
ORIGINAL ARTICLE

Optimal tolerance allocation using a multiobjective particle
swarm optimizer

Babak Forouraghi

Received: 24 March 2008 /Accepted: 4 December 2008 /Published online: 9 January 2009
Springer-Verlag London Limited 2008

Abstract Particle swarm optimizers are routinely utilized
in engineering design problems, but much work remains to
take advantage of their full potential in the combined areas
of sensitivity analysis and tolerance synthesis. In this paper,
a novel Pareto-based multiobjective formulation is pro-
posed to enhance the operations of a particle swarm
optimizer and systematically distribute tolerances among
various components of a mechanical assembly. The
enhanced algorithm relies on nonlinear sensitivity analysis
and the statistical root sum squares model to simultaneously
optimize product performance criteria, the manufacturing
cost, and the stack-up tolerance. It is shown that the
proposed algorithm can accomplish its optimization task by
successfully shifting nominal values of design parameters
instead of the expensive tightening of component toler-
ances. Several numerical experiments for optimal design of
a stepped bar assembly were conducted, which highlight
the advantages of the proposed methodology.

Keywords Concurrent engineering .Multiobjective
optimization . Particle swarm optimization .

Sensitivity analysis . Tolerance allocation

1 Introduction

Optimum tolerance allocation is an effective robust design
and concurrent engineering tool to reduce manufacturing

costs while increasing the overall robustness of the product
[1–3].

Evolutionary algorithms have proven successful in
handling many real-world multiobjective concurrent engi-
neering problems [4–7]. For example, an evolutionary
radial basis function network was proposed to model a
robust design optimizer, and the developed system was
used to study a number of computationally expensive
multiobjective optimizations problems [8].

Recently, approaches based on particle swarm optimiza-
tion (PSO) have received a great deal of attention in
engineering design because of their simplicity and fast
convergence rates [9–11]. A multiobjective particle swarm
optimizer was developed to evolve generations of hyper-
rectangular particles where dimensional tolerances were
treated as intervals. This optimizer did not directly
minimize manufacturing costs but rather attempted to
widen design tolerances by maximizing hyper-rectangular
design volumes in successive generations [12]. Several
other improved PSO systems have been proposed and
successfully used in challenging engineering design prob-
lems [13–17], but none of them included any sensitivity
analysis study while performing parameter design.

The major goal of sensitivity analysis is to identify the
sensitive dimensions of parameters in a product or process
design. Sensitivity analysis is an important component in
robust engineering design where the values of design
parameters are prone to many sources of uncertainty and
variation. It is, therefore, necessary to understand the
sensitivity of the product or process responses to the
perturbation in the model inputs [18]. An ant colony
optimizer was developed to perform sensitivity analysis
and tolerance allocation in concept design by optimizing
the manufacturing cost and the product yield using an
aggregated form of design objectives [19]. It has, however,

Int J Adv Manuf Technol (2009) 44:710–724
DOI 10.1007/s00170-008-1892-8

B. Forouraghi (*)
Mathematics and Computer Science Department,
Saint Joseph’s University,
Philadelphia, PA 19131, USA
e-mail: bforoura@sju.edu

been shown that the traditional weighted aggregated
method suffers from many shortcomings, the most impor-
tant of which is its assumption of convexity of the Pareto
region, which is generally invalid in many real-world
engineering design problems. Furthermore, Pareto fronts
are typically not uniform, that is, the obtained solutions are
not uniformly distributed on the Pareto front given a set of
evenly distributed weights [20]. In another approach based
on stochastic integer programming, a quality loss function
was developed to include cost tolerances, manufacturing
costs, and design constraints [21]. The traditional
approaches to robust tolerance design, however, generally
do not scale up as the complexity of the problem domain
increases [3].

A PSO-based approach was proposed for worst-case
circuit design of LC high-pass filters [22] but with the
main underlying assumption that all the individual worst-
case tolerance limits occur at the same time. This
shortcoming can potentially result in unnecessarily tight
tolerances and high manufacturing costs [3]. A PSO system
was reported for achieving the multiple objectives of
minimum quality loss function and minimum manufactur-
ing cost for the machining tolerance allocation of an over
running clutch assembly [23]. This system utilized the
weighted aggregated method, which as explained before,
cannot successfully identify all the trade-off solutions along
the Pareto front.

In this paper, a novel Pareto-based multiobjective
formulation is proposed to enhance the operations of a
particle swarm optimizer and optimally distribute tolerances
among various components of a mechanical system. The
enhanced algorithm relies on nonlinear sensitivity analysis
and the statistical root sum squares (RSS) model to
simultaneously optimize product performance criteria, the
manufacturing cost, and the stack-up tolerance. It is shown
that the proposed algorithm can accomplish its optimization
task by efficiently exploring the Pareto front and success-
fully shifting nominal values of design parameters instead
of the expensive tightening of component tolerances.
Furthermore, the algorithm is able to operate in a mixed
mode where some of the design tolerances must be kept
fixed due to manufacturing restrictions while others are
allowed to widen.

The remainder of the paper is organized as follows.
Sections 2 and 3 provide brief descriptions of sensitivity
analysis and multiobjective optimization, respectively.
Section 4 introduces the particle swarm optimization
methodology along with the implemented enhancements
for more efficient coverage of the feasible design region.
Section 5 is the application of the proposed methodology to
multiobjective concurrent engineering design of a stepped
bar assembly. And finally, Section 6 is the summary and
conclusions.

2 Sensitivity analysis

The major goal of robust engineering design is to minimize
functional sensitivity of a product or process to parametric
changes caused by uncontrollable operational and manu-
facturing conditions. Sensitivity analysis is an important
component of robust design in that it utilizes various
optimization methods to identify the sensitive dimensions
of parameters in a design, and more importantly, it aims to
ensure that effects on product performance brought by
changes in the design parameters are minimal.

