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Abstract The main usefulness of a capability index is
to relate the actual variability of the process with the
admissible one. This admissible variability is, in turn,
related with the nonconforming proportion. Hence,
the capability index should be closely related to the
nonconforming proportion. In univariate and centered
processes, the classical Cp index explicitly admits this
interpretation. For instance, if Cp = 0.5, the standard
deviation should be reduced to 50% to attain Cp = 1.
However, for noncentered processes and multivariate
processes, there is a lack of capability indices that ad-
mit such an interpretation. This article fills this gap in
the literature and proposes univariate and multivariate
capability indices that have a direct interpretation of
how much the variability of the process should increase
or decrease to attain a unitary index. Some numerical
examples are used to compare the proposed indices
with the existing ones, showing the advantages of the
proposals.

Keywords Capability · Capability index · Multivariate
processes · Nonforming proportion

I. González (B)
Department of Mechanical Engineering,
Universidad Carlos III de Madrid,
Avd. de la Universidad 30, 28911,
Leganés, Madrid, Spain
e-mail: imgfaria@ing.uc3m.es
URL: http://turan.uc3m.es/uc3m/dpto/IN/dpin11/
fabdis/imgfaria.html

I. Sánchez
Department of Statistics, Universidad Carlos III de Madrid,
Avd. de la Universidad 30, 28911, Leganés, Madrid, Spain
e-mail: ismael@est-econ.uc3m.es
URL: http://halweb.uc3m.es/ismael

1 Introduction

One way of comparing the characteristics of the out-
put of a manufacturing process with the engineering
requirements is by using the concept of capability. In
general, a process is capable if the probability of obtain-
ing nonconforming items (outside some specifications)
is small, typically 0.0027. Even though the interest is
in the nonconforming proportion, it is customary to
quantify the capability using a unitless index such that
it can easily be computed and interpreted by the users.
Typically, a process capability index (PCI) compares
the natural variability of a stable process and the al-
lowed variability. A general form of a PCI is

measure of allowable process spread
measure of actual process spread

. (1)

Therefore, a PCI is an index of the quality of the
process that measures the risk of producing defective
articles due to the natural variability of the process.
It is used, for example, by quality engineers in their
reports to their managers. It is also used when part of
the production process is made by third parties, as it
is customary, for instance, in the automotive industry.
The report of a multivariate PCI is then included in the
quality audit report.

A large number of publications related to PCI for
univariate processes are available. An overview of dif-
ferent developments is provided in Kotz and Johnson
[1]. In a univariate process, the quality is measured
by one characteristic and the engineering requirements
are usually represented by two specification limits: the
upper and the lower specification limits. In the case
of multivariate processes, some capability indices have
also been proposed. In these processes, the quality is
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measured by the joint level of several characteristics,
and the engineering specification is a tolerance region
instead of an interval. In the case of independent char-
acteristics, some proposals can be found in Yu et al.
[2, 3]. In a more general case of correlated variables, al-
ternative approaches of multivariate capability indices
can be found in [4–13]. These proposals are summa-
rized below.

In spite of the number of PCIs that can be found
in the literature, there is a need for a PCI that clearly
relates the actual variability of the process with the
nonconforming proportion. In this article, we propose a
PCI that fills this gap. This need is especially important
in multivariate processes. For instance, some of the
existing PCIs do not assure that values larger (smaller)
than one imply that the nonconforming proportion is
smaller (larger) than, say, 0.0027. Under the proposed
approach, a unitary capability index is linked to a pre-
specified nonconforming proportion. Also, when the
variability of the process changes linearly, the proposed
PCI also changes linearly, irrespective of whether the
process is centered or not. Apart from the original
Cp index in unbiased processes, none of the existing
univariate or multivariate PCI admits this clear inter-
pretation. In this sense, the proposed PCI is the only
one that retrieves the initial idea of relating natural
variability with nonconforming proportion, applying
it to noncentered univariate processes as well as to
general multivariate processes.

The outline of the article is as follows: Section 2
describes briefly some univariate PCIs existing in the
literature. Section 3 describes the methodology to esti-
mate the newly proposed univariate capability index.
A comparison with existing indices is also provided.
Section 4 describes some multivariate PCIs existing in
the literature. Section 5 extends the proposed univari-
ate index to the multivariate case. Section 6 compares
the multivariate indices using some real and simulated
examples; some of them are extracted from existing
literature. Section 7 concludes. The Matlab code used
in the examples can be downloaded from the authors’
website.

2 Capability indices for univariate processes

Let X ∼ N(μ, σ 2) denote the univariate quality char-
acteristic of interest. The basic capability index used in
practice is

Cp = U SL − LSL
6σ

, (2)

where U SL and LSL are the upper and lower specifica-
tion limits of X, respectively. In this index, it is assumed
that X is centered within the tolerance region. Under
these assumptions, there is a correspondence between
Cp and the proportion of nonconforming items, which
will be denoted as p. To see this point, let us denote

Cp/2
p = −1

3
�−1(p/2), (3)

with �(·) the cumulative distribution function of the
standard normal distribution. Then, it is straightfor-
ward to show that, for centered processes,

Cp = Cp/2
p . (4)

We will define a process as capable if p≤α, where
α is a small value, typically α=0.0027. Otherwise, the
process is incapable. From Eq. 4, if p≤α, then Cp ≥1.

This index can be seen as the relative length of the
tolerance interval to the length of the centered 100(1−
α)% of the population.

In order to motivate our proposal for multivariate
PCI, we will expose an alternative interpretation of Cp

that will ease its extension to a multivariate process. Let
us denote as σp to the maximum standard deviation of
the process such that Cp = 1; that is,

U SL − LSL
6σp

= 1.

Hence, by Eq. 2,

σp = U SL − LSL
6

= Cpσ. (5)

Then, Cp can be interpreted as the maximum factor
that should be applied to σ to obtain a capable process;
i.e., with Cp = 1. For instance, if Cp = 2, the standard
deviation of the process could be multiplied by 2 and
still have a capable process. Conversely, if Cp = 0.5,

the standard deviation needs to be divided at least
by 2 to have a capable process. Also, from Eq. 5, we
obtain that

Cp = σp

σ
, (6)

which describes Cp as a ratio of standard deviations:
the maximum allowable and the real one, which is in
line with Eq. 1. Our proposal for a PCI presented in the
following sections will be based on this interpretation.

As it is well known, a disadvantage of Cp is that it
does not capture the location of the process. Then, if
the process mean is far from the center of the toler-
ance zone, the process can have Cp > 1 with a high
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proportion of nonconforming items. To avoid this
situation, the index

Cpk = min
(
CpU , CpL

)
, CpU = U SL − μ

3σ
,

CpL = μ − LSL
3σ

, (7)

was proposed (see, e.g., Kane [14]). As in Eq. 4, and
following Castagliola and García Castellanos [13], this
index can be written in terms of the lower and upper
proportions of nonconforming products as

Cpk = 1
3

min
{−�−1(pU ), −�−1(pL)

}
, (8)

where pU = P(X > U SL) and pL = P(X < LSL).

