
ORIGINAL ARTICLE

A two-phase linear programming methodology for fuzzy
multi-objective mixed-model assembly line problem

Iraj Mahdavi & Babak Javadi & Navid Sahebjamnia &

Nezam Mahdavi-Amiri

Received: 25 February 2007 /Accepted: 19 December 2008 /Published online: 17 February 2009
# Springer-Verlag London Limited 2009

Abstract We develop a fuzzy multi-objective linear
programming (FMOLP) model for solving multi-objective
mixed-model assembly line problem. In practice, vagueness
and imprecision of the goals in this problem make the fuzzy
decision-making complicated. The proposed model consid-
ers minimizing total utility work, total production rate
variation, and total setup cost, using a two-phase linear
programming approach. In the first phase, the problem is
solved using a max–min approach. The max–min solution
not being efficient, in general, we propose a new model in
the second phase to maximize a composite satisfaction
degree at least as good as the degrees obtained by phase
one. To show the effectiveness of the proposed approach, a
numerical example is solved and the results are compared
with the ones obtained by the fuzzy mixed integer goal
programming and weighted additive methods. The compu-
tational results show that the proposed FMOLP model
achieves lower objective functions as well as higher
satisfaction degrees.
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1 Introduction

Mixed-model assembly lines are a type of production line
where a variety of product models similar in product
characteristics are assembled. The effective utilization of a
mixed-model assembly line requires solving two problems
in a sequential manner as follows: (1) line design and
balancing and (2) determination of the production sequence
for different models. In this paper, we assume that the line
has already been balanced and sequencing problem is only
considered. Determining the sequence of introducing
models to the mixed-model assembly line is of particular
importance considering the crucial goals for the efficient
implementation of just-in-time (JIT) systems.

Monden [1] defined two goals for the sequencing
problems: (1) leveling the load (i.e., total assembly line)
on each station on the line and (2) keeping a constant rate
of usage of every model used by the line. To handle these
problems, Goal chasing I and II (GC-I and GC-II) have
been developed by Toyota Corporation. GC-I minimizes the
one stage and assumes that the length of the unique
workstation is equal to zero. GC-II solves GC-I under a
special assumption regarding the product structure.

Miltenburg [2] developed a nonlinear programming for
the second abovementioned goal. The time complexity
function of the proposed program was exponential; there-
fore, he developed and solved the problem by applying two
heuristic procedures.

Miltenburg et al. [3] solved the same problem with a
dynamic programming algorithm. Inman and Bulfin [4]
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solved the problem proposed by Miltenburg [2] by
converting it to a mathematically different approach. Other
objectives have also been considered by a number of
researchers. Yano and Rachamadugu [5] dealt with the
problem of sequencing jobs with customer-specified
options to minimize the total amount of incomplete works.
Bard et al. [6] presented an analytical framework for a
mixed-model assembly line sequencing problem in order to
minimize the overall line length. Okamura and Yamashina
[7] developed a sequencing method for mixed-model
assembly lines to minimize the line stoppage. Kim and
Jeong [8] proposed a generalized formulation of the
product-sequencing problem in which the total unfinished
work within the mixed-model assembly line’s work station
boundaries is to be minimized. They solved their model by
using an optimal procedure using branch-and-bound tech-
nique and a heuristic procedure using lower bound and
local search. Bautista and Cano [9] developed some useful
procedure to solve the mixed-model assembly line sequenc-
ing problem proposed by Yano and Rachamadugu [5]. They
also compared their implemented algorithms with others
taken from literature using two computational experiments.
Toksari et al. [10] introduced learning effect into assembly
line sequencing problem. They showed that with the
consideration of learning effects both the simple assembly
line balancing and the U-type line balancing problems
would remain polynomially solvable.