There are various approaches to performing sensitivity
analysis. For instance, mathematical sensitivity analysis,
component manufacturing process output distribution sensi-
tivity analysis, nonlinear sensitivity analysis, and statistical
sensitivity analysis, to name a few. The following is a brief
description of the use of nonlinear sensitivity analysis in
concept design as it directly relates to the focus of this work.
More thorough discussions of the wide topic of sensitivity
analysis, however, can be found elsewhere [1, 2, 18, 19, 21].

2.1 Nonlinear sensitivity analysis

The functional relationship between the independent design
parameters x1, x2, ..., xn and the dependent product or
process response Y can be expressed as:

Y ¼ f x1; x2; . . . ; xnð Þ ð1Þ
In many robust engineering design applications, howev-

er, the above relationship is not linear in nature. Therefore,
small changes in the response may be expressed by a
Taylor’s series expansion as given by [2]:

ΔY ¼
X

i

¼ df
dxi

Δxi þ 1

2

X
i

X
j

d2f
dxidxj

ΔxiΔxj þ � � �

ð2Þ
The common practice for performing nonlinear sensitiv-

ity analysis is to evaluate the first term from the above
Taylor series expansion and to manually calculate a
sensitivity S by taking the partial derivative of the
functional relationship between the dependent dimension
and the independent component dimensions as Si=δY/δxi.

Manufacturing process variations in the real-world
situations manifest themselves as distributions around the
nominal design variable values and may cause the deviation
of model response around its nominal value. This model
deviation can be mathematically expressed as:

dY ¼ f S1dx1; S2dx2; . . . ; Sndxnð Þ ð3Þ

Here, δY is the product response variation, and Si and δxi
are the sensitivity and deviation for the ith design variable,
respectively.

Int J Adv Manuf Technol (2009) 44:710–724 711

The variance of the product response function can then
be expressed as a sum of the design variable variances as
attenuated by their respective sensitivity coefficients:

dY 2 ¼
X

n
i¼1 Si � dxið Þ2 ð4Þ

A careful examination of the above relation reveals two
design opportunities to control the deviation of the product
response Y. First, dY can be kept small by tightening
manufacturing tolerances dxi. And second, Si can be
reduced to make dY insensitive to independent design
parameter variations. The first approach, which was
traditionally used, is generally more expensive as it requires
tighter manufacturing tolerances and protection from aging
and the environment. The second way to control the
product or process deviation is more practical as it can be
accomplished without tightening manufacturing tolerances
but by simply altering the value of Si×dxi.

The above approach is very helpful in avoiding the cost
associated with quality improvement based on buying down
variance by tolerance tightening. In fact, any number of
conceptual designs can be analyzed very early in the concept
development stage using various optimization techniques to
minimize critical dimension variance [18, 19, 21].

3 Multiobjective optimization

Multiobjective optimization (MO) is a methodology for
finding optimal solutions to multivariate problems with
multiple, often conflicting, objectives [4, 5]. The main goal
of MO is to find the optimum input parameter vector, which
results in some desired combination of maximization,
minimization, or nominalization of the involved product or
process responses. Mathematically, MO attempts to optimize
the p-dimensional vector function F of objective responses
F Xð Þ ¼ f1 Xð Þ; . . . ; fp Xð Þ� �T

where X ¼ x1; . . . ; xn½ �T is an
n-dimensional vector of design variables and p is the number
design objectives for a product. The problem can be stated
formally as follows (l is the inequality and m is the equality
constraints).

Minimize=Maximize : fi Xð Þ for i ¼ 1; . . . ; p
Subject to : gj Xð Þ � 0 for j ¼ 1; . . . ; l

hk Xð Þ ¼ 0 for k ¼ 1; . . . ;m

Since MO problems often have conflicting objectives, it is
virtually impossible to find any one ideal solution. Instead,
MO produces Pareto-optimal solutions. A design vector is
Pareto optimal if there is no other design vector that
optimizes one criterion without causing the simultaneous
degradation of at least one other criterion [24]. Without loss
of generality, it can be stated that the goal is to maximize p

objective responses considering the following key definitions
[4, 5, 13]:

Definition 1. A vector u ¼ u1; � � � ; up
� �

is said to be
inferior to (dominated by) vector v ¼
v1; � � � ; vp
� �

if and only if 8i 2 1; � � � ; pf g;
vi � ui ^ 9i 2 1; � � � ; pf gj vi > ui:

Definition 2. Vectors u and v are said to be noninferior to
each other if neither u is inferior to v nor v is
inferior to u.

The main challenge of MO is to develop efficient
algorithms that can quickly converge to well-spread Pareto
fronts in the feasible, nondominated design regions. This
and other pertinent issues relating to the specifics of MO
can be found elsewhere [14–17].

4 Particle swarm optimization

PSO is a stochastic global optimization approach, and its
main strength is in its simplicity and fast convergence rates.
The following is a brief introduction to PSO [9–11]:

A total of p particles are randomly distributed throughout
the feasible design region, where Xt

i is the position of a
particle i representing a design scenario at time t. The
position of the particle can be updated in the following
manner:

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð5Þ

with a velocity Vtþ1
i which is calculated as:

Vtþ1
i ¼ wV t

i þ c1r1 Pt
i � X t

i

� �þ c2r2 Pt
g � X t

i

� �
ð6Þ

Here, the point Pt
i is the best local solution found up to now

(time t) and represents the cognitive contribution to the
search vector V tþ1

i . The point Pt
g is the best global solution

found among all particles so far and forms the social
contribution to the velocity vector. Random numbers r1 and
r2 are uniformly distributed in the interval [0,1]. The
cognitive and social scaling factors c1 and c2 are typically
selected such that c1×c1 and c2×c2 have a mean of 1 so that
the particles overshoot the attraction points Pt

i and Pt
g half

the time, thereby allowing wider search fronts [25]. The
variable ω is the inertia weight and is typically chosen in
the range of [0,1]. A larger inertia weight facilitates global
exploration, and a smaller inertia tends to facilitate local
exploration. Therefore, ω is a critical factor for the
convergence behavior of PSO and is used to promote
global exploration of the search space [11].

