flux
density producing higher local temperatures both at anode and
cathode surfaces. This enhances the material removal as well
as the tool wear. Higher values of discharge voltages are
recommended for roughing application.

From the above results, it is seen that the performance
measures of EDM process are influenced by four interacting
process parameters, viz. discharge current, discharge dura-
tion, discharge voltage, and duty factor. A complex nonlinear
relationship seems to exist between these process parameters
and process performance measures such as MRR, TWR, and
crater depth. In the absence of a good process model, it is
quite difficult to select the optimum process parameters for
specific application of EDM process, viz. roughing or
finishing. Traditionally, the selection of the most favorable
EDM process parameters is based on trade literature, shop
experience which might lead to subjectivity and inconsistent
machining performance [1, 3, 4].

Neural networks are known to have excellent function
mapping capabilities even from incomplete and noisy data
[38]. It is, therefore, thought appropriate to develop an
ANN-based comprehensive EDM process model using
the results obtained from the numerical (FEM) model
developed.

6 ANN-based process model for EDM

A neural network is a massive parallel-distributed processor
that has a natural propensity to extract patterns from input
data and learn complex relationships between sets of input
and output data for function approximation. Capabilities of
ANN are governed by characteristics of neurons, network
architecture, and training algorithms [39].

The present work was aimed at establishment of
correlation between input process parameters such as
current, discharge voltage, discharge duration, and duty
factor with process responses viz. MRR, TWR, and crater
dimensions using suitable neural network algorithm. Liter-
ature reports several attempts to model EDM process using
ANN configurations like BPNNs or RBFN. BPNNs (also
called multilayer perceptrons, MLPs) are one of the most
commonly used artificial neural networks which have been
successfully used for a wide variety of applications, such as
speech or voice recognition, image pattern recognition,
medical diagnosis, automatic controls, etc. [39]. RBFN is
the alternative supervised learning network architecture to
the popular MLPs. It can be represented with radially
symmetric hidden neurons. The topology of the RBFN is
similar to the three-layered MLP but the characteristics of
the hidden neurons are different. RBFN requires more
neurons than the standard feed-forward backpropagation
network but comparatively takes much less time to learn
and is simpler to configure [40, 41]. For selecting an
appropriate ANN configuration for our EDM process
modeling problem, both BPNN and RBFN configurations
with supervised learning paradigm were extensively tried
out.

Initially, multi-input–multi-output (4–N–4) RBFN con-
figuration was tried out due to its simplicity in design and
faster convergence characteristics. The RBFN network was
trained with the data generated from numerical (FEM)
simulations by varying the spread factor and the number of
neurons in the hidden layer. The network was trained with
260 datasets and was tested with 13 (unseen) datasets. The
spread factor was varied within 0.1 to 0.4 [42]. The
network with 250 hidden neurons and a spread factor of
0.14 provided better results. This best possible network,
however, gave very poor prediction performance (predic-
tion error of the order of 50–200%). The poor generaliza-
tion capability of the RBFN network for these data might

Fig. 14 Variation of crater radius with spark on time
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be due to insufficient training data and local nature of
fitting [45]. In comparison, BPNN configuration with a fast
learning algorithm, viz. scaled conjugate gradient (SCG)
gave much superior results for our problem. The details
regarding the development of BPNN-based process model,
viz. network architecture, training, testing, and the selection
of suitable ANN architecture for our problem, are presented
in the next section.

6.1 Development of BPNN-based process model

BPNN is a multilayered feed-forward neural network which
is trained using the supervised learning philosophy using
backpropagation algorithm. Basic components of BPNN
network are the neurons, network architecture, and its
algorithm. The neuron is an information-processing element
which modifies the received information by using a
nonlinear activation function and further passes it to the
next layer. The network consists of an input layer, a
variable number of hidden layers each containing number
of hidden nodes/neurons, and an output layer [39]. The
architecture proposed in this work is shown in Fig. 15.