Sequencing mixed-model assembly lines have also been
studied as a multi-objective problem. Hyun et al. [11]
addressed three objectives minimizing total utility work,
keeping a constant rate of model usage, and minimizing
total setup cost. This problem was solved by proposing a
new genetic evaluation and selection mechanism.
McMullen [12] considered two objectives minimizing the
number of setups and keeping a constant rate of part usage,
and solved this problem by a TS method. Korkmazel and
Meral [13] developed the weighted-sum approach for two
goals introduced by Monden [1]. McMullen and Frazier
[14] developed a simulated annealing (SA) method for the
model used by McMullen [12] and compared it to the TS
method. McMullen [15–17] also solved the same problem
by using genetic algorithms (GAs), Kohonen self-organiz-
ing map, and ant colony optimization, respectively, and
compared their performance with SA and TS methods.
Mansouri [18] also solved the same problem with genetic
algorithms. He introduced a new selection mechanism.
Tavakkoli-Moghaddam and Rahimi-Vahed [19] solved the
problem proposed by Hyun et al. [11] by using a new
memetic algorithm. Rahimi-Vahed et al. [20] devised a
multi-objective scatter search for a mixed-model assembly
line sequencing problem to minimize the three objectives
presented by Hyun et al. [11]. They empirically showed that
their method outperforms three multi-objective genetic

algorithms, i.e., PS-NC GA, NSGA-II, and SPEA-II, on a
set of randomly generated problems.

Here, we consider three objectives simultaneously as
follows: (1) total utility work, (2) total production rate
variation, and (3) total setup cost. Our main purpose is to
apply the two-phased fuzzy linear programming methodol-
ogy where simultaneous minimization of the abovemen-
tioned objectives is desired. The structure of this paper is as
follows: Section 2 presents a detailed description of the
mixed-model assembly line. Section 3 proposes a fuzzy
multi-objective linear programming algorithm. In Section 4,
experimental and comparative results are given. Finally, we
present our conclusions in Section 5. The computer codes
implementing our proposed algorithm in the Lingo 8 soft-
ware environment are provided in Appendices 1, 2, and 3.

2 The multi-objective mixed-model assembly line
(MMAL) model

2.1 Mixed-model assembly line

A MMAL considered in this paper is a conveyor system
moving at a constant speed (vc). Similar products are
launched onto the conveyor at a fixed rate. The line is
partitioned into J stations. It is assumed that the stations are
all closed types. A closed station has boundaries, which
workers cannot cross. Such a closed station is often found
in reality where the use of facilities is restricted within a
certain boundary. The tasks allocated to each station are
properly balanced and their operating times are determin-
istic. The worker moves downstream on the conveyor while
performing his/her tasks to assemble a product. On
completion of the job, the worker moves upstream to the
next product. The worker’s moving time is ignored.

The design of an MMAL involves several issues such as
determining operator schedules, product mix, and launch
intervals. Two types of operator schedules, early start
schedule and late start schedule, are proposed in Bard et
al. [6] (in the early start schedule, the operator starts the
assembly process immediately after receiving the product at
the workstation, while in the late start schedule the operator
awaits assembling of the product until its latest possible
starting time as specified in the pre-assigned scheduling
program). An early start schedule is more common in
practice and is used in this paper (Hyun et al. [11]). Second,
minimum part (or model) set (MPS) production, a strategy
widely accepted in mixed-model assembly lines, is also
used in this paper. MPS is a vector representing a product
mix, such that (d1,…, dM)=(D1/h,…, DM /h), where M is
the number of model types, Dm is the number of products of
model type m that must be assembled during an entire
planning horizon, and h is the greatest common divisor or
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highest common factor of D1, D2,…, DM.This strategy
operates in a cyclical manner. The number of products
produced in one cycle is given by I ¼PM

i¼1 di.Obviously,
repeating the MPS, h time’s products can meet the total
demand in the planning horizon. Third, the launch interval
(γ) is set to T= I � Jð Þ, where T is the total operation
time required to produce one cycle of MPS products (Hyun
et al. [11]).

Figure 1 represents the operations carried out in a closed
station using an early start schedule strategy. It is noted that
this example is similar to the example presented by Hyun
et al. [11].

The vertical dotted lines describe station boundaries.
Suppose that the MPS, (dA, dB, dC), is (2, 2, 1). In Fig. 1,
the models are sequenced as (A C B A B). The operation
for the first model of every cycle is started at the left
boundary of the station. A horizontal arrow represents the
start and finish of an assembly operation, so that it shows
the station length required for assembling the corresponding
model. A dotted arrow represents the distance between two
consecutive products. On the completion of an operation,
the worker moves upstream. If the succeeding model is
within the station boundary, the worker can begin to work
on it. Otherwise, the worker has to wait until the model
arrives at the left boundary of the station. A dotted arrow
indicates that the worker is idle and its length amounts to
the distance that the conveyor has moved during the idle
time. The worker is also not allowed to cross over the

boundaries. In this case, the incomplete operation, also
called utility work, is turned over to utility workers.