This index has also some drawbacks. In Kane [14] and
Pearn and Lin [15], it is shown that processes with
the same value of Cpk can have different percentage
of nonconforming items, depending on the specifica-
tion limits and σ . Under normality, it can easily be
checked that the proportion of nonconforming items is
bounded by

p ≤ 2�(−3Cpk), (9)

and therefore,

Cpk ≤ −1
3
�−1 (p/2) ≡ Cp/2

p , (10)

where the equality holds for centered processes. Then,
if Cpk = 1, the proportion of nonconforming items is
p ≤ α. Also, for p = α, we obtain Cpk ≤ 1. Hence,
this index is conservative. However, as pointed out in
Wierda [6], if the process is sufficiently capable, a good
approximation (still conservative) is

Cpk ≈ −1
3
�−1(p) ≡ Cp

pk. (11)

Apart from this interpretation in terms of p, the index
Cpk always admits an interpretation similar to Eqs. 5
and 6 in that Cpk is the maximum factor that should be
applied to σ to obtain a process with Cpk = 1, and also

Cpk = σpk

σ
, (12)

where σpk is the standard deviation that corresponds
to Cpk = 1. Note that if the process is not centered,
σpk < σp. Although capability indices are usually used
to evaluate the variability of the process, the index Cpk

can also be used to evaluate the distance of μ to the

specification limits. For instance, from Eq. 7, we can
write

(U SL − μ) /CpU

3σ
= 1,

(μ − LSL) /CpL

3σ
= 1; (13)

and, hence, the unilateral indices CpU and CpL can be
interpreted as the maximum factor; we can reduce the
distance to each specification limit to obtain a unilat-
eral capability index equal to one. For instance, if the
process has CpL = 2, the distance between μ and LSL
can be reduced as much as 50% and still have a capable
process. In this article, and for the sake of conciseness,
we are going to focus on using capability indices to
evaluate only variability.

Other capability indices have been proposed to con-
sider the proximity of the process to a target value T,

should it exist. These indices are denoted as Cpm and
Cpkm and are analogous to Cp and Cpk, respectively.
They are defined as

Cpm = U SL − LSL

6
√

σ 2 + (μ − T)2
, (14)

Cpkm = min(U SL − μ, μ − LSL)

3
√

σ 2 + (μ − T)2
. (15)

Then, for the same process, Cp ≥ Cpm and Cpk ≥ Cpmk

because the denominator includes the penalty term
(μ − T)2. All these proposals are based on the assump-
tion of normality. Departures from normality can result
in erroneous conclusions when using these indices. In
these situations, two main approaches can be applied.
The first approach is to adjust a more appropriate
parametric distribution. This can be attained by approx-
imating the distribution with some other parametric
model (e.g., Clements [16], Castagliola [17], Liu and
Chen [18]). Alternatively, the process data can be trans-
formed into normal by applying some transformation
like the Box-Cox or the so-called root transformation
of Hosseinifard et al. [19]. The second approach is the
nonparametric one, like the kernel estimation proposed
in Polansky [20] or the neural-network approach used
in Abbasi [21].

3 A new proposal: the Cn index for univariate
processes

We will define here a new capability index directly re-
lated to the proportion of nonconforming items p. The
index is denoted as Cn, where n stands for nonconform-
ing proportion. Let Xmax be a process with density func-
tion similar to that of X but with variance σ 2

max, where
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σ 2
max is the value that verifies P (LSL≤ Xmax ≤U SL)=

1−α. That is, σmax is the maximum allowable standard
deviation that should have X such that p = α without
changing the mean. Then, Cn is defined as

Cn = σmax

σ
. (16)

It can be verified that Cp ≥ Cn ≥ Cpk, where equal-
ity holds for a normal process centered in the tolerance
zone. To illustrate the index Cn with an example, let
us use α = 0.0027 and let us assume that the process
is normal but not centered, such that pU = 0.0020 and
pL = 0.0007. Then, it is clear that p = 0.0027 and the
process is capable. In this case, σmax = σ , and, hence,
Cn = 1. Therefore, the process cannot increase its vari-
ability; otherwise, it will become incapable. It can be
checked, using Eq. 8, that Cpk = 1/3 min (2.87, 3.19) =
0.959. Therefore, this capability index Cpk shows, er-
roneously, that the process is incapable. Also, we have
that U SL − LSL = 6.0728σ, and, hence, Cp = 1.012.

Using Cp, the process is labeled as capable, but quality
engineers would not care much if the standard devia-
tion increases up to σp = 1.012σ (assuming that Cp = 1
is satisfactory enough).

3.1 Computation of Cn

In the normal case with X ∼ N(μ, σ 2), the computation
of Cn is straightforward. The parameters μ and σ can
be estimated from data, and then p can be computed as
p = 1 − P(LSL < X < U SL). If p = α, then σmax = σ

and Cn = 1. If p �= α, σmax should be computed. Since
the relation between σ and p in a normal distribution
is nonlinear, σmax should be found using a searching
procedure like, for instance, the bisection method. For

instance, if p < α, we compute the nonconforming
proportion of the normal process X∗ ∼ N(μ, σ 2∗) and
search for the value σ 2∗ > σ 2 that verifies P(LSL <

X∗ < U SL) = 1 − α.

Table 1 shows the results of some small experiments
that compares the performance of Cn with Cp, Cp/2

p ,

Cpk, Cp
pk, Cpm, and Cpkm. In these experiments, it

is assumed that the specification limits are U SL = 3
and LSL = −3, and the target T = 0. The model used
in the experiments is X ∼ N(μ, σ 2) with alternative
values of μ and σ 2. The nonconforming proportion p
is then computed using the normality assumption and
the specification limits. The computation of Cn has been
made in Matlab, searching for σmax using a combination
of bisection and secant methods. The nonconforming
probabilities of the normal distribution are based on
the Matlab function normcdf.m. The Matlab code used
in this table is available from the authors’ website. In
the first experiment (Panel A), the parameters of the
model are μ = 0, and alternative values of σ 2. In this
experiment, it is clear that σmax = 1 and, therefore, all
the indices are equal except Cp

pk.
In the second experiment (Panel B), the process has

μ = 1 and, hence, is not centered in the specification
interval. In this case, Cp is useless. It can be seen in
Table 1 that, even with p = 0.0228, Cp erroneously
suggests that the process is capable. On the other
hand, Cpk is equal to Cp

pk (up to two digit precision)
and both are rather conservative in this setting. For
instance, when p = 0.0027, we have that Cpk = Cp

pk =
0.93, erroneously suggesting that the process is not
capable. The indices Cpm and Cpkm are also very con-
servative, especially Cpkm. Conversely, Cn is defined to
have values larger than 1 only if p < 0.0027, and its
value is related to the admissible variation of σ. For

Table 1 Comparison of
univariate capability indices
for alternative models
X ∼ N(μ, σ 2)

μ σ 2 p Cp Cp/2
p Cpk Cp

pk Cpm Cpkm Cn

Panel A 0 0.4 0.0000 1.58 1.58 1.58 1.53 1.58 1.58 1.58
0 0.8 0.0008 1.12 1.12 1.12 1.05 1.12 1.12 1.12
0 1.0 0.0027 1.00 1.00 1.00 0.93 1.00 1.00 1.00
0 1.2 0.0062 0.91 0.91 0.91 0.83 0.91 0.91 0.91