The input layer receives the information from an external
source (data), which is subsequently modified by the
interconnection weights between it and the adjacent hidden
layer. The sum of the modified signals is then operated
upon by a suitable transfer function, and these activated
values, in turn, become the starting signals for the next
adjacent layer. In this way, the modified signal finally
reaches the output layer where the deviations (errors) of the
predicted outputs from the desired outputs are calculated.
The input–output patterns are sequentially presented to the
network for training and the various interconnections are
adjusted using error backpropagation algorithm. The pro-
cess is repeated iteratively until the mean square error falls
below a prescribed limiting value [39].

MSE ¼ 1
P

XP
p¼1

XM
k¼1

dpk � cpk
� �2 ð6Þ

where P is the number of patterns; M is the number of
nodes in the output layer; dpk is the desired output of the
kth node of pth pattern, cpk is the calculated output of the kth
node of pth pattern.

BPNN can be trained with many training algorithms
such as gradient descent (GD), GD with momentum
(GDA), Levenberg–Marquardt (LM), conjugate gradient
(CG), SCG, etc. These training algorithms are employed to
adjust the weights during training of the network. The GD
algorithm is generally very slow because it requires small
learning rates for stable learning [44]. The momentum
variation (GDA) is usually faster than simple gradient
descent since it allows higher learning rates while main-
taining stability, but it is still too slow for many practical
applications. As with linear networks, too large learning
rate leads to unstable learning, while too small learning rate
results in long training times. For nonlinear multilayer, it is
further difficult to select the optimal value of learning rate.
Normally, GD and GDA are used for incremental training
of the networks [42].

LM and CG are comparatively faster training algorithms
but they have limited applicability due to the need of large
memory and slower convergence. To overcome some of the
disadvantages of the above training algorithms, Moller [44]
developed an SCG using model search region approach of
LM algorithm and CG algorithm for fast supervised
learning. Incorporation of the “adaptive learning” feature
(optimization of learning rate in each iteration) and no-line
search technique makes this algorithm easy and simple to
configure and computationally inexpensive. The BPNN
architecture can be configured just by selecting the number
of hidden layers and optimal number of neurons in hidden
layers for best possible generalization of the network.
Hence, in this work, scaled conjugate gradient algorithm is
used for the training of the network.

Selection of number of hidden layers and number of
neurons in the hidden layers are important parameters in the
optimal BPNN configuration. Too few neurons in the
hidden layer can lead to underfitting while too many
neurons can contribute to overfitting, in which all training
points are well fit, but the fitting curve takes wild
oscillations between these points. No standard guidelines
are available for selecting the number of neurons and
number of hidden layers. These can be selected by using
trial and error method and examining the generalization
capability of the network. The various network and training
parameters used for training and testing the BPNN network
are listed in Table 5.

6.1.1 Network training and testing data

In this work, thermophysical analysis of single-spark EDM
process using FEM has been carried out (“Section 4”) toFig. 15 Schematic of BPNN architecture

Int J Adv Manuf Technol (2009) 45:300–317 311



predict the shape of the crater cavity and to compute the
material removal per pulse (MRP). For specified ranges of
these input process parameters (“Section 5”), a total of 90
numerical experiments (simulations) for each work–tool
material pair have been carried out to calculate the MRP
values. The duty factor values ranging from 50% to 80%
have been used to compute the MRR/TWR. Thus, a total of
270 (90×3) MRR/TWR values were estimated using the
results of the single-spark analysis and the duty factor. In
addition, three intermediate input–target pairs were chosen
randomly to test the interpolation capability of the trained
networks. The dataset thus comprised of 273 input–target
pairs. This dataset was divided into a training set (260
input–target pairs) and a testing set of (13 input–target
pairs). Table 6 shows total 13 datasets of typical machining
conditions used for testing the various ANN architectures.
Normalization of input vectors and target values was

carried out to get good convergence. The training and
testing datasets were normalized as below [25]

xn ¼ 0:1þ x

1:2� xmax

� �
ð7Þ

where xn is the normalized value of variable x; xmax is the
maximum value of x in total datasets.