2.2 Mathematical model

2.2.1 Notations

The following notations are used to describe the MMAL
problem.

Indices and parameters:

i Product i=1,…, I.
m Model m=1,…, M.
j Closed workstation j=1,…, J.
Lj The fixed line length of station j.
Cjmr The setup cost required when the model type is

changed from m to r at station j.
vc The constant speed of the conveyor.
γ The launch interval time.

Decision variable:

Xim 1 if product i in a sequence is the mth model;
otherwise 0.

Ximr 1 if model type m and r are assigned, respectively, at
positions i and i+1 in a sequence; otherwise 0.

Uij The amount of the utility work required for product i
in a sequence at station j.

Zij The starting positions of the work on product i in a
sequence at station j.

Fig. 1 The MMAL model
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2.2.2 Objective functions

Minimizing total utility work The utility work is typically
handled by the use of utility workers assisting the regular
workers during the work overload. Let Lj be the fixed line
length of station j and Uij be the amount of the utility work
required for product i in a sequence at station j. The
following model is presented by Hyun et al. [11].

Minimize
XJ
j¼1

XI
i¼1

Uij þ Z iþ1ð Þj
�
vc

� � ð1Þ

s.t.

PM
m¼1

xim ¼ 1 8i ð1:1Þ

PI
i¼1

xim ¼ dm 8m ð1:2Þ

Z iþ1ð Þj ¼ max 0;min Zij þ vc
XM
m¼1

ximtjm � g � vcð Þ; Lj � g � vcÞð Þ
 !" #

8i; j

ð1:3Þ

Uij ¼ max 0; Zij þ vc
XM
m¼1

ximtjm � Lj

 !,
vc

" #
8i; j ð1:4Þ

xim ¼ 0 or 1 8i;m ð1:5Þ

Z1j ¼ 0; Zij � 08i; j ð1:6Þ

Uij � 08i; j ð1:7Þ
The second term in the objective function takes into

account for the utility work that may be required at the end
of a cycle. Eq. (1.1) ensures that exactly one product is
assigned to each position in a sequence. Eq. (1.2)
guarantees that demand for each model is satisfied. Eq.
(1.3) indicates the starting position of the worker at each
station j on product i+1 in a sequence. Utility work Uij for
product i in a sequence at station j is determined by Eq.
(1.4).

Minimizing total production rate variation One basic
requirement of JIT systems is continual and stable part
supply. Since this can be realized when the demand rate of
model is constant over time, the objective is important to a
successful operation of the system. Thus, the objective can

be achieved by matching demand with actual production.
The following model is suggested by Miltenberg [2].

Minimize
XI
i¼1

XM
m¼1

Xi
l¼1

xlm
i

����� � dm
I

����
 !

ð2Þ

s.t.
Constraints (1.1), (1.2), and (1.5).
The first term in the objective function is the production

ratio of model m until product i is produced. The second
term is the demand ratio of model m.

Minimizing total setup cost In many industries, sequence-
dependent setups are considered as an important item in
assembly operations. The model considering sequence-
dependent setups developed by Hyun et al. [11] is
considered in this paper.

Minimize
XJ
j¼1

XI
i¼1

XM
m¼1

XM
r¼1

ximrcjmr ð3Þ

s.t.

PM
m¼1

PM
r¼1

ximr ¼ 1 8i ð3:1Þ

PM
m¼1

ximr ¼
PM
p¼1

x iþ1ð Þrp i ¼ 1; . . . ; I � 1; 8r ð3:2Þ

PM
m¼1

xIm r ¼
PM
p¼1

x1rp 8r ð3:3Þ

PI
i¼1

PM
r¼1

ximr ¼ dm 8m ð3:4Þ

ximr ¼ 0 or 1 8i;m; r ð3:5Þ

Eq. (3.1) is a set of position constraints indicating that
every position in a sequence is occupied by exactly one
product. Eqs. (3.2) and (3.3) ensure that the sequence of
products is maintained while repeating the cyclic produc-
tion. Eq. (3.4) imposes the restriction that all the demands
should be satisfied in terms of MPS.