The cognitive learning factor is computed by the term
c1r1 Pt

i � X t
i

� �
in Eq. 6, and it is the short-term memory of a

particle representing the particle’s inclination to repeat past

712 Int J Adv Manuf Technol (2009) 44:710–724

behavior that has proven to be successful for that particular
particle.

The social learning factor, on the other hand, is computed
by the term c2 r2 Pt

g � X t
i

� �
in Eq. 6, and it is the peer

pressure of a particle representing the particle’s inclination to
imitate or emulate the behavior of other particles that are
successful; it is the influence of a particle’s neighbors.

During the course of the PSO algorithm, swarm particles
are evaluated, and based on those evaluations, the new
velocities and positions of the particles are updated. The
basic equations (Eqs. 5 and 6) for PSO were utilized in this
work, but a few key elements were modified in accordance
with enhancements described in the following sections.

4.1 Crowding distance computation

The nearest neighbor density estimator quantifies how
crowded the closest neighbors of a given particle are in

the objective space. As illustrated in Fig. 1, this measure is
estimated by the area of the largest cuboid formed by using
the two nearest neighbors of particle i as the vertices [11].

Before computing the crowding distance (dc) for
particles on the boundary of the feasible region, the entire
nondominated population is first sorted based on the
increasing values of their objective functions, one at a
time. A djc measure for a particular particle Pj

i is then
defined as the average distance of its two nearest neighbors
Pj
i�1 and Pj

iþ1 along the dimension of a specific objective
function j. The total dc value for a particle is then computed
as

P
M
j¼1d

j
c, where M is the total number of design objective

functions. In the case of the two extreme solutions with the
highest and lowest objective function values, the dc
measure is set to infinity so the two boundary points will
always be selected [4, 26].

4.2 Elitist mutation

Although one of the greatest advantages of PSO-based
approaches are their simplicity—both conceptually and from
the standpoint of implementation—these stochastic can also
experience difficulty controlling population diversity while
dealing with multiple-objective optimization problems [4].

Fig. 1 The nearest neighbor density estimator

Fig. 2 The fly-back mechanism

Fig. 3 Stepped bar assembly

Fig. 4 A cost-tolerance curve

Int J Adv Manuf Technol (2009) 44:710–724 713

The loss of diversity along the Pareto front can potentially
be avoided by utilizing the mutation operation.

The mutation operator implemented in this work is based
on the elitist-mutation mechanism that was proposed to
improve the performance of the particle swarm algorithm
[16]. The main objective here is to best identify the true
Pareto-optimal front by promoting diversity among the
particles maintained in the repository. In its initial phase,
the elitist-mutation operator replaces the infeasible solu-
tions in the repository with the least crowded ones, and in
its later phases, it will exploit the sparsely explored regions
along the Pareto front. The main steps to mutation are
outlined below:

1. Sort and index the particles in the repository in
ascending order based on their value of a randomly
selected objective.

2. Use the crowding distance metric to sort the current
solutions in the repository in descending order and
randomly select a solution in the top 10%.

3. Apply mutation to a predefined number of particles in
the current population.

4.3 Maintaining feasibility

For the PSO algorithm to maintain feasibility in the
population kept in the repository, an intuitive approach is
to fly back a particle to its previous position when it is
outside the feasible region [27]. This is called the fly-back
mechanism, and it is a particularly useful strategy when
solving engineering optimization problems with multiple
geometric constraints. Each time a constraint is violated, the
particle in flight is made to revisit its previous position,
allowing effective exploration of the search space along the
boundaries of the feasible region.

In this study, a fly-back mechanism to the feasible region
was implemented as illustrated in Fig. 2.

Figure 2 illustrates how a particle Xi might have flown
into the infeasible design region Vk

i

� �
in the kth iteration of

Fig. 6 Average functional behavior of particles. a Average dY profile of population. b Average cost profile of population

Fig. 5 Discovered Pareto fronts. a Crowding distances. b No crowding distance

714 Int J Adv Manuf Technol (2009) 44:710–724

the algorithm. Assuming that the position of the best
particle Pg does not change, a fly back to the particle’s best
position in the previous iteration (Pi) will ensure that the
direction of the new velocity Vkþ1

i

� �
will point to the

feasible space boundary but it will be closer to the global
best Pg. Experimental results have shown that this
mechanism is particularly suitable for mechanical design
problems where optimal solutions lie on or near the feasible
Pareto front [27]. The main guarantee of employing the fly
back is that starting with an initial population of feasible
solutions, each population generated in the subsequent
iterations of the algorithm is also feasible.

Furthermore, in order to examine feasibility in a given
population, there has to be a mechanism to compare two
solutions in the repository. A simple yet elegant method
based on NSGA-II was implemented in this work as
outlined below [24]:

Definition 3. A solution Si is said to dominate a solution
Sj if:

1. Si is feasible and Sj is infeasible.
2. Si and Sj are both infeasible but Si violates fewer

design constraints.

3. Si and Sj are both feasible but Si dominates Sj (see
Definition 1).

4.4 Performance measures

The performance of an optimizer can be judged along two
categories: efficiency, which is a measure of computational
effort to obtain optimal solutions (e.g., number of function
evaluations, CPU time, etc.), and effectiveness, which
measures the accuracy and convergence of the obtained
solutions [4]. A crucial consideration regarding effective-
ness of a multiobjective optimizer is that not only the
optimizer should converge to Pareto-optimal solutions but it
should also maintain diversity along the feasible region [4,
5, 16, 24].

Since no single performance measure can handle both
requirements for making progress toward the Pareto-
optimal front and for evaluating the spread or diversity of
the obtained solutions, in this study, it was decided to
utilize three performance metrics, which together better
evaluate the overall effectiveness of a PSO-based multi-
objective optimizer. Each of the utilized effectiveness

Fig. 7 Best functional behavior of particles. a Minimum dY profile of population. b Minimum cost profile of population

Fig. 8 Constraint profiles of the population. a Average Y (target=166.67). b Minimum Y (target=166.67)

Int J Adv Manuf Technol (2009) 44:710–724 715

metrics is described below. Please note that in the ensuing
discussions, the set of discovered solutions is referred to as
Q and P* is the true Pareto-optimal set.