Panel B 1 0.4 0.0008 1.58 1.12 1.05 1.05 0.85 0.56 1.14
1 0.51 0.0026 1.40 1.01 0.93 0.93 0.81 0.54 1.01
1 0.517 0.0027 1.39 1.00 0.93 0.93 0.81 0.54 1.00
1 0.53 0.0030 1.37 0.99 0.92 0.92 0.80 0.54 0.99
1 0.6 0.0049 1.29 0.94 0.86 0.86 0.79 0.53 0.93
1 1.0 0.0228 1.00 0.76 0.67 0.67 0.71 0.47 0.72
1 1.2 0.0341 0.91 0.71 0.61 0.61 0.67 0.45 0.66

Panel C −1.5 1 0.0668 1.00 0.61 0.50 0.50 0.55 0.28 0.54
−0.5 1 0.0064 1.00 0.91 0.83 0.83 0.89 0.75 0.90

0 1 0.0027 1.00 1.00 1.00 0.93 1.00 1.00 1.00
0.9 1 0.0179 1.00 0.79 0.70 0.70 0.74 0.52 0.76
1.7 1 0.0968 1.00 0.55 0.43 0.43 0.51 0.22 0.47
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instance, when σ 2 = 0.6, we have that Cn = 0.93 and
the process is not capable. However, the value of Cn

shows us the path to attain a capable process: if the
standard deviation of the process would be 93% of
the actual one, that is,

√
0.6 × 0.93 = 0.72 = √

0.517,

we would get p = 0.0027. Note that, in this case, of an
off-centered process, the capability index can also be
improved by readjusting the process mean, instead of
the variance. As mentioned above, and for the sake of
conciseness, we will restric our exposition of capability
indices in terms of process variability. The index Cp/2

p is
similar to Cn only in the neighborhood of p = 0.0027.

As the process departs from this situation Cp/2
p has a

bias toward unity. Hence, its value is not related to
nonconforming proportion as Cn do.

In the third experiment (panel C), the process has
different values of μ. Again, none of the indices show
the same profile as Cn. As before, Cp is unable to alert
from the lack of capability; the indices Cpk, Cp

pk, and
Cpkm show a pessimistic view of the process; and the
index Cp/2

p shows a tendency toward the unit value.
If X follows a parametric distribution other than

normal, the computation is similar. For instance, we can
estimate the parameters using the method of moments.
Those estimators will relate the parameters of the dis-
tribution with μ, σ , and perhaps with some other mo-
ments. Consequently p can be computed. If p �= α, σmax

should be searched by replacing the estimated value
of σ by alternative values. If a parametric distribution
for X cannot be assumed, p can be estimated using
nonparametric techniques. These techniques are based
on flexible smoothing methods that allow to build esti-
mates of the density function of X, which in turn allow
us to estimate p. In particular, Polansky [20] proposed
a nonparametric procedure to estimate p specially de-
signed to be applied to process capability problems.
If the random sample leads to a value of p �= α, the
data can be modified in such a way that the variance
changes but the shape of the distribution remains the
same. To this aim, the sample can be modified as X∗ =
b(X−μ̂), where μ̂ is the sample mean of X and b > 0 is
some constant. Using alternative values of b , different
nonparametric estimates of p will be obtained. Note
that var(X∗) = b 2σ 2. Hence, it can be checked that the
value of b that leads to p = α is just the capability index
Cn. The method can be summarized as follows:

(a) From the sample, we compute μ̂ and U SL∗ =
U SL − μ̂, LSL∗ = LSL − μ̂; k = 1; b k = 1, and
X∗ = b k(X − μ̂).

(b) Compute the nonconforming proportion p=1−
P(LCL∗ ≤ X∗ ≤UCL∗) using some nonparamet-
ric procedure. For example, the kernel estimation

of the distribution function, as implemented in
Polansky [20], can be used.

(c) If p > α (or p < α), then set k = k + 1; b k < b k−1

(or b k > b k−1) and X∗ = b k(X − μ̂) and go to b).
Otherwise, if p = α, then Cn = b k.

4 Capability indices for multivariate processes

Let X =(X1, X2, ..., Xm)′ represent the vector of m
quality characteristics of interest with mean vector μ =
E(X) = (μ1, μ2, ..., μm)′ and covariance matrix �. Let
us denote S to the tolerance region such that

S={
X∈ Rm : (LSLi ≤ Xi ≤U SLi) , i = 1, ..., m

}
. (17)

If the specifications of the ith variable, U SLi and LSLi,

are independent of the remaining variables, then S will
be a hyperrectangle. In some instances, the tolerances
are interrelated and S can be a more complex region, as
seen in the examples below. Several forms of capability
indices for the multivariate processes have been pro-
posed in the literature. Here, we will briefly describe
some of them.

4.1 Capability indices using principal component
analysis

In Wang and Chen [10], Wang and Du [11], and Wang
[12], indices based on principal component analysis
(PCA) are proposed. Under normality, the principal
components (PCs) are independent. Capability indices
are computed for each PC in a similar fashion as in
the univariate case. Therefore, the computation of the
capability is translated from a multivariate problem to
a univariate one.

Following PCA, the original variables X are pro-
jected onto new m independent PCs. The PCs are
linear combinations of X (defined by the eigenvectors).
The variance of each PCi is equal to its eigenvalue λi.
For each PCi, i = 1, ..., m, the authors set a specifica-
tion interval for each component, [LSLPCi , U SLPCi ],
by projecting the multivariate specifications of X into
each PCi. Note that, by doing so, the new tolerance
region is always a hyperrectangle with sides parallel
to the PCs. It is also important to note that the new
tolerance region is different from the original one in
Eq. 17. For instance, if the specification limits U SLi

and LSLi of the ith variable are independent, it is clear
that the tolerance region is a hyperrectangle with sides
parallel to the original axes and, hence, nonparallel to
the PCs. Besides, it can be checked that the new toler-
ance region is larger than S in Eq. 17. Wang and Chen
[10] and Wang and Du [11] propose an index obtained
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as the geometric mean of the capability indices of the
principal components. This index, denoted here as CPC

pk ,

can be written as

CPC
pk =

(
m
�
i=1

Cpk;PCi

)1/m

, (18)

where Cpk;PCi is the univariate capability index of each
component, obtained as in Eq. 2. This definition of
capability index has the additional drawback that all the
PCs are equally weighted. However, as it is well known,
the first principal components will be more relevant
than the last ones. A value of Cpk:PC1 < 1 should be
more important than a value of Cpk:PCm < 1. To solve
this problem, in Wang [12], a weighted geometric mean
is used instead of a simple geometric mean. The weights
are based on the eigenvalues λi of each PC. The index,
denoted here as CWPC

pk , can be obtained as:

CWPC
pk =

[
m
�
i=1

(
Cpk;PCi

)λi

]1
/

m
�
i=1

λi

. (19)

The interpretation of these indices is analogous to
the univariate case. Values higher than 1 are inter-
preted as that the process is capable. A variant of
Eqs. 18 and 19 can be obtained using a number of
principal components lower than m. In this case, the
accounted variability of X does not reach 100%.