3 Fuzzy multi-objective linear programming (FMOLP)
methodology

In this study, a two-phase FMOLP methodology is employed.
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3.1 Phase 1

First, the general multi-objective model for mixed-model
assembly line is presented and then appropriate operators
for this decision-making problem are discussed.

A general linear multi-objective model can be presented
as:

Find a vector x written in the transformed xT=[x1, x2,…,
xn] which minimizes objective function Zk with

Zk ¼
Pn
i¼1

ckixi k ¼ 1; 2; . . . ;p: ð4Þ

and constraints:

x 2 Xd; Xd ¼ x

�
g xð Þ ¼Pn

i¼1
arixi � br; r ¼ 1; 2; . . . ;m; x � 0

� �
ð5Þ

where cki, ari, and br are crisp or fuzzy values.
Zimmermann [21] has solved problems (4)–(5) by using

fuzzy linear programming. He formulated the fuzzy linear
program by separating every objective function Zj into its
negative ideal solution ZNIS

k

� �
and positive ideal solution

ZPIS
k

� �
by solving:

ZNIS
k ¼ max Zk ; x 2 Xd; ZPIS

k ¼ min Zk ; x 2 Xd ð6Þ

ZPIS
k is obtained through solving the multi-objective problem

as a single objective using, each time, only one objective and
x∈Xd means that solutions must satisfy constraints.

Since for every objective function Zk, its value changes
linearly from ZPIS

k to ZNIS
k (Zimmermann [21]), it may be

considered as a fuzzy number with the linear membership
function mzk xð Þ as shown in Fig. 2. It was shown that a linear
programming problem (4)–(5) with fuzzy goal may be
presented as follows:

Find a vector x to satisfy:

eZk ¼Pn
i¼1

ckixi
~
� Z0

k k ¼ 1; 2; . . . ; p ð7Þ

s.t.

gr xð Þ ¼Pn
i¼1

apixi � br r ¼ 1; . . . ;m ð8Þ

xi � 0 i ¼ 1; 2; . . . ; n ð9Þ
In this model, the sign ~ indicates the fuzzy environ-

ment. Zk
0 is the satisfaction degree that the decision-maker

wants to reach.
Assuming that membership function, based on prefer-

ence or satisfaction, is the linear membership for minimi-
zation goals, (Zk) is given as follows:

mZk xð Þ ¼
1 for Zk � ZPIS

k ;
ZNIS
k �Zk xð Þð Þ
ZNIS
k �ZPIS

kð Þ for ZPIS
k � Zk xð Þ � ZNIS

k ; k ¼ 1; 2; . . . ;p;

0 for Zk � ZNIS
k :

8>><>>:
ð10Þ

In fuzzy programming modeling, using Zimmermann’s
approach, a fuzzy solution is given by the intersection of all
the fuzzy sets representing either fuzzy objective. The fuzzy
solution for all fuzzy objectives may be given as:

mD xð Þ ¼ \p
j¼1

mZj xð Þ
� �

: ð11Þ

The optimal solution x* is given by Bellman and Zadeh
[25]:

mD x*ð Þ ¼ max
x2Xd

mD xð Þ ¼ max
x2Xd

min
j¼1;:::;p mZj xð Þ
h i

: ð12Þ

With the “max–min” operator and α satisfaction degree, the
MOLP problem can be solved as a single objective problem:

Minimizea ð13Þ
s.t.

a � ZNIS
k �Zk xð Þð Þ
ZNIS
k �ZPIS

kð Þ k ¼ 1; 2; . . . ;p ð14Þ

gr xð Þ � br r ¼ 1; . . . ;m ð15Þ

xi � 0 i ¼ 1; 2; . . . ; n and a 2 0; 1½ � ð16Þ

The “max–min” operator obtains a best solution (due to
max operator) from among the set of worst objective values

Zk
PIS Zk

NIS

0

1

(x)
kZµ

Zk

Fig. 2 Objective function Zk as a fuzzy number
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(due to min operator), each determined by a feasible
solution. An alternative approach may decide a different
operator. Indeed, quite reasonably, it may sometimes be
desirable for a compensatory operator to be used instead of
the min operator (see Lee and Li [22]).