4.4.1 Generational distance

This performance metric measures the proximity of the
obtained Pareto-optimal solutions Q to the true Pareto-
optimal solutions P* [4, 5, 16]:

GD ¼
P Qj j

i¼1d
p
i

� �1=p

Qj j ð7Þ

The Euclidean distance-based metric di (p=2) is the
phenotypic distance between each member i of the
obtained set Q and the closest member in P* to that
member:

di ¼ min
P*j j
k¼1

ffiX
f ið Þ
m � f * kð Þ

m

� �2
r

ð8Þ

Here, f * kð Þ
m is the value of the mth objective function of the

kth in P*. Observe that a successful swarm should
discover solutions that produce a small value for GD.

Fig. 9 a–f Design factor contributions to functional variance

Table 1 Two obtained solutions by the PSO (experiment 1)

Variable Value Tolerance Sensitivity Deviation Factor contribution

x1 22 0.2 −0.047 0.009 0.07%
x2 300 0.4 −0.007 0.003 0.007%
y1 67 0.3 0.860 0.258 52.8%
y2 82 0.5 0.139 0.069 3.82%
h 42 0.1 1.001 0.100 7.93%
r 55 0.2 1.056 0.211 35.35%

Y=166.67, dY=0.355, Cost=$12.71
x1 23 0.2 −0.006 0.001 0.001%
x2 204 0.4 −0.001 0.0006 0.0003%
y1 109 0.3 0.813 0.243 50.06%
y2 110 0.5 0.186 0.093 7.32%
h 45 0.1 1.000 0.100 8.41%
r 57 0.2 1.008 0.201 34.19%

Y=166.67, dY=0.344, Cost=$12.71

716 Int J Adv Manuf Technol (2009) 44:710–724

4.4.2 Spread

The spread metric (Δ) is used as an indicator of how well
the solutions are distributed along the PSO’s discovered
Pareto front Q [4]:

Δ ¼
P

M
m¼1d

e
m þP Qj j

i¼1 di�d
�� ��P

M
m¼1d

e
m þ Qj jd ð9Þ

where di is the Euclidean distance between a solution i and
its nearest member in Q, and

C
d defined as:

d ¼ 1

Qj j
X

Qj j
i¼1di ð10Þ

is the mean value of these distances. The parameter dem is
the distance between the extreme solutions in Q and P*
relating to an objective function m where there are a total of
M response functions in the problem. An algorithm finding
a smaller value of Δ (i.e., closer to zero) is better able to
identify a diverse set of nondominated solutions.

4.4.3 Set coverage

This metric can be used as a measure of the relative
spread of solutions between two sets of solutions A and

B. The set coverage C(A,B) calculates the proportion of
solutions in B, which are weakly dominated by solutions in
A [4, 5]:

C A;Bð Þ ¼ b 2 Bj9a 2 A : a � bf gj j
Bj j ð11Þ

If C(A,B)=1, all solutions in B are weakly dominated by A,
whereas if C(A,B)=0, none of the solutions in B are weakly
dominated by A. Thus, C(Q, P*) should always be 0.

5 Design of a stepped bar assembly

The optimum design of a stepped bar assembly, as shown in
Fig. 3, has been previously attempted using traditional
calculus-based sensitivity analysis [2] and continuous ant
colony optimization [19].

5.1 The design formulation

Consider the assembly shown Fig. 3. The height of the
center of the cylinder, Y, is the only critical dimension in
this problem, and it is dependent on the value of design

Table 2 The best solution obtained by a traditional technique

Variable Value Tolerance Sensitivity Deviation Factor contribution

x1 70 0.2 −0.212 0.042 1.15%
x2 338 0.4 −0.145 0.058 2.07%
y1 65 0.3 0.932 0.279 49.24%
y2 128 0.5 0.108 0.054 1.82%
h 35 0.1 1.025 0.102 6.29%
r 65 0.2 1.251 0.250 39.43%

Y=166.67, dY=0.396, Cost=not available

Table 3 Two obtained solutions by the PSO (experiment 2)

Variable Value Tolerance Sensitivity Deviation Factor contribution

x1 30 0.09 −0.117 0.0106 0.82%
x2 243 0.21 −0.025 0.0054 0.21%
y1 93 0.07 0.820 0.0575 24.23%
y2 123 0.11 0.179 0.0197 2.85%
h 9 0.07 1.010 0.0720 36.70%
r 58 0.06 1.153 0.0690 35.17%

Y=165.24, dY=0.12, Cost=$20.00
x1 20 0.09 −0.021 0.002 0.029%
x2 206 0.21 −0.007 0.002 0.020%
y1 88 0.07 0.736 0.052 21.71%
y2 93 0.11 0.264 0.029 6.91%
h 11 0.07 1.000 0.070 40.13%
r 66 0.06 1.029 0.062 31.18%

Y=166.56, dY=0.11, Cost=$20.00

Int J Adv Manuf Technol (2009) 44:710–724 717

variables x1, x2, y1, y2, h, and r. The smaller the deviation of
Y is, the higher the quality of the product [2].

Y ¼ y1 þ r þ hð Þ sec q þ r � x1ð Þ tan q ð12Þ

Where,

tan q ¼ y2 � y1ð Þ= x2 � x1ð Þ ð13Þ

sec q ¼
ffi
1þ tan2 qð Þ

q
ð14Þ

The goal of the problem is to minimize the deviation of
the critical dimension (dY) by changing the design variables
while keeping the target value of the critical dimension Y at
or as close as possible to 166.67.