6.1.2 Training and testing

Extensive training and testing of different network architec-
tures for the chosen training set was carried out by varying
the number of hidden layers and number of neurons in the
hidden layer. Testing of the trained network was carried out
in two phases. Firstly, it was tested with seen input datasets
(training set). In the second phase of the testing, the network
was tested with unseen input datasets (testing set). Error

Table 6 Datasets for testing the ANN architectures

Sr. no. Input process parameters Output performance parameters

Duty factor (%) Current (A) Spark on
time (µs)

Discharge
voltage (V)

MRR
(mm3/min)

TWR (mm3/min) Crater depth
(µm)

Crater radius
(µm)

1 50 20 50 30 161.4 11.2 29.9 69.6

2 50 20 100 40 212.7 7.7 42.8 95.5

3 65 5 25 50 80.8 8.1 22.0 34.4

4 65 10 100 40 131.4 0.9 36.2 70.3

5 65 30 25 30 296.4 79.1 25.1 64.3

6 80 5 50 50 97.0 2.6 26.7 44.2

7 80 20 300 50 428.8 8.1 67.0 147.0

8 80 30 100 40 523.2 71.8 46.1 115.0

9 80 40 25 30 485.8 153.6 25.1 72.1

10 80 40 700 50 884.6 6.9 100.3 266.0

11 60 25 225 45 358.3 12.5 60.6 144.0

12 70 25 75 35 331.7 34.3 37.8 91.3

13 60 35 80 35 388.7 59.3 38.9 109.0

Parameter Description/value

Number of hidden layers 1, 2

Number of neurons per hidden layer Single hidden layer architecture—4 to 45

Two hidden layer architecture—4 to 30

Transfer functions Tangent sigmoid for hidden layers

Log sigmoid for output layer

Training algorithm Scaled conjugate gradient [44]

Performance function Mean squared error

Number of epochs 10,000–12,000

MSE threshold (or goal) 1.00e−05

Table 5 Network and training
parameters
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value is the numerical difference between the actual value of
the output performance parameter (numerical simulations
using FEM) and the value predicted by the trained network.
The prediction error is defined as

prediction error PEð Þ%

¼ ideal value FEMð Þ � predicted value ANNð Þ
ideal value FEMð Þ

� �
� 100

ð8Þ
Then, the mean error (ME) of the testing datasets for

each of the output performance parameters (MRR, TWR,
crater depth, and crater radius) was calculated.

ME ¼
Pn
i¼1

PE

n
ð9Þ

where n=13 is the number of datasets used for testing.
The average mean error (AME) of all the output

performance parameters was then evaluated. It was further
used for selecting the optimal network configuration.

AME ¼ MEMRR þMETWR þMEcrater�depth þMEcrater�radius

4
ð10Þ

BPNN (MLPs) often have one or more hidden layers
which allow the network to learn nonlinear relationships
between input and output vectors. In our problem, two
BPNN architectures were tried out, viz. single-layered (4–
N–4) and two-layered (4–N1–N2–4). Extensive numerical
experimentations were carried out using MATLAB™ NN
Toolbox [42] to select the optimal network architecture.
The details are as follows.

6.1.3 The 4–N–4 architecture

In this architecture, a single hidden layer was taken and the
number of hidden neurons (N) was varied from five to 45.

BPNN network simulations were carried out with the
network parameters listed in Table 5. Figure 16 shows the
variation of AME with the number of neurons in the hidden
layer. BPNN network with 24 neurons gave minimum
AME. Figure 17 shows the typical convergence graph
during the training of the BPNN network with 24 hidden
neurons. The network got trained well by 7,000 epochs.