3.2 Phase 2

Here, we make use of the result of phase 1 to overcome
disadvantages of the one-phase approach.

Lee and Li [22], Guu and Wu [24], and Li and Li [23]
used two-phased approaches to fix situations where the
max–min operator is not efficient. The two-phase method
uses the max–min operator in its first phase. It is well
known that the optimal solution obtained by phase 1 may
not be an efficient solution in the sense that there may exist
another solution in the feasible space dominating the
obtained solution by the max–min operator in phase 1 (a
solution a is said to dominate solution b if (1) a is at least as
good as b regarding all objectives and (2) a is strictly better
than b for at least one objective; see Rahimi-Vahed et al.
[20]). In the second phase, the solution is forced to improve
upon and dominate the one obtained by the max–min
operator, adding constraints and a new auxiliary objective
function to phase 2 to achieve at least the satisfaction
degree obtained in phase 1. An arithmetic average operator
l is proposed to obtain new satisfaction degrees that
represent the MOLP objectives’ satisfaction degrees. Thus,
the proposed phase 2 problem is as follows:

Maximize l ¼ 1

p

Xp
k¼1

lk � að Þ2 ð17Þ

s.t.

a � lk � ZNIS
k �Zk xð Þð Þ
ZNIS
k �ZPIS

kð Þ ; k ¼ 1; 2;:::;p ð18Þ

gr xð Þ � br; r ¼ 1; . . . ;m ð19Þ

xi � 0; i ¼ 1; 2; :::; n and a; l 2 0; 1½ � : ð20Þ

We note that the constraints (18) enforce a better solution
in phase by the requirements α≤lk, k=1,…, p while
maximizing the mean squares of the improvements. A good
starting point for solving the phase 2 problem is lk=α, k=1,
…, p. Next, the general steps of our algorithm are outlined.

1. {Step 1} Compute the negative ideal solutions, i.e., the
ZNIS
k , as given in (6); use these as the initial point for

the “max–min” model (13)–(16) to compute an
optimal solution (the obtained value of α is to be
used in phase 2).

2. {Step 2} Let λk=α, k=1,…, p in phase 2, and solve
(17)–(20) to get an optimal solution.

3.3 The LP model for fuzzy multi-objective MMAL
sequencing problem

The fuzzy multi-objective linear programming for the
proposed mixed-model sequencing problem formulation is
presented as follows:

Min eZ1 ¼XJ
j¼1

XI
i¼1

Uij

 
þZ iþ1ð Þj

�
vc
�� e� Z0

1

Min eZ2 ¼XI
i¼1

XM
m¼1

Xi
l¼1

xlm
i
� dm

I

����
�����
 ! e� Z0

2

Min eZ3 ¼XJ
j¼1

XI
i¼1

XM
m¼1

XM
r¼1

ximrcjmr e� Z0
3

s.t.
Constraints (1.1) to (3.5).
The following solution procedure is employed to solve

the FMOLP for the proposed mixed-model assembly line
sequencing problem.

Algorithm: two-phase FMOLP method.

Step 1 Construct the FMOLP for the multi-objectivemixed-
model assembly line sequencing formulation.

Step 2 Solve the kth objective function with an optimiza-
tion technique such as branch and bound (B&B)
embedded in LINGO 8.0 software, and set ZPIS

k to
the objective function value of the found minimum
solution (lower bound for the kth objective (Zk)).

Step 3 Determine the values of the other objective functions
of the obtained sequence in the previous step and set
ZNIS
k =the maximum value among the obtained

values (upper bound for the kth objective (Zk)).
Step 4 Repeat steps 2 and 3 for all the objective functions.
Step 5 Define the membership function of each goal in

the FMOLP model.
Step 6 Construct the equivalent crisp formulation of

FMOLP mixed-model assembly line sequencing
problem according to Eqs. (13) to (16).

Step 7 solve the equivalent crisp formulation in previous
step; then calculate the relative membership α of
each objective value’s satisfaction degrees.

Step 8 Set lk=α, k=1,…, p, and solve the problem (17)–
(20) to get an optimal solution.