Based on the discussions in Section 2, the variance of
the critical dimension can be expressed as the sum of n
component variances as attenuated by their respective
sensitivity coefficients:

dY 2 ¼
X

i¼1

n
Si � dxið Þ2 ð15Þ

The individual sensitivities can be calculated by taking
the partial derivative of the functional relationship between

the critical assembly dimension Y and the noncritical
component dimensions x1, x2, y1, y2, h, and r. Hence,

S1 ¼ @Y

@x1
¼ r þ hð Þ y2 � y1ð Þ2

sec q x2 � x1ð Þ3 � y2 � y1
x2 � x1

þ r � x1ð Þ y2 � y1ð Þ
x2 � x1ð Þ2 ð16Þ

S2 ¼ @Y

@x2
¼ � r þ hð Þ y2 � y1ð Þ2

sec q x2 � x1ð Þ3

� r � x1ð Þ y2 � y1ð Þ
x2 � x1ð Þ2 ð17Þ

S3 ¼ @Y

@y1
¼ 1� r þ hð Þ y2 � y1ð Þ

sec q x2 � x1ð Þ2 �
r � x1ð Þ
x2 � x1ð Þ ð18Þ

S4 ¼ @Y

@y2
¼ r þ hð Þ y2 � y1ð Þ

sec q x2 � x1ð Þ2 �
r � x1ð Þ
x2 � x1ð Þ ð19Þ

Table 4 The best solution obtained by an ant colony optimizer

Variable Value Tolerance Sensitivity Deviation Factor
contribution

x1 73 0.09 −0.185 0.017 N/A
x2 336 0.21 −0.004 0.009 N/A
y1 70 0.07 0.976 0.066 N/A
y2 120 0.11 0.023 0.002 N/A
h 42 0.07 1.017 1.017 N/A
r 60 0.06 1.208 1.208 N/A

Y=171.35, dY=0.12

Table 5 An optimum solution obtained by the PSO (experiment 3)

Variable Value Tolerance Sensitivity Deviation Factor contribution

x1 58 0.09 −0.269 0.0242 3.49%
x2 379 0.48 −0.001 0.0006 0.002%
y1 89 0.07 0.995 0.0696 28.78%
y2 176 0.46 0.004 0.0021 0.028%
h 38 0.07 1.036 0.0725 31.20%
r 40 0.06 1.307 0.0784 36.48%

Y=164.70, dY=0.13, Cost=$17.80

718 Int J Adv Manuf Technol (2009) 44:710–724

S5 ¼ @Y

@h
¼ sec q ð20Þ

S6 ¼ @Y

@r
¼ sec q þ tan q ð21Þ

5.2 Least cost-tolerance allocation

The final production cost of any mechanical assembly,
including the one shown in Fig. 3, is significantly impacted
by the specified tolerances on the dimensions of the
manufactured parts. Tight tolerances can result in excessive
process costs, while loose tolerances can lead to waste and
assembly problems [1]. Figure 4 shows a typical manufac-
turing cost-tolerance curve.

Generally, there are two models to estimate how
individual tolerances in a mechanical assembly stack up
during the manufacturing process: the worst-case model
(WCM) and the statistical RSS model [3].

The WCM computes the product’s final tolerance (Ttot)
by adding the individual tolerances (Ti) as

P
Ti. The main

assumption here is that all the individual worst-case
tolerance limits occur at the same time, and that can result
in unnecessarily tight tolerances and a higher manufactur-
ing cost.

In the RSS model, the individual tolerances are assumed
to follow a normal distribution, and the final tolerance is
calculated as:

Ttot ¼
X

T2
i

� �0:5
ð22Þ

Clearly, the RSS approach allows for looser tolerances
than the WCM method and, therefore, results in lower
manufacturing costs.

A substantial amount of research has been carried out
regarding optimal tolerance allocation using cost-tolerance
functions, and various functions have been proposed to
describe the cost-tolerance relationship [1, 2]. Assuming that
for a component i the constant coefficient Ai ($) represents
the fixed costs, such as tooling, setup, prior operations, etc.,
and that the Bi ($) term represents the cost of producing the

Fig. 11 RSS tolerance profiles of the population. a Best RSS tolerances. b Average RSS tolerance

Fig. 10 Total tolerance vs. cost and variation. a Total tolerance vs. variance. b Total tolerance vs. cost

Int J Adv Manuf Technol (2009) 44:710–724 719

component dimension to a specified tolerance Ti, the
reciprocal power cost-tolerance function for the each
component of the assembly can be calculated as [3]:

Ci ¼ Ai þ Bi

	
TKi
i ð23Þ

For some integer power, Ki is to be selected from standard
data sets depending upon the required manufacturing process.

5.3 Multiobjective formulation of the problem

Previously, this problem was attempted by means of an ant
colony optimizer, which aggregated the product variation
dY and the minimum manufacturing cost C into a single
term using the weighted aggregation method as follows
[19]:

F Xð Þ ¼
X

m
i¼1wifi Xð Þ ð24Þ

Where fi is the ith objective function, m is the number of
objectives to be optimized, wi≥0 with

P
m
i¼1wi ¼ 1 is the

weight assigned by designers to objective fi representing its
degree of importance, and X is the n-dimensional vector of

design parameters. It has, however, been shown that the
traditional weighted aggregated method suffers from many
shortcomings, the most important of which is its assump-
tion of convexity of the Pareto region, which is generally an
invalid assumption in many real-world engineering design
problems [5]. Furthermore, Pareto fronts are typically not
uniform, that is, the obtained solutions are not uniformly
distributed on the Pareto front given a set of evenly
distributed weights [20].

The particle swarm optimization method utilized in this
study was enhanced to perform a multimodal Pareto search
for the combination of tolerances that minimize the total
cost function for the assembly within the feasible region
while also minimizing the assembly response variance dY
and maximizing the total RSS tolerance. The multiobjective
problem can formally be stated as shown below.