4.2 Capability indices as a ratio of volumes

We will expose two proposals based on a ratio of vol-
umes. In the first one, proposed in Taam et al. [5], the
volumes are based on the shape of the process region.
Under multivariate normality of X, the process can be
represented as an elliptical region of dimension m. In
the second one, proposed in Shahriari et al. [8], the
volumes are based on the shape of the tolerance region.

The first proposal, due to Taam et al. [5], is a capabil-
ity index built as a ratio of the volume of two ellipsoids
(or hyperellipsoids), as analogous to the ratio of lengths
used in the univariate Cp index. The index, denoted
here as CVPR

pm , is obtained as:

CVPR
pm = Volume of the modified tolerance region

Volume of the 100(1 − α)% process region

≡ VMT

VPR
. (20)

Since the process region is an ellipsoid of dimen-
sion m, the modified tolerance region defined in [3]
is the largest ellipsoid centered at the target T. That
is, the largest ellipsoid within the tolerance region of
X. It can be checked that the volume of the modified
tolerance region is the product of the semiaxes length
by πm/2

[
	(m/2 + 1)

]−1. In the case of independent
specifications for each variable, the semiaxes length is
just half the specification interval. However, in a more
general case, such computation can be very complex.

The elliptical process region with 100(1−α)% cov-
erage is represented by the quadratic form (X−
μ)′�−1

T (X−μ)≤χ2
m,1−α , where �T = E

[
(X−T)(X−T)′

]
;

that is, the squared deviation matrix evaluated at target
vector T. The value χ2

m,1−α is the 100(1 − α)% point of
the chi-square distribution with m degrees of freedom.
Based on the concept of ellipsoid of concentration, the
volume of this process region can be obtained as:

VPR = |�T |1/2 (πχ2
m,1−α

)m/2 [
	(m/2 + 1)

]−1
, (21)

where 	(·) is the gamma function. �T can be written
as �T = �

[
1 + (μ − T)′�−1(μ − T)

]
. This expression

shows that CVPR
pm resembles the index Cpm used in uni-

variate processes. Using expressions (20) and (21), the
index CVPR

pm can be obtained as:

CVPR
pm = Volume of the modified tolerance region

|�|1/2 (πχ2
m,1−α

)m/2 [
	(m/2 + 1)

]−1 [1 + (μ − T)′ �−1 (μ − T)
]1/2

= Volume of the modified tolerance region

|�|1/2 (πχ2
m,1−α

)m/2 [
	(m/2 + 1)

]−1 × [
1 + (μ − T)′ �−1(μ − T)

]−1/2

= CVPR
p /D (22)

The term CVPR
p represents the process variability rela-

tive to the modified tolerance region. A value higher
than 1 implies that the process has smaller variation
than allowed by the specification limits. The term D
reflects the process deviation from the target T. Larger

values of D−1 (0 < D−1 < 1) imply that the mean is
closer to the target.

A drawback of this index is that a value CVPR
pm = 1

does not mean that the expected proportion of noncon-
forming items is necessarily p = α, even if the process
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is centered at the midpoint of the tolerance region.
The reason is that α is the probability of being out-
side the ellipsoid of coverage 100(1 − α)%, and not
the probability of being outside the tolerance region
(17). Therefore, the value of this index does not have
a direct interpretation in terms of p. Besides, since
Eq. 22 is a ratio of volumes, its scale depends on the
dimension. For instance, if we multiply each dimension
of the modified tolerance region by a factor k, the
volume would increase by km. Consequently, CVPR

pm will
be altered by the factor km. Hence, small variations in
both the tolerance region or the process region leads
to very large variations in CVPR

pm , making interpretation
difficult. For the same reason, capability indices of
processes of different dimensions are not comparable.
This effect can be avoided if the root-m of the index is
taken.

The second proposal, due to Shahriari et al. [8] is a
vector of three components, defined also under multi-
variate normality of X. We will denote this index as

CVTR = [CpM, PV, LI]. (23)

The first component of CVTR, denoted as CpM, is the
following ratio of volumes:

CpM =
(

Volume of the tolerance region
Volume of the modified process region

)1/m

.

(24)

The so-called modified process region is defined as
the smallest region similar in shape to the tolerance
region, circumscribed about the 100(1 − α)% elliptical
process region. As opposed to Eq. 22, the root-m of the
ratio of volumes in Eq. 24 is used as a way to linearize
the index. Otherwise, and as mentioned above, as m
grows, the index might take very high or low values
even with small changes in the specifications, making
the interpretation very complex. This index CpM is only
useful if the process is centered. For this reason, CVTR

has a second component, denoted as PV, defined as the
following probability

PV = P
[

T2 >
m(n − 1)

n − m
F(m,n−m)

]
, with T2

= n
(
X̄ − T

)′
�̂

−1 (
X̄ − T

)
, (25)

where F(m,n−m) is the Snedecor’s F distribution, X̄ is the
vector of sample means with a sample of size n, and
�̂ is the sampling covariance matrix. As the center of
the process is closer to the target T, PV goes to one.
Therefore, low values of PV, say below 5%, will reveal
a noncentered process. The third component of CVTR,

denoted as LI, is a dummy variable that takes the value

zero if any part of the modified process region falls
outside the specification limits. The drawback of CVTR

is similar to CVPR
pm in that its value is not easily translated

to a proportion of nonconforming items p.

4.3 Capability indices based on the proportion
of nonconforming items

This family of capability indices search for a direct
interpretation of the capability in terms of the propor-
tion of nonconforming items. Some proposals compute
the multivariate nonconforming proportion p and then
translate this proportion into a capability index by using
the cumulative distribution of the univariate standard
normal distribution �(·). For instance, Wierda [6] pro-
poses to compute p by integrating the multivariate
normal distribution of X using numerical integration.
Once p is estimated, a capability index, denoted here
as Cp

pk, is constructed by applying the approximation
(11) as

Cp
pk = −1

3
�−1(p), (26)

where the approximation is based on the assumption
that the process is sufficiently capable. Polansky [12]
also uses this index (Eq. 26), where p is estimated using
an optimal nonparametric procedure. This estimation
procedure uses a kernel function with a bandwidth
optimized for the estimation of p, whereas traditional
bandwidths are optimized for the estimation of a den-
sity function. In line with this approach, we can extend
the univariate index (Eq. 3) to the multivariate case and
define

Cp/2
p = −1

3
�−1(p/2), (27)

where, in this definition, it is assumed that the process
is centered.

A different approach can be found in Chen [7], which
proposes an index that is a ratio of two radii as

Cr
pk = r0

r
, (28)

where r0 represents the tolerance region, and r repre-
sents the process region. The tolerance region is defined
as V = {X ∈ Rm : h(X−T) ≤ r0} , where r0 is a positive
number and h(X−μ) is a specific positive function of
X. The radius r is r = min {c : P (h(X−T) ≤ c) ≥ 1 − α}.
This radius is calculated by solving the equation
P (h(X−T) ≤ r) = 1 − α or also by Monte Carlo. In a
general setting, the computation of both r0 and r can be
very complex.
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Castagliola and García [13] propose a capability in-
dex for a bivariate normal processes, denoted as BCpk.
They uses the eigenvectors of � to divide the elliptical
process region into four equal regions, Ai, i = 1, ..., 4.
The proportion of observations at each region Ai is,
therefore, 1/4. The proportion qi, i = 1, ..., 4, is defined
as the proportion of observations inside the tolerance
region at region Ai. Then, the proportion pi = 1/4 − qi

is the nonconforming proportion at region Ai. The
index BCpk is obtained as:

BCpk = 1
3

min
{
�−1(2 p̂1),�

−1(2 p̂2),�
−1(2 p̂3),�

−1(2 p̂4)
}
.