The model algorithm is illustrated by a numerical
example.
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4 Numerical example

In this paper, the problem is considered for four work-
stations and three product models. For this experiment, the
following assumptions have to be considered:

1. Sequence-dependent setup costs occur only at the first
station.

2. The velocity of conveyor, vc, is set to 1 for the sake of
computational convenience.

The assembly time and the length of each station are
shown in Table 1. The MPS of this example is shown in
Table 2.

Sequence-dependent setup costs are presented in Table 3.
The multi-objective formulation of numerical example is
presented as min Z1, Z2, and Z3. Three objective functions
Z1, Z2, and Z3 are total utility work, total production rate
variation, and total setup cost, respectively.

The linear membership function is used for fuzzifying
the objective functions for the above problem. The data set
for the values of the lower bounds and upper bounds of the
objective functions and fuzzy number for the demands are
given in Table 4 (steps 1 to 4).

The membership functions below for three objective
functions are provided by which to minimize the total
utility work, the total production rate variation, and the total
setup cost (step 5).

mZ1 xð Þ ¼
1 Z1 � 9:80;
19:80�Z1

10 9:80 � Z1 < 19:80;
0 Z1 � 19:80:

8<: ð21Þ

mZ2 xð Þ ¼
1 Z2 � 2:45
4:45�Z2

2 2:45 � Z2 < 4:45;
0 Z2 � 4:45:

8<: ð22Þ

mZ3 xð Þ ¼
1 Z3 � 5;
15�Z3
10 5 � Z3 < 15;

0 Z3 � 15:

8<: ð23Þ

The crisp formulation of FMOLP mixed-model assem-
bly line sequencing problem for the numerical example can
be formulated as follows (step 6):

Minimizea ð24Þ
s.t.

a � 19:8� Z1ð Þ
19:8� 9:8ð Þ ð25Þ

a � 4:45� Z2ð Þ
4:45� 2:45ð Þ ð26Þ

a � 15� Z3ð Þ
15� 5ð Þ ð27Þ

a 2 0; 1½ � ð28Þ

Constraints (1.1) to (3.5).
The LINGO software was used to run this FMOLP

model, obtaining the results for the objectives as Z1=15.6,
Z2=4.63, Z3=5, and the overall degree of satisfaction with
the DM’s multiple fuzzy goals as 0.4.

After getting the optimal solution from the previous step,
according to the optimal objective function values, the step
6 satisfaction degree, α, can be used in this step (step 7).
The equation below represents the FMOLP mixed-model
assembly sequencing problem that is transferred from the
previous step.

Minimize l ¼ 1

3

X3
k¼1

lk � 0:4ð Þ2 ð29Þ

s.t.

0:4 � l1 � 19:8� Z1ð Þ
19:8� 9:8ð Þ ð30Þ

Table 1 Assembly time and workstation length

Workstation Model Workstation length

1 2 3

1 4 8 7 12
2 6 9 4 14
3 8 6 6 12
4 4 7 5 11

Table 3 Sequence-dependent setup cost

Model Model

1 2 3

1 0 1 2
2 3 0 1
3 2 3 0

Table 2 Parameter setting

I MPS No. of feasible solutions Launch interval

9 (4 3 2) 1,260 6.2
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0:4 � l2 � 4:45� Z2ð Þ
4:45� 2:45ð Þ ð31Þ

0:4 � l3 � 15� Z3ð Þ
15� 5ð Þ ð32Þ

l1; l2; l3 2 0; 1½ � ð33Þ

Constraints (1.1) to (3.5).
This experiment is carried out with a branch-and-bound

(B&B) method by using the LINGO 8.0 software, which is
executed on a Pentium 4, 3 GHz Windows XP using
512 MB of RAM. The results of applying the two-phase
method to the problem of mixed-model assembly sequenc-
ing line are shown in Table 5.

In the first phase of the solution procedure in this study,
the acceptable DM satisfaction degree, α, is 0.4 in the fuzzy
environment. Then, in phase 2, the DM satisfaction degree
is improved by adding lower limits and a new auxiliary
objective function. As a result of this modification, except
for the second auxiliary objective function Z2, all objective
function values are decreased.