Optimize F = [f1, f2, f3]
T, where the goal of optimization

is to:

Minimize f1 ¼ dY ¼
ffiX

n
i¼1 Si � dxið Þ2

� �r
ð25Þ

Table 6 Summary of performance measures for 50 statistically independent trials

Performance statistics Set coverage (SC) Generational distance (GD) Spread (SP)

Best 0.00979 0.00100 0.14327
Worst 0.05816 0.00671 0.34456
Mean 0.04556 0.00175 0.24281
Standard deviation 0.01463 0.00084 0.00857

Fig. 12 Performance measures of a set coverage (SC), b generational distance (GD), and c spread (SP) for one run of the optimizer over 100
generations

720 Int J Adv Manuf Technol (2009) 44:710–724

Minimize f2 ¼ CM Tð Þ ¼
X

n
i¼1 Ai � Bi

	
TKi
i

� � ð26Þ

Minimize f3 ¼ TRSS ¼
X

n
i¼1T

2
i

� �0:5
ð27Þ

Subject to:

Y is to be on or as close as possible to the target value
YTarget=166.67
x2>x1 and y2>y1
0.001≤Ti≤0.5 for i=1,...,n, where n is the number of
toleranced dimensions

Clearly, the three objectives f1, f2, and f3 are conflicting in
nature, and their optimization will require a thorough
examination of the trade-off solutions along the Pareto
front.

5.4 The experiments and results

In the experiments conducted, the enhanced PSO used 30
particles over 100 generations, maintained a repository of
500 particles (maximum size), and performed mutation at
the rate of 0.5. The global best particle was selected from
the top 10% sorted repository and replaced one of the
nondominated solutions in the bottom 10% of the reposi-
tory. To account for statistical fluctuations, the reported
results were averaged over three statistically independent
runs of the algorithm (the overall computation was very
fast, and each experiment consisting of 100 generations
typically took anywhere from 1 to 2 s).

Figure 5 depicts two Pareto fronts of the functional
variance (dY) vs. the manufacturing cost (CM) discovered
by the optimizer after 100 generations with and without the
crowding distance computations, respectively. In terms of
solution diversity, it is clearly demonstrated in Fig. 5a that
the utilization of the crowding distance computation allows
a more evenly distributed exploration of the Pareto front.

A true indication of an optimizer’s accuracy is the
average behavior of it solutions as the swarm of particles
explores the boundaries of the Pareto front across the
feasible region. As shown in Fig. 6, as generations of
solutions evolve, the average behavior (the statistical mean
over three independent runs) of each of the population stays
focused, gradually converging toward the trade-off opti-
mum values both for product variance dY and the cost
function CM.

The profile of the best discovered (minimum-valued)
solutions for the two objective functions are depicted in
Fig. 7. A cursory examination of the range of Cost and dY
functions shown in Fig. 5 illustrates the efficiency of
convergence of the optimizer.

The optimization constraint required that the height of
the center of the cylinder (Y) remains as close as possible
to the target value of 166.67. The method of handling
constraint violations via the fly-back mechanism to main-
tain feasibility was discussed in Section 4.3. Figure 8 shows
the statistical means of three independent runs for the
average and minimum product response Y of an entire
swarm of particles.

The main goal of tolerance allocation is to re-distribute
the “tolerance budget” within an assembly, systematically
tightening tolerances on less expensive processes and
loosening tolerances on costly processes, for a net reduction
in cost [1]. This goal can very economically be accom-
plished by designers by simply moving the nominal values
of the independent design parameters to less sensitive
design regions. Figure 9 depicts the effects of the six design
parameters (x1, x2, y1, y2, h, r) on the overall product
variation calculated in one run of the algorithm.

A careful examination of factor contributions shown in
Fig. 9 reveals that design variables x1, y1, and r have the
largest leverage on the overall product variation. Therefore,
by changing the dimensions of the independent variables
and not the deviations on their manufacturing (tolerances),
it will be possible to improve the design quality with little
or no additional cost. This point is best demonstrated by the

Table 7 Comparison of optimization methods

Technique Optimal design (x1, x2, y1, y2, r, h) Y dY Cost ($)

Traditional calculus-based (70±0.2, 338±0.4, 65±0.3, 128±0.5, 35±0.1, 65±0.2) 166.67 0.39 –
PSO1 (22±0.2, 300±0.4, 67±0.3, 82±0.5, 42±0.1, 55±0.2) 166.67 0.35 12.71

(23±0.2, 204±0.4, 109±0.3, 110±0.5, 45±0.1, 57±0.2) 166.67 0.34 12.71
Ant colony optimizer (73±0.09, 336±0.21, 70±0.07, 120±0.11, 42±0.07, 60±0.06) 171.35 0.12 –
PSO2 (30±0.09, 243±0.21, 93±0.07, 123±0.11, 9±0.07, 58±0.06) 165.24 0.12 20.00

(20±0.09, 206±0.21, 88±0.07, 93±0.11, 11±0.07, 66±0.06) 166.57 0.11 20.00
PSO3 (58±0.09, 379±0.48, 89±0.07, 176±0.46, 38±0.07, 40±0.06) 164.70 0.13 17.80
PSO4 (53±0.42, 287±0.46, 53±0.29, 82±0.43, 26±0.23, 83±0.21) 166.70 0.42 11.00

(51±0.36, 315±0.49, 42±0.13, 88±0.40, 64±0.10, 58±0.10) 166.61 0.21 13.83

Int J Adv Manuf Technol (2009) 44:710–724 721

two solutions obtained from the first conducted experiment
where the algorithm was allowed to modify the design
nominal values but not the tolerances (see Table 1).

In the first experiment, the tolerances for the six design
parameters were fixed at 0.2, 0.4, 0.3, 0.5, 0.1, and 0.2,
respectively, so that the performance of the PSO algorithm
can be directly compared to that of a traditional calculus-
based technique as shown in Table 2 [2]. Clearly, the PSO’s
solutions are more desirable as they better represent the
optimal portions of the trade-off design region. Further, the
solutions reported in Table 1 are but two of dozens of
optimal trade-off solutions available in the repository.

To further judge the true mettle of the PSO, its
performance was compared to that of an ant colony
optimizer that used the method of weighted aggregation to
collapse its objective functions into a single global one
[19]. In this second experiment, the tolerances were fixed at
0.09, 0.21, 0.07, 0.11, 0.07, and 0.06, respectively, so that
the two approaches can be compared on a more equal
footing. Table 3 demonstrates two solutions obtained by the
PSO algorithm (YTarget=166.67 in both experiments).

