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Abstract This paper proposes a new method of adaptive
inverse control based on support vector machine–fuzzy
rules acquisition system (SVM-FRAS) for the gas tungsten
arc welding (GTAW) process. In this control mechanism, an
identifier is established based on SVM-FRAS, and an
inverse controller based on SVM-FRAS is designed. The
proposed adaptive inverse control method can automatical-
ly extract control rules from the process data. Comprehen-
sibility is one of the required characteristics for a complex
GTAW process control. We use the proposed SVM-FRAS-
based adaptive inverse control method to obtain the rule-
based process and the control model of the aluminum alloy
pulse GTAW process. Based on the simulation experiments
for GTAW process, the SVM-FRAS adaptive inverse
control method is found to be effective.

Keywords Adaptive inverse control . Support vector
machine . Fuzzy rule . Arc welding

1 Introduction

Control engineers and weld technologists are often con-
fronted by problems such as controlling the weld quality

like welding penetration and the fine formation of the
welding bead. To obtain the fine formation of the weld
seam, the sizes of weld pool should be exactly dominated in
real time, that is, the backside and topside width. In
addition, the control of the weld pool shape is a critical
issue in automated as well as robotic welding. However,
modeling and control for this process by classical methods
are difficult to realize. There are mainly two kinds of
reasons. Firstly, the arc welding process is characterized as
inherently nonlinear, bound to time-delay, and has strong
coupling in its input/output relationships as it involves a
number of uncertain factors such as metallurgy, heat
transfer, chemical reaction, arc physics, and magnetization.
Another reason is that not only accuracy but also
comprehensibility should be considered when modeling
and control in the welding process. In general, comprehen-
sibility is one of the required characteristics of reliable
systems, especially in complex welding processes, which
are affected by various factors. Therefore, a model with
poor comprehensibility is deemed to be unreliable. It is still
very difficult to obtain a model that is comprehensible and
simultaneously has satisfactory generalization capability.

Recent decade, several approaches using artificial intel-
ligence have been proposed to model and control for the arc
welding process, such as the neural network (NN) [1, 2],
fuzzy set (FS) [3], and rough set (RS) [4, 5]. Some studies
have evidently shown the efficiency of the above-men-
tioned methods in obtaining the model of the arc welding
process under certain conditions. However, NN is a “black
box”, which means that with this method, the model
becomes impossible to directly read and modify. On the
other hand, the conventional FS method directly depends
on the experience of the human operator, which is actually
difficult to obtain. Moreover, the number of inputs, outputs,
and their linguistic variables could not be too large;
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otherwise, this will lead to “rule explosion”. With respect to
the RS method, the task of prediction is not very effective,
and hence, it is more like a tool for data description. In
view of these difficulties, it is then necessary to develop
more practical modeling methods for complex welding
processes.

Support vector machine (SVM), developed by Vapnik
[6, 7], is gaining popularity due to its various attractive
features and promising empirical performance. Originally,
SVM is developed for pattern recognition problems, but in
recent years, with the introduction of ε-insensitive loss
function, SVM has been extended to solve nonlinear
regression estimation, time-series prediction, system non-
linear identification, and control.

Recently, Huang and Chen [8] have proposed a fuzzy
modeling method based on SVM for the arc welding
process. In [8], SVM is used to extract IF–THEN rules; the
fuzzy basis function inference system is adopted as the
fuzzy inference system. So the approach possesses good
comprehensibility as well as satisfactory generalization
capability. Based on [8], we introduce a new support vector
machine–fuzzy rules acquisition system (SVM-FRAS). In
SVM-FRAS, we apply adaptive learning to tune the fuzzy
rules and parameters in the fuzzy inference system
automatically. Based on the previous modeling work, we
apply SVM-FRAS to welding process control in this paper.
A new adaptive inverse control method based on SVM-
FRAS is proposed for the GTAW process. In this control
mechanism, an identifier is established based on SVM-
FRAS, and an inverse controller based on SVM-FRAS is
designed. Finally, the simulation experiment on the arc
welding process is also conducted.

2 Preliminaries of the fuzzy basis function inference
system and SVM for regression

This section of the paper provides background knowledge
about the fuzzy basis functions [9] and SVM for regression
[10] for the convenience of the readers.

2.1 Fuzzy basis function inference system

The most common fuzzy rule-based system consists of a set
of linguistic rules in the following form:

IF premise antecedentð Þ
THEN conclusion