The proposed model was applied to the test problem and
its performance compared with the Fuzzy Goal Program-
ming (FGP) approach that proposed by Javadi et al. [26] for
solving multi-objective mixed-model assembly line se-
quencing problem. This approach was constructed based
on the desirability of the decision-maker (DM) and
tolerances considered on goal values. The solution proce-
dure was employed to solve the fuzzy mixed integer goal

programming (f-MIGP) for the proposed mixed-model
assembly line sequencing problem including the following
steps (Javadi et al. [26]):

Step 1. Construct the f-MIGP for the multi-objective
mixed-model assembly line sequencing formulation.

Step 2. Solve the kth objective function with an
optimization technique such as B&B embedded
in LINGO 8.0 software, and set gk to the
objective function value of the found minimum
solution.

Step 3. Determine the values of the other objective
functions of the obtained sequence in the previous
step and set pk=the maximum value among the
obtained values—gk.

Step 4. Repeat steps 2 and 3 for all the objective
functions.

Step 5. Define the membership function of each fuzzy
goal in the f-MIGP.

Step 6. Construct the equivalent crisp mixed integer
goal programming (c-MIGP) formulation of the
f-MIGP.

Step 7. Solve the equivalent c-MIGP formulation and
obtain the satisfaction degree α.

The obtained results of fuzzy goal programming-based
algorithm were applied to the mentioned problem repre-
sented in Table 6.

Furthermore, the proposed model compared with the
weighted additive approach proposed by Tiwari et al. [27].
In the fuzzy multi-objective MMAL problem, fuzzy goals
have unequal importance to DM, and the proper fuzzy DM
operator should be considered. The weighted additive
model can handle this problem, which is described as
follows.

The weighted additive model is widely used in vector
objective optimization problems; the basic concept is to use
a single utility function to express the overall preference of
DM to draw out the relative importance of criteria (Lai and
Hwang [28]). In this case, a linear weighted utility function
is obtained by multiplying each membership function of
fuzzy goals by their corresponding weights and then adding
the results together. Using the convex fuzzy model
proposed by Bellman and Zadeh [25] and Sakawa [29],

Table 6 Obtained results of fuzzy goal programming approach
(Javadi et al. [26])

Z*1 Z*2 Z*3 O.F.V Optimal sequence

15.6 4.63 5 0.4 BAAAABBCC

Table 5 Obtained result of proposed model

Z*1 Z*2 Z*3 l*1 l*2 l*3 O.F.V Optimal sequence

9.8 3.53 7 1 0.45 0.8 0.17 BCAABBCAA

Table 4 The data set for membership functions

μ=0 μ=1 (PIS)a μ=0 (NIS)b

Z1 (total utility work) – 9.80 19.80
Z2 (total production rate variation) – 2.45 4.45
Z3 (total setup cost) – 5.00 15.00

aPIS positive ideal solution
bNIS negative ideal solution
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the weighted additive model proposed by Tiwari et al.
[27] is:

mD xð Þ ¼
Xp
k¼1

wkmZk xð Þ ð34Þ

Where the wk, the given weight coefficients presenting
the relative importance among the fuzzy goals, are so thatPp
k¼1

wk ¼ 1 ; 0 < wk � 1. The following crisp single objec-

tive programming of mixed-model assembly line sequenc-
ing problem is equivalent to the model below:

Maximize
X3
k¼1

wklk ð35Þ

s.t.

l1 � 19:8� Z1ð Þ
19:8� 9:8ð Þ ð36Þ

l2 � 4:45� Z2ð Þ
4:45� 2:45ð Þ ð37Þ

l3 � 15� Z3ð Þ
15� 5ð Þ ð38Þ

l1; l2; l3 2 0; 1½ � ð39Þ

Constraints (1.1) to (3.5).
To specify the weight of objectives, there are some good

approaches in the literature (Hwang and Yoon [30]).

Case 1. the DM’s relative importance or weights of the
fuzzy goals are given as w1=0.15, w2=0.6, and w3=0.25
are weights of total utility work, total production rate
variation, and total setup cost objective functions, respec-
tively. Based on the convex fuzzy decision-making and the

weights that are given by DM, the obtained results of the
crisp single objective formulation for the numerical
example are given in Table 7. These values of Table 7
represent that the satisfaction degree of Z2 (total production
rate variation) is more than Z3 (total setup cost) and the
satisfaction degree of Z3 is more than Z1 (total utility
work) l2 > l3 > l1ð Þ. It means that satisfaction degree of
the objective functions is consistent with the DM’s
preferences w2 > w3 > w1ð Þ.