(29)

5 Multivariate extension of the proposed Cn index

In this section, we will describe the methodology to
estimate a multivariate PCI based on the proposed Cn

in Eq. 16. As in the univariate case, the index is built
such that, if Cn = 1, then P(X ∈ S) = 1 − α, where S
is the tolerance region (17). The index represents how
much the square root of the covariance matrix of X

can increases, or decrease, in order to obtain a desired
value of α. This definition is in accordance with the
original concept of a capability index (Eq. 1), as a
ratio that compares the allowable variability (standard
deviation) and the real one. The general form of the
proposed capability index for multivariate processes
can be written as

Cn = f

(
|�max|1/2

|�|1/2

)

, (30)

where alternative functions f (·) will be used below in
Eqs. 33 and 34, related to specific uses of this index. In
this general representation � is the covariance matrix
of the process. �max is the maximum allowable covari-
ance; that is, �max is the covariance of a process X

max

with multivariate density function similar to that of X

but with a covariance matrix such that P(Xmax /∈ S)=α.

The problem now is to obtain �max; that is, how to
increase or decrease the determinant |�| to obtain
|�max|, since this variation should be compatible with
the multivariate structure of the process.

5.1 Changing from � to �max

In general, the variables X will not be independent,
but may be considered as a combination of indepen-
dent factors Y that might not be directly measurable.
In multivariate analysis, these independent factors are

usually known as latent factors. These factors can
be interpreted as the primary independent sources of
variability of the process. Therefore, any change in
� will necessarily be provoked by variations in the
variance of the independent factors Y. Reasoning in
this way, we can move from the multivariate problem
of analysing changes in � to the univariate problem of
analysing changes in the variance of the independent
factors Y.

In order to ease the exposition, we will first assume
that X ∼ N(μ, �) and we have a n × m matrix of ob-
served data X. Later, we will extend the procedure to
the nonnormal case. Under the assumption of normal-
ity, it is well known that those independent factors can
be obtained using principal component analysis (PCA).
The capability analysis will be based on changes in
the variance of these principal components. The PCA
analysis is based on the singular value decomposition
of �, that can be written as � = CDC′, where C is
the matrix of eigenvectors of �, with columns ci, i =
1, 2, ..., m; and D is a diagonal matrix with the eigen-
values λi, i = 1, ..., m. The diagonal matrix D is the
covariance matrix of the independent factors Y.

In order to compute the capability index Cn, we
should transform the process X to X

max, where only
realistic changes from � to �max should be considered.
A realistic change in the process will be due to changes
in the variance of the independent factors Y. That is,
the factor causing the variability in X remains the same
but with larger variance. Therefore, realistic changes
in � with practical meaning should be restricted to
those maintaining the eigenvectors C. A change in C
would only be possible if a radical and drastic change
has happened in the process, such that the independent
sources of variability become dependent. It does not
seem reasonable to design a capability index based on
those exceptional situations. Therefore, changes in �

will be due to changes in the eigenvalues matrix D (see
González and Sánchez [22] for further applications of
this concept).

Many alternative changes in D can be considered.
Since the factors Y are independent, it is reasonable to
analyze the case where only one factor changes its vari-
ance at a time. Under this assumption, a capability in-
dex defined for each factor will be useful. Alternatively,
it is also of interest to analyze the case where all the
factors change simultaneously and proportionally. This
simultaneous change can reflect the situation of a poor
quality management of the whole process, whereas the
changes in only one factor reflects the case of specific
quality problems associated with such factor. Although
both cases can lead to different values of capability
index, it is of practical interest to compute both of them.
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5.2 Definition of Cn in a multivariate case

Paralleling the univariate case, the index Cn should be
based on the constant that should be multiplied by the
standard deviation to attain p = α. Let Yi, be the ith

independent factor obtained with PCA. We can alter
the variance of this factor by multiplying the corre-
sponding eigenvalue λi by a factor b 2

i . The new matrix
of eigenvalues, denoted as D∗

(i), can be expressed as:

D∗
(i) = diag

(
λ1, λ2, ..., b 2

i λi, ..., λm
)
. (31)

This change in the variance of the i-th component
will provoke a change in X, denoted as X

∗
(i) such that

X
∗
(i) ∼ N

(
μ, �∗

(i)

)
, where

�∗
(i) = CD∗

(i)C
′. (32)

This new distribution will imply a proportion of non-
conforming items p∗

(i) = P(X∗
(i) /∈ S). Alternative meth-

ods can be used to compute p∗
(i). For instance, if m is

low, numerical integration can be a feasible method.
Also, Monte Carlo simulation can be used, especially
if m is large. Since the value of p∗

(i) can be very low,
a large number of replications should be used. The
goal then is to look for a value bi, denoted as b max

i ,

such that p∗
(i) = α. This b max

i leads to the covariance
matrix �max

(i) where the subindex i denotes the factor
that has been altered. The capability index associated
to this factor should represent how much the variance
of the ith component can be increased (or decreased)
to obtain a unitary capability index (that leads to a
nonconforming proportion α). Therefore, the general
expression (Eq. 30) leads to define

Cn,i =
(∣
∣�max

(i)

∣
∣

|�|

)1/2

=

⎛

⎜
⎜
⎝

(
b max

i

)2 m∏

i=1
λi

m∏

i=1
λi

⎞

⎟
⎟
⎠

1/2

= b max
i .

(33)

A process will be capable if all Cn,i ≥ 1, i = 1, ..., m.

However, if the process is not capable, the indices Cn,i

can show us which factor, or set of factors, should be
improved. Note that this index, contrary to Cpk;PCi in
Eqs. 18 and 19, is built computing the nonconform-
ing proportion outside the tolerance region S, instead
of using univariate tolerance limits for each principal
component.

A simultaneous change in all the components can
be modeled by multiplying all the eigenvalues by b 2

such that D∗ = b 2D. Hence, the change in X is X
∗ ∼

N (μ, �∗) , with �∗ = CD∗C′. As before, we look for
a value b max such that p∗ = P(X∗ /∈ S) = α. This b max

leads to the covariance matrix �max, and hence, the
general expression Eq. 30 leads us to define

CS
n =

( |�max|
|�|

) 1
2m =

⎧
⎪⎪⎨

⎪⎪⎩

(b max)
2m

m∏

i=1
λi

m∏

i=1
λi

⎫
⎪⎪⎬

⎪⎪⎭

1
2m

= b max,

(34)

where the superscript index S stands for simultaneous
change. As opposed to Eq. 33, the root-2m is used in
Eq. 34, so that CS

n represents how much the standard
deviation of each factor can be increased (or decreased)
simultaneously to obtain a nonconforming proportion
of α. By doing so, the values of the index (34) for
processes of different dimensions m can be compared.