Table 4 shows the best nominal solutions obtained by the
ant colony optimizer [19]. Note that factor contributions
(percent) were not reported, and manufacturing cost
comparisons could not be made simply due to the differ-
ences between the two approaches’ method of cost
computation (choice of A and B values in Eq. 26). Cost
computations notwithstanding, the solutions obtained by
the PSO have better optimized both the objective (minimi-
zation of dY) and the constraint (Y=YTarget).

In another attempt to further reduce the incurred cost
associated with design scenarios reported in Table 3 while
maintaining on or near-target performance levels, a third
experiment was conducted as follows. Design factor
contributions to overall product variation (see Fig. 9)
indicate that variables x1, y1, and r have the most leverage
on variance. It was, therefore, decided to start the
optimization task with the same set of tolerances used in
the second experiment (0.09, 0.21, 0.07, 0.11, 0.07, 0.06)
but this time have the optimizer widen the tolerances for the
remaining parameters (x2, y2, and h) to which the assembly
appeared less sensitive. Table 5 shows one of many optimal
solutions that were obtained in this third experiment.

The trade-off solution shown in Table 5 results in an
11% reduction in the manufacturing cost compared to the
solutions discovered in experiment 2. However, this
reduction will cause an increase of 18% in the overall
product variation dY. The designers can carefully examine
the trade-off solutions and determine if they are acceptable
for their specific needs.

The optimization tasks performed in the three experi-
ments reported so far only relied on the minimization of
cost (CM) and variance (dY) as the tolerances where kept at

fixed levels for comparative purposes. In the last experi-
ment reported in this section, the total RSS tolerance (TRSS)
was allowed to be maximized (see Section 5.3) simulta-
neously as product variation and manufacturing cost were
each minimized. Figure 10 depicts the Pareto fronts
obtained in this manner.

As expected and shown in Fig. 10a and b, allocating
wider tolerances to the components of the stepped bar
assembly significantly decreased the manufacturing cost
while adding to the overall product variation. The advan-
tage of this type of analysis is that the designers can readily
re-distribute tolerances by tightening tolerances on less
costly processes while widening tolerances on more
expensive ones. Figure 11 depicts how the algorithm to
allocated wider tolerances as each generation of particles
was undergone the various evolutionary operators. It must
be noted that the widest-possible TRSS=1.24, where all
individual tolerances reach their highest levels.

To further assess the performance of the swarm
optimizer, the performance measures of generational dis-
tance (GD), set coverage (SC), and spread (SP) were
calculated as described in Section 4.4. To calculate the SC
and GD metrics, a set of approximately 16,000 (a full-
factorial experiment with five design levels per independent
variable) uniformly spaced true Pareto-optimal solutions
(P*) was calculated a priori and used in all the conducted
experiments. Figure 12 depicts the performance of one run
of the algorithm over 100 generations.

As noted earlier, it is desired for the optimizer to identify
solution regions in which all the performance measures are
as close as possible to zero. Figure 12 demonstrates that the
algorithm is able to converge very quickly and identify
optimal solutions starting around the generation number 20.

To better examine the quality of the nondominated
solutions obtained by the optimizer, a total of 50 random
experiments were conducted, and statistical information
about the collected performance measures for the final
(100th) generation of each independent trial is depicted in
Table 6.

It can be seen from Table 6 that the optimizer is able to
converge to the true Pareto-optimal set with good distribu-
tion of nondominated solutions. The low values of GD and
SC metrics indicate that the optimizer was able to explore
and exploit solution regions (Q) very closed to the true
Pareto-optimal front P*.

Finally, Table 7 tabulates the results of four model
experiments conducted in this study (PSO1, PSO2, PSO3,
and PSO4) and compares them to the solutions obtained
through other optimization methods (see Tables 1, 2, 3, 4,
and 5).

The solutions obtained in the last experiment (PSO4)
were able to maintain the performance very close to YTarget
while minimizing the cost and allocating widest-possible

722 Int J Adv Manuf Technol (2009) 44:710–724

tolerances. Designers can in turn decide whether or not the
operational costs due to the projected product deviations are
worth considering. The important point, therefore, is that
the multiobjective particle swarm optimizer does provide
the designers with the ability to have access to myriad
Pareto-optimal solutions.

6 Conclusions

Experience has shown that the benefits of reducing
operational costs of a product due to its functional
variations far outweigh the benefits of selecting more
expensive and efficient components. Designers rely on
tolerance allocation, which is an effective design tool to
reduce the overall cost of production while ensuring the
product performance stays on target.

Various types of evolutionary algorithms have recently
been applied to the task of tolerance allocation in
engineering design problems. Given cost tolerances for
individual components of an assembly, the optimizer can
systematically search the design space for specific combi-
nations of tolerances that minimize the cost while satisfying
the overall design objectives and constraints. In this paper,
an enhanced particle swam optimizer was successfully
utilized to perform tolerance allocation in multiple-objec-
tive design of a stepped bar mechanical assembly. The
optimizer was designed to search the Pareto-optimal
solution space in one of two possible modes. First, it was
allowed to optimize design objectives and constraints by
modifying both the tolerances and the nominal values of the
independent design variables. And second, in order to avoid
expensive manufacturing costs associated with tighter
tolerances, the optimizer was only allowed to modify the
nominal component dimensions with the assumption that
the component tolerances were fixed.

Comparative studies revealed that the swarm optimizer
outperformed a traditional calculus-based method and ant
colony optimizer in identifying optimal solutions. The
optimizer’s use of an effective fly-back mechanism along
the boundaries of the Pareto front and the computation of
crowding distances ensured that the repository of the
nondominated particles represented the widest-possible
coverage of the Pareto front. The advantages of the
proposed methodology in allocating widest-possible toler-
ances for reducing manufacturing costs while minimizing
functional variations and maintaining on or near-target
performance levels were demonstrated in several numerical
experiments.

Acknowledgments The author gratefully acknowledges the helpful
comments and suggestions of the anonymous reviewers.