Case 2. in this case, total utility work is the most important
criterion for the DM in comparison with case 1; hence, the
relative importance or weights of the fuzzy goals assumed
as w1=0.6, w2=0.25, and w3=0.15 are weights of objective
functions, respectively.

The value of objectives and optimal sequence vary as
follows in Table 8. Due to high weight on the total utility
work criterion, the criterion performance is improved in
comparison to case 1 from 14.4 to 10.81. Corresponding to
the DM’s preferences (w1=0.6, w2=0.25, w3=0.15), in this
solution, the satisfaction degree of the total utility work
objective function is increased l1 > l2 > l3ð Þ.

Case 3. If the DM’s relative importance or weight of total
utility work criterion changes from 0.6 to 0.15 and the
total setup cost changes from 0.15 to 0.6 (weight of total
production rate variation without any change), the optimal
solution for this case is obtained as follows in Table 9.

Case 4. The DM’s relative importance or weights of the
fuzzy goals are same as given w1=w2=w3=0.33. The
optimal solution for this case is obtained as follows in
Table 10.

Comparison of the results obtained using the f-MIGP
approach and weighted additive method with the proposed
FMOLP model is summarized in Table 11. This comparison
shows the proposed FMOLP is superior to f-MIGP and
weighted additive in the above test problem.

Table 8 Obtained results of weighted additive approach (case 2)

Z*1 Z*2 Z*3 l*1 l*2 l*1 O.F.V Optimal sequence

10.81 4.30 6 1 0 0 0.60 ABBBCAAAC

Table 9 Obtained results of weighted additive approach (case 3)

Z*1 Z*2 Z*3 l*1 l*2 l*1 O.F.V Optimal sequence

17.2 6.23 2 0 0 1 0.60 AAAABBBCC

Table 7 Obtained results of weighted additive approach (case 1)

Z*1 Z*2 Z*3 l*1 l*2 l*1 O.F.V Optimal sequence

14.4 3.14 6 0 0.94 0.51 0.58 ABCCAAABB
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Figure 3 shows total utility work, total production rate
variation, and total setup cost according to applied methods
for solving proposed multi-objective MMAL sequencing
problem.

5 Conclusions

A fuzzy multi-objective linear programming (FMOLP)
model is developed for the mixed-model assembly line
sequencing problem where three crucial objectives of the
total utility work, the total production rate variation, and the
total setup cost are considered for minimization. We
propose a two-phase algorithm for the FMOLP. In the first
phase, the problem is solved using a max–min approach.
The max–min solution not being efficient, in general, we
propose a new model in the second phase to maximize a
composite satisfaction degree at least as good as the degrees

obtained by phase one. To show the effectiveness of the
proposed algorithm, a numerical example taken from
the literature is solved to compare the performance of the
FMOLP model with the fuzzy mixed integer goal program-
ming and weighted additive methods. The numerical results
show that the FMOLP model achieves lower objective
functions as well as higher satisfaction degrees.
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Table 11 Solution comparisons

Item f-MIGP Weighted additive FMOLP

(Javadi et al. [26]) Case 1 Case 2 Case 3 Case 4 (proposed model)

Objective function Max α Max
P3
k¼1

wklk Max l
Z*1 15.6 14.4 10.81 17.2 10 9.8
Z*2 4.63 3.148 4.30 6.23 2.86 3.53
Z*3 5 6 6 2 8 7
l*1 – 0 1 0 0.98 1
l*2 – 0.94 0 0 0.79 0.45
l*3 – 0.51 0 1 0.7 0.8
O.F.V. 0.4 0.58 0.6 0.6 0.82 0.17

Table 10 Obtained results of weighted additive approach (case 4)

Z*1 Z*2 Z*3 l*1 l*2 l*3 O.F.V Optimal sequence

10 2.86 8 0.98 0.79 0.7 0.82 ABCABBCAA
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Appendix 1. Lingo formulation for objective function 1
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Appendix 2. Lingo formulation for objective function 2
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Appendix 3. Lingo formulation for objective function 3
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