It is straightforward to see that, in this simulta-
neous change, �∗ = CD∗C′ = b 2CDC′ = b 2�. Hence,
the simultaneous capability index CS

n can be obtained
without using PCA. The estimation of CS

n is made by
computing p∗ = P(X∗ /∈ S) by Monte Carlo using the
normal distribution of mean μ and covariance �∗ =
b 2�, and searching the value b max so that P(Xmax /∈
S) = α.

5.3 Extension to the nonnormal case

The proposed CS
n and Cn,i can be extended to the

nonnormal case. Some aspects are, however, different.
First, the set of independent factors Y = (Y1, ..., Ym)

can not be obtained using PCA as we used in Eqs. 31
and 32. In this case, the appropriate technique to obtain
independent factors is independent component analy-
sis (ICA) (see, for instance Hyvärinen et al. [23] and
González and Sánchez [24]). Second, in order to change
the variance of the ith independent component Yi we
can not do it as in Eq. 31 because in ICA there is not
such thing as the eigenvalues. This change might be
obtained by multiplying the independent component
Yi by a constant bi. This change in Yi will provoke a
new matrix X

∗
(i), which will allow to estimate the new

variance �∗
(i). The goal is then similar to the normal

case: to look for a value bi, denoted as b max
i , such that

p∗
(i) = P(X∗

(i) /∈ S) = α. Third, the computation of p∗
(i)

can not rely on the normal distribution. This proportion
could be computed using a nonparametric procedure as
in Polansky [12]. The capability index Cn,i associated
to this independent component is just Cn,i = b max

i . To
obtain CS

n , and as in the normal case, it is not necessary
to compute the independent factors. In this case, the
original variables X are multiplied by the same factor
b obtaining as a result a new matrix X

∗, that allows to
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Table 2 Multivariate process capability indices for Example 1

c1 c2 c3 p Cn,1 Cn,2 CS
n CPC

pk CWPC
pk CVPR*

pm CVTR Cr
pk Cp

pk Cp/2
p BCpk

Panel A 1.00 1.20 1.20 5.1×10−5 1.37 2.13 1.33 2.56 1.46 1.62 [1.22; 0.54; 1] 1.32 1.29 1.35 1.27
1.00 0.906 0.906 0.0027 1.00 1.00 1.00 1.93 1.10 1.23 [0.92; 0.54; 0] 1.00 0.93 1.00 0.94
1.00 0.80 0.80 0.0087 0.86 <0.01 0.88 1.70 0.97 1.09 [0.81; 0.54; 0] 0.88 0.79 0.87 0.81
1.00 0.60 0.60 0.0563 0.53 <0.01 0.66 1.27 0.73 0.81 [0.61; 0.54; 0] 0.66 0.53 0.64 0.57

Panel B 1.000 1.00 1.00 0.0009 1.12 1.47 1.10 2.13 1.22 1.35 [1.02; 0.54; 0] 1.10 1.04 1.11 1.06
0.937 1.00 1.00 0.0027 1.00 0.99 1.00 1.95 1.01 1.26 [1.02; 0.02; 0] 1.00 0.93 1.00 0.91
0.920 1.00 1.00 0.0044 0.94 <0.01 0.95 1.89 0.96 1.22 [1.02; 0.003; 0] 0.96 0.87 0.95 0.86
0.850 1.00 1.00 0.0258 0.67 <0.01 0.72 1.65 0.73 1.03 [1.02; 1.5×10−6; 0] 0.81 0.65 0.74 0.63

Panel C 0.850 1.00 2.00 1.1×10−6 1.70 2.81 1.61 3.09 1.72 1.54 [1.53; 1.5×10−6; 1] 1.55 1.58 1.63 1.32
0.850 1.00 1.235 0.0027 1.00 1.00 1.00 2.06 1.01 1.15 [1.14; 1.5×10−6; 0] 1.00 0.93 1.00 0.92
0.850 1.00 1.10 0.0106 0.82 <0.01 0.84 1.83 0.85 1.08 [1.07; 1.5×10−6; 0] 0.89 0.77 0.85 0.75
0.850 1.00 0.80 0.1089 0.25 <0.01 0.48 1.27 0.48 0.93 [0.92; 1.5×10−6; 0] 0.67 0.41 0.53 0.39

estimate the new variance �∗. Then, the nonconform-
ing proportion p∗ can be computed using, for instance,
Polansky [12]. We search the value b max so that p∗ = α,

and then CS
n = b max.

6 Illustrative examples

In this section we illustrate the usefulness of the pro-
posed indices with two examples from the literature in
the context of multivariate processes. Also, we include
a simulated example with a tenth-dimensional process.

The search of b max
i in Eq. 33, and b max in Eq. 34 has

been made using a combination of bisection and secant
methods. In this search, the nonconforming proportion
p∗

(i) for the computation of Cn,i, and p∗ for the com-
putation of CS

n are obtained by Monte Carlo using the
normality assumption. In each case, the nonconforming
proportion is the empirical proportion of times the
simulated multidimensional observation is outside the
multidimensional tolerance region. The Matlab code

used in these examples are available from the authors’
website.

6.1 Example 1

This example was initially proposed in Sultan [25] and
has been used by other authors. The data comes from
a bivariate process where the quality characteristics
are: the brinell hardness H, and the tensile strength E
of steel sections. The process is assumed normal. The
data set consists on 25 observations from the in control
process and can be found in [25]. From the data set we
obtain the following estimations

μ̂ = (177.2, 52.32)′ ; �̂ =
[

338.000 88.8925
88.8925 33.6247

]
. (35)

The process is analyzed under different conditions,
using different targets and tolerance regions. In all
cases the capability indices are obtained for α = 0.0027.
Table 2 summarizes the results. The target is set at
T ≡(T1, T2)= (177c1, 53c1), with alternative values of
c1 representing alternative noncentered situations. The

Fig. 1 Data from Example 1
with tolerance region. a
Original data. b Monte Carlo
simulations from a bivariate
normal estimated from
original data
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Fig. 2 Monte Carlo simulations from a bivariate normal distribu-
tion with tolerance region of Example 1. a Same distribution as in
Fig. 1 where first factor has a reduced variance such that p = α. b

Same distribution as in Fig. 1 where second factor has a reduced
variance. c Same distribution as in Fig. 1 where both factors have
a reduced variance such that p = α

rectangular tolerance region S is set at LSLi = Ti −
3.5c2σ̂i, U SLi = Ti + 3.5c3σ̂i , i = 1, 2, where alterna-
tive values of c2 and c3 can be used to obtain symmetric
or asymmetric specification limits with respect to the
target T. The estimator σ̂i is the estimated standard
deviation of each variable; that is, σ̂1 = 18.38 and σ̂2 =
5.8. For each value of (c1, c2, c3) the nonconforming
proportion p is computed with the empirical non-
conforming proportions in a Monte Carlo simulation
under normality. In all cases, 109 Monte Carlo repli-
cations were used. The cases (c1, c2, c3) = (1, 1, 1) and
(c1, c2, c3) = (0.85, 1, 1) have been considered in Chen
[7], and Wang and Chen [10]. It should be noticed that
in [10] CPC

pk is computed using only the first principal
component, whereas the value of CPC

pk in Table 2 uses
all the principal components. Indices are computed as
shown in Section 2, with the exception of CVPR

pm . In this
case, the root-m of the index is used, that is CVPR*

pm =
(

CVPR
pm

)1/m
. The index Cp

pk in Eq. 26 and Cp/2
p in Eq. 27

are computed using the value p obtained in the Monte

Carlo simulation.The index BCpk is computed estima-
tion the proportion pi in Eq. 29 with 109 Monte Carlo
replications.