Table 7 shows the prediction error of the 4–N–4 BPNN
architecture with 24 hidden neurons for all the four output
performance parameters. It is seen that the network
generalized well for predicting MRR, crater depth, and
crater radius with prediction error within the range of 0.5–
10% with the average accuracy of 2.43%. In comparison,
the network provided poor generalization for the TWR with
average prediction accuracy of 26.86%. It can be noted that
only 62% of the testing datasets lie within a 15% error
bound. This might be due to the nonlinear and complex
relationship variation of TWR with input process parame-
ters. To improve upon the generalization capability of the
network for all four output process parameters, it was
decided to try the two-layer BPNN architecture of the type
4–N1–N2–4.

6.1.4 The 4–N1–N2–4 architecture

In this architecture, two hidden layers were employed to
improve the generalization capability of the ANN model.
The network parameters listed in Table 5 were used for
training the networks. The number of neurons in both the
hidden layers was sequentially varied from four to 30. A
total of 729 network simulations were carried out for
selecting the optimal network architecture. Figure 18 shows
the convergence graph of 4–8–12–4 network during
training. It can be noted that by adding one more layer to

Fig. 17 Training of 4–24–4 BPNN network

Fig. 16 Selection of number of nodes for 4–N–4 BPNN architecture
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the single-layer architecture the network got trained
properly by giving an error of 2.4828e−5 in 12,000 epochs.

Table 8 shows some typical candidate network architec-
tures among the total of 729 networks which were
experimented upon for the selection of optimal network
architecture based on minimum AME criteria. It is seen that
the architecture with eight and 12 neurons in the first and
second hidden layers, respectively (4–8–12–4), gives mini-
mum AME of 5.45%. The network 4–8–12–4 shows
excellent average prediction accuracy of 1.49% for MRR,
crater depth, and crater radius. For TWR, the 4–8–12–4
architecture generalized much better compared to single-layer
architecture by reducing the ME from 26.86% to 17.34%.

Table 9 shows the comparison of the FEM results with
the results predicted using 4–8–12–4 BPNN network for
typical machining conditions (unseen dataset). The results
show excellent prediction accuracy of the BPNN-based
process model developed for the prediction of MRR (−0.03
to −3.53%), crater depth, and crater radius (around 1.47%).
For TWR, it shows an acceptable average prediction
accuracy of 17.34%. It is observed that a total of 77% of
the total testing datasets lie within 15% of error bound. It
can be concluded that the two-layer architecture (4–8–12–
4) enhanced the generalization capability of BPNN archi-
tecture by better capturing the nonlinear and complex
relationship of all four output performance parameters with
the input process parameters.

7 Conclusions

An intelligent approach for the modeling and simulation of
die-sinking EDM process is developed using FEM and
ANN. Comprehensive thermal analysis of EDM process
was carried out using two-dimensional axisymmetric
nonlinear transient FEM model. The results obtained from
our numerical model were compared with earlier analytical
models and the published experimental data. It was found
that the results predicted by our model are closer to
experimental results compared to all the reported analytical
models. Incorporation of factors such as the Gaussian
distribution of heat flux and EDM spark radius as a
function of discharge energy and discharge duration
probably made our model closer to actual process con-
ditions, thus improving prediction accuracy.Fig. 18 Training of 4–8–12–4 BPNN network

Table 7 Testing of 4–N–4 BPNN architecture

Sr. no. Input process parameters Prediction error (%)

Duty factor (%) Current (A) Spark on time (µs) Discharge voltage (V) MRR TWR Crater depth Crater radius

1 50 20 50 30 −0.6 7.5 −3.3 0.5

2 50 20 100 40 −1.4 −103.0 −2.5 −3.8
3 65 5 25 50 1.7 −26.3 0.7 0.3

4 65 10 100 40 1.6 −21.9 −3.3 −0.8
5 65 30 25 30 0.6 −1.8 4.1 2.9

6 80 5 50 50 −10.1 −12.2 −1.5 −1.5
7 80 20 300 50 −1.7 −12.7 0.9 −0.7
8 80 30 100 40 0.4 0.5 2.3 0.6