References

1. Chase KW (1999) Minimum-cost tolerance allocation. ADCATS
Report No. 99-5. Department of Mechanical Engineering, Brig-
ham Young University, Provo

2. Creveling CM (1997) Tolerance design, a handbook for develop-
ing optimal specifications. Wesley, Massachusetts

3. Altarazi S (2005) Operational tolerance allocation and machine
assignment under process capability and product value con-
straints, Ph.D. Thesis, Wichita State University

4. Coello Coello C, Lamont GB, Van Veldhuizen DA (2007)
Evolutionary algorithms for solving multi-objective problems,
2nd edn. Springer, New York

5. Deb K (2001) Multi-objective optimization using evolutionary
algorithms. Wiley, Chichester

6. Knowles J, Corne D, Deb K (eds) (2008) Multiobjective problem
solving from nature: from concepts to applications. Springer, NewYork

7. Salazar D, Rocoo CM (2007) Solving advanced multi-objective
robust designs by means of multiple objective evolutionary
algorithms (MOEA): a reliability application. Reliab Eng Syst
Saf 92:697–706 doi:10.1016/j.ress.2006.03.003

8. Ray T, Smith W (2006) A surrogate assisted parallel multi-
objective evolutionary algorithm for robust engineering design.
Eng Optim 38:997–1011 doi:10.1080/03052150600882538

9. Engelbrecht AP (2005) Fundamentals of computational swarm
intelligence. Wiley, Chichester

10. Clerc M (2006) Particle swarm optimization. ISTE, California
11. Reyes-Sierra M, Coello C (2006) A survey of the state-of-the-art

multi-objective particle swarm optimizers. Int J Comput Intell Res
2:287–308

12. Ochlak E, Forouraghi B (2006) A particle swarm algorithm for
multiobjective design optimization. Proceedings of the 18th IEEE
International Conference on Tools with Artificial Intelligence
(ICTAI 06) 765–772

13. Ho SL, Yang S, Ni G, Lo EW, Wong HC (2005) A particle swarm
optimization-based method for multiobjective design optimiza-
tions. IEEE Trans Magn 41:1756–1759 doi:10.1109/
TMAG.2005.846033

14. Liu D, Tan K, Goh C, Ho W (2007) A multiobjective memetic
algorithm based on particle swarm optimization. IEEE Trans Syst
Man Cybern B Cybern 37:585–605

15. Ray T, Liew KM (2002) A swarm metaphor for multiobjective
design optimization. Eng Optim 34:141–153 doi:10.1080/
03052150210915

16. Reddy MJ, Kumar DN (2007) An efficient multi-objective
optimization based on swarm intelligence for engineering design.
Eng Optim 39:49–68 doi:10.1080/03052150600930493

17. Shim M, Suh M (2002) Pareto-based continuous evolutionary
algorithms for multiobjective optimization. Eng Comput 19:22–48
doi:10.1108/02644400210413649

18. Saltelli A, Tarantola S, Chan K (1999) A quantitative, model
independent method for global sensitivity analysis of model
output. Technometrics 41:39–56 doi:10.2307/1270993

19. Prabhaharan G, Asokan P, Rajendran S (2005) Sensitivity-based
conceptual design and tolerance allocation using the continuous
ants colony algorithm (CACO). Int J Adv Manuf Technol 25:516–
526 doi:10.1007/s00170-003-1846-0

20. Jin Y (2002) Effectiveness of weighted aggregation of objectives
for evolutionary multiobjective optimization: methods, analysis
and applications. Technical Report. Honda R&D Europe (D)
GmbH, Germany

21. Feng CX, Kusiak A (1997) Robust tolerance design with the
integer programming approach. J Manuf Sci Eng 119:603–610
doi:10.1115/1.2831193

Int J Adv Manuf Technol (2009) 44:710–724 723

http://dx.doi.org/10.1016/j.ress.2006.03.003
http://dx.doi.org/10.1080/03052150600882538
http://dx.doi.org/10.1109/TMAG.2005.846033
http://dx.doi.org/10.1109/TMAG.2005.846033
http://dx.doi.org/10.1080/03052150210915
http://dx.doi.org/10.1080/03052150210915
http://dx.doi.org/10.1080/03052150600930493
http://dx.doi.org/10.1108/02644400210413649
http://dx.doi.org/10.2307/1270993
http://dx.doi.org/10.1007/s00170-003-1846-0
http://dx.doi.org/10.1115/1.2831193

22. Steiner G, Watzenig D (2003) Particle swarm optimization for
worst case tolerance design. IEEE International Conference on
Industrial Technology (ICIT ’03) 1:78–82

23. Haq AN, Sivakumar K, Saravanan R, Karthikeyan K (2006)
Particle swarm optimization (PSO) algorithm for optimal machin-
ing allocation of clutch assembly. Int J Adv Manuf Technol
27:865–869 doi:10.1007/s00170-004-2274-5

24. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. KanGAL Report 200001, Indian Institute
of Technology, Kanpur, India

25. Li X (2004) Better spread and convergence: particle swarm
multiobjective optimization using the maximum fitness function.
Lect Notes Comput Sci 3102:117–128

26. Raquel CR, Naval PC (2005) An effective use of crowding
distance in multiobjective particle swarm optimization. Proceed-
ings of the 2005 Conference on Genetic and Evolutionary
Computation (GECCO ‘05) 257–264

27. He S, Prempain E, Wu QH (2004) An improved particle
swarm optimizer for mechanical design optimization prob-
lems. Eng Optim 36:585–605 doi:10.1080/03052150410001
704854

724 Int J Adv Manuf Technol (2009) 44:710–724

http://dx.doi.org/10.1007/s00170-004-2274-5
http://dx.doi.org/10.1080/03052150410001704854
http://dx.doi.org/10.1080/03052150410001704854

	Optimal tolerance allocation using a multiobjective particle swarm optimizer
	Abstract
	Introduction
	Sensitivity analysis
	Nonlinear sensitivity analysis

	Multiobjective optimization
	Particle swarm optimization
	Crowding distance computation
	Elitist mutation
	Maintaining feasibility
	Performance measures
	Generational distance
	Spread
	Set coverage

	Design of a stepped bar assembly
	The design formulation
	Least cost-tolerance allocation
	Multiobjective formulation of the problem
	The experiments and results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