In Panel A of Table 2, the process mean is very
close to the target T. The tolerance region is symmetric
(c2 = c3), but of different sizes. As a first conclusion, it
can be seen that only the proposed Cn,1, Cn,2, CS

n , and

Fig. 3 Tolerance region
of pin
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Table 3 Multivariate process capability indices for Example 2, Case 1 and Case 2

Case p Cn,1 Cn,2 Cn,3 CS
n CPC

pk CWPC
pk CVPR*

pm CVTR Cr
pk Cp

pk Cp/2
p

1 7.6 × 10−4 1.16 1.52 1.75 1.12 1.78 1.66 1.19 [1.18; 0.24; 1] 1.31 1.06 1.12
2 2.5 × 10−7 2.02 2.87 5.24 1.80 4.08 3.92 1.52 [1.95; 0.00; 1] 1.81 1.68 1.72

the indices Cp/2
p and Cr

pk have a value of 1.00 for p =
0.0027. The remaining indices fail to detect whether the
process is capable or not. In this Panel A, and since this
process is almost centered, the values of CS

n , Cp/2
p and

Cr
pk are almost identical. The cases with Cn,2 < 0.01

mean that it is not possible to attain a capable process
by reducing the variance of that component. Hence,
the lack of capability is due to the other component. In
Panel B of Table 2, the tolerance region has always the
same size and shape, but its location changes with c1.

As before, only the proposed Cn,1, Cn,2, CS
n , as well as

Cp/2
p and Cr

pk have a value of 1.00 for p = 0.0027, with
CWPC

pk having also a value very close to unity. Contrary
to Panel A, the index Cr

pk is not similar to CS
n for values

lower than one. Now, the index CWPC
pk is similar to CS

n
for values lower than one but it is different for values
larger than one. These results confirm that the existing
indices do not have a clear interpretation in terms of p.

Figures 1 and 2 illustrate the behavior of the pro-
posed Cn,i and CS

n in the case c1 = 0.85 and c2 = c3 =
1, which corresponds to the last row of Panel B in
Table 2. Figure 1a displays the original data with the
tolerance region. This figure shows that the process is
not centered in the tolerance region. Figure 1b shows
Monte Carlo replications from bivariate normal distri-
bution using the estimated parameters (35). From this
simulation, it can be computed that the nonconform-
ing proportion is p = 0.0258 > α. The process is not
capable. Figure 2 shows Monte Carlo replications from
a bivariate normal distribution using the same mean
vector as in Eq. 35 but a modified covariance matrix
with the goal of attaining a capable process. In Fig. 2a
the covariance matrix is obtained as in Eqs. 31 and 32

by multiplying the first eigenvalue by
(
b max

1

)2 = 0.672.

With this transformation, it is obtained p = α. Hence
Cn,1 = 0.67. In Fig. 2b the covariance matrix is obtained
by multiplying the second eigenvalue by a very small
value. However, as it can be seen from this figure, it is
not feasible to obtain a capable process by only reduc-
ing the variability of this component. In Fig. 2c both
components are multiplied by (b max)

2 = 0.722. With
this transformation, it is obtained that p = α. Hence,
CS

n = 0.72.
In Panel C of Table 2 the target T remains constant

and it is the same as in the last row of Panel B (see
Fig. 1). The tolerance region has different sizes and
shapes. The LSL remains constant, but the U SL in-
creases with c3. In this case, the index Cr

pk is relatively
different from CS

n , apart from the case p = 0.0027. It
is lower than CS

n for p < 0.0027, but larger than CS
n for

p > 0.0027. The index Cp/2
p is also similar to CS

n in the
vicinity of one, but they are different at large values
of p. In this case, the index CWPC

pk is similar to CS
n . It

seems that Cr
pk, Cp/2

p , and CWPC
pk can sometimes have

similar values to CS
n , but that they do not always admit

an interpretation like the proposed CS
n . As a conclu-

sion, only the proposed CS
n and Cn,i can guarantee an

interpretation in terms of how much the variance of the
process should change to attain a desired nonconform-
ing proportion.

6.2 Example 2

This is an example of geometric dimensioning and tol-
erancing (GD&T). GD&T is an engineering standard

Table 4 Multivariate process capability indices for Example 3

c1 c2 c3 p CS
n CPC

pk CWPC
pk CVPR*

pm CVTR Cr
pk Cp

pk Cp/2
p

Panel A 0.00 1.00 1.00 2.9×10−6 1.46 11.16 2.06 3.39 [0.96; 1; 0] 1.47 1.51 1.56
1.50 1.00 1.00 0.0010 1.08 10.53 1.52 3.11 [0.96; 0; 0] 1.06 1.03 1.10
1.78 1.00 1.00 0.0027 1.00 10.39 1.41 3.07 [0.96; 0; 0] 1.00 0.93 1.00
2.00 1.00 1.00 0.0055 0.93 10.28 1.33 3.04 [0.96; 0; 0] 0.96 0.85 0.93
4.00 1.00 1.00 0.4000 0.31 8.89 0.53 2.85 [0.96; 0; 0] 0.69 0.08 0.28

Panel B 0.00 1.00 0.5 0.0233 0.78 7.84 1.09 2.54 [0.72; 1; 0] 0.84 0.66 0.76
0.00 1.00 0.644 0.0027 1.00 8.81 1.37 2.79 [0.79; 1; 0] 1.00 0.93 1.00
0.00 1.00 0.8 1.43×10−4 1.24 9.85 1.67 3.05 [0.87; 1; 0] 1.21 1.21 1.27
0.00 1.00 0.9 1.71×10−5 1.37 10.51 1.87 3.22 [0.92; 1; 0] 1.35 1.38 1.43
0.00 1.00 3.0 1.40×10−6 1.55 20.02 2.29 6.78 [1.93; 1; 0] 1.22 1.56 1.61
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that provides a unified terminology to describe the
geometry tolerances of the product features (shape,
orientation, profile, etc). This example was proposed in
Karl and Taam [26]. In Wang et al. [27] this example is
also used to illustrate the performance of CVPR

pm , CVTR,

and Cr
pk under two alternative cases.

The data corresponds to a three dimensional process.
One of the variables is the diameter of a pin, denoted
as φ. The engineering specifications require a diameter
pin between 9 and 11 tenths of an inch. The other
variables are related to the perpendicularity of the
centerline of the pin. The tolerance of the perpendic-
ularity depends on φ. At maximum material condition
(MMC), that is, when the φ = 11, the specifications
requiere that the centerline is within a cylinder of di-
ameter 0.5 tenths of an inch. However, at least material
condition (LMC), (φ = 9), the centerline should be
within a cylinder of diameter 2.5 tenths of an inch.
Therefore, the specifications lead to a three dimen-
sional tolerance region in the shape of a frustrum or
’lamp shade’ as illustrated in Fig. 3, where x and y are
the coordinates of the center point of the top surface
of the pin with respect to the centerpoint of the bot-
tom one, and the vertical axis is the diameter φ.This
tolerance region implies that an item is conforming if
9 ≤ φ ≤ 11 and x2 + y2 ≤ [

(11 − φ)/2 + 0.25
]2.