9 80 40 25 30 3.1 5.2 −1.8 −1.9
10 80 40 700 50 2.5 −124.8 2.9 1.5

11 60 25 225 45 −1.9 0.2 −2.1 −0.8
12 70 25 75 35 5.7 −19.4 6.4 2.9

13 60 35 80 35 2.7 −13.7 5.7 5.0
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Table 8 Candidate 4–N1–N2–4 network architectures

Sr. no. Number of neurons
in first hidden layer (N1)

Number of neurons
in first hidden layer (N2)

Mean error of testing datasets % (on actual values) AME%

MRR TWR Crater depth Crater radius

1 6 28 1.86 24.21 1.59 0.8 7.12

2 7 25 1.78 26.99 2.1 1.04 7.98

3 7 30 2.01 27.84 1.85 1.22 8.23

4 8 12 1.53 17.34 1.78 1.16 5.45

5 8 20 1.39 20.41 2.08 1.13 6.25

6 8 30 1.66 22.01 1.91 1.02 6.65

7 9 18 2.14 17.92 2.11 1.31 5.87

8 9 25 5.4 19.93 4.7 5.19 8.8

9 10 26 2.8 22.65 1.53 1.41 7.1

10 10 30 4.1 30.47 2.28 2.05 9.73

11 11 15 2.64 28.49 2.45 2.36 8.98

12 11 29 3.84 21.05 3.7 2.04 7.66

13 12 14 2.94 27.14 1.78 1.77 8.41

14 12 16 2.72 28.45 2.04 1.36 8.64

15 12 18 2.22 17.14 2.8 1.89 6.01

16 12 19 2.13 22.37 2.29 2 7.2

17 13 9 1.72 18.93 2.85 1.68 6.3

18 13 10 1.5 26.75 2.03 1.54 7.95

19 13 23 2.18 20.36 2.01 2.24 6.7

20 16 10 2.8 30.63 1.61 1.45 9.12

21 17 23 3.67 23.84 5.14 3.76 9.1

22 19 22 6.07 22.54 3.99 3.63 9.06

23 20 19 4.7 25.45 3.86 3.75 9.44

24 26 12 3.06 27.86 3.58 3 9.37

25 26 13 3.5 23.59 3.53 3.65 8.57

Table 9 Testing of 4–N1–N2–4 BPNN architecture

Sr. no. Input process parameters Prediction error (%)

Duty factor (%) Current (A) Spark on time (µs) Discharge voltage (V) MRR TWR Crater depth Crater radius

1 50 20 50 30 −1.35 −10.99 −0.97 0.96

2 50 20 100 40 −1.16 −79.67 −0.53 0.73

3 65 5 25 50 2.48 0.77 −0.36 2.49

4 65 10 100 40 0.56 8.35 −2.58 −0.53
5 65 30 25 30 −0.03 5.67 1.77 0.94

6 80 5 50 50 −0.80 −44.27 −1.18 3.61

7 80 20 300 50 −3.53 −6.46 −0.32 −1.24
8 80 30 100 40 0.45 3.70 −0.02 0.02

9 80 40 25 30 1.66 1.79 −1.50 1.35

10 80 40 700 50 2.44 −41.28 3.76 0.74

11 60 25 225 45 −3.07 −14.39 −0.88 0.05

12 70 25 75 35 0.08 6.04 −2.14 −1.26
13 60 35 80 35 −2.26 2.04 −7.15 −1.19
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Important process parameters were identified and their
effects on performance parameters were extensively stud-
ied. Using results from the numerical simulations of our
model, BPNN-based process model was developed and
optimized for the prediction of material removal, tool wear,
and crater dimensions. Extensive numerical simulations
were carried out to select the optimal BPNN network
architecture by varying the number of hidden layers and
number of neurons in the hidden layers. Optimal network
architecture 4–8–12–4 was found to give very good
prediction accuracies for MRR (1.53%), crater depth
(1.78%), and crater radius (1.16%) and a reasonable one
for TWR (17.34%).

The ANN-based process model can be used to select
optimum process conditions to improve EDM process
productivity and finishing capability. This will be the focus
of our future work.
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