The two cases used in [27] are used here to compare
the performance of the proposed CS

n and Cn,i. In both
cases, normality is assumed, and alternative targets,
mean vectors, and covariance matrices are proposed.
In the first case, the target for the variables (x, y, φ) is
T = (0, 0, 10). The parameters of the process are

μ1 = (−0.0124, −0.0062, 10.0586)′ and

�1 =
⎡

⎣
0.01313 −0.00371 0.0084

−0.00371 0.01618 −0.01031
0.0084 −0.01031 0.06473

⎤

⎦ .

In the second case, the nominal value is T =
(0, 0, 9.5). The mean vector and covariance matrix are

μ2 = (−0.1, −0.1, 9.5)′ ;

�2 =
⎡

⎣
0.00640 0.00256 0.00160
0.00256 0.00640 0.00160
0.00160 0.00160 0.01000

⎤

⎦ .

Table 3 shows the values of the competing capability
indices for α = 0.0027. As before, the computation of p
is based on 109 Monte Carlo simulations. In this table,
the values of CVTR, and Cr

pk are the ones reported in
[27]. The index CVPR*

pm is obtained from the index CVPR
pm

reported in [27]. In this example, the indices CPC
pk and

CWPC
pk have a poor performance, that can be explained

from the complexity of the tolerance region. It should
be reminded that theses indices are based on building
a rectangular tolerance regions for the principal com-
ponents that is different from the real one. This new
tolerance region tends to be larger than the original
one, specially if the original one is not rectangular. This
effect explains the high values of CPC

pk and CWPC
pk . The

index Cr
pk is similar to CS

n only in Case 2, whereas the

index Cp/2
p is similar to CS

n only in Case 1.

6.3 Example 3

In this example, a correlated tenth-dimensional process
is simulated. The process has a zero mean an covariance
matrix,

� =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

1 0.91 0.44 0.99 0.99 0.99 0.97 0.98 0.99 0.34
0.91 1 0.41 0.91 0.91 0.91 0.88 0.90 0.91 0.31
0.44 0.41 1 0.44 0.44 0.45 0.42 0.43 0.45 0.15
0.99 0.91 0.44 1 0.98 0.99 0.96 0.97 0.99 0.35
0.99 0.91 0.44 0.98 1 0.98 0.96 0.97 0.98 0.34
0.99 0.91 0.45 0.99 0.98 1 0.96 0.98 0.99 0.34
0.97 0.88 0.42 0.96 0.96 0.96 1 0.95 0.96 0.33
0.98 0.90 0.43 0.97 0.97 0.98 0.95 1 0.98 0.34
0.99 0.91 0.45 0.99 0.98 0.99 0.96 0.98 1 0.35
0.34 0.31 0.15 0.35 0.34 0.34 0.33 0.34 0.35 1

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

This covariance matrix has been obtained as follows.
First, a random vector x1 of size 1000 has been obtained
from a standard normal distribution. Then, a set of
vectors xi, i = 2, ..., 9 have been obtained as xi = vix1 +

dai, where vi is a random number from a uniform
distribution in the [0,1] interval and ai is also a random
vector from the standard normal distribution. By using
alternative values of d the degree of correlation among
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the variables can be changed. The smaller the value
of d, the larger the correlations. In this example, d =
0.1. The correlation matrix of xi, i = 2, ..., 9 is used
as covariance matrix of the process. Hence, we are
assuming standardized variables. The nominal value of
the process is set to T = 0 + c1, where 0 is a vector
of zeros. The rectangular tolerance region S is set at
LSLi = Ti − 5c2, U SLi = Ti + 5c3, i = 1, ..., 10, where
alternative values c2, c3 can be used to obtain symmet-
ric or asymmetric specification limits, with respect to
the target T.

Table 4 summarizes the results. In Panel A, the rec-
tangular tolerance region remains of constant volume.
As a first result, it can be seen that the index CVPR*

pm has
high values. The first element of CVTR is always 0.96<1
suggesting that the process is not capable. However,
the process is capable for c1 ≤1.78. The index CPC

pk
also shows very high values that can be explained by
the high dimensionality of the process and the high
correlations. In these cases, there will be several prin-
cipal components with very low eigenvalues. Hence,
they will have high values of Cpk;PCi in Eq. 18. Since
all the principal components are equally weighted in
CPC

pk , the index will tend to reach very high values even
if the process is not capable. The index CWPC

pk solves this
problem, but its value is not related to the capability
of the process. For instance, for p = 0.0027 we obtain
CWPC

pk =1.33 suggesting that the process is capable. Sim-
ilarly, the value of the index Cp

pk fails to detect when
the process is capable. For instance, when p=0.0027,

Cp
pk =0.93, erroneously suggesting that the process is

not capable. Only the indices Cp/2
p and Cr

pk, as well
as the proposed CS

n , obtain the unit value when p=
0.0027. Besides, they have similar values for p around
0.0027. As the process departures from p=0.0027 these
indices are different. Hence, Cr

pk and Cp/2
p can not be

interpreted, as the proposed CS
n , as how to modify the

variability of the process to obtain p=0.0027.

In Panel B of Table 4 the value of T is constant, but
U SLi changes with the alternative values of c3. It can
be seen in this panel that the conclusions are similar as
in Panel A.

7 Concluding remarks

Capability indices are a useful tool that allows to
communicate the quality level of the process to in-
terested parts. For instance, alternative manufacturing
processes of an industrial plant can report the quality
of their processes to the quality department using such
indices. Also, suppliers evaluation are customary made

using these capability indices. An accurate capability
measure provides insights into the process situation
of competing suppliers who may enter into a long-
term partnership with a firm. Therefore, it is neces-
sary a capability index with a direct interpretation in
terms of nonconforming proportion that can be used in
all circumstances: univariate or multivariate processes,
centered or noncentered processes, normal or nonnor-
mal processes, rectangular or nonrectangular tolerance
regions, and so on.

In univariate and centered processes, the classical Cp

index explicitly admits this interpretation. For instance,
if Cp = 1.5 the standard deviation can be increased by
a 50% and obtain Cp = 1. However, for some other
cases there is a lack of capability indices that admit such
an interpretation. This article proposes univariate and
multivariate capability indices that have a direct inter-
pretation of how much the variability of the process
should be decreased to attain a unitary index. The
examples shown in the article clearly demonstrate the
advantages of the proposed indices.

In the multivariate case, a capability index can be
built for each independent source of variability of the
process, denoted as Cn,i indices. These indices allows
to identify the most critical parts of the process and
how to modify their variability in order to attain a
desired nonconforming proportion. In this respect, the
proposed capability indices can be used as a tool to
improve the performance of the process, and not only a
descriptive measure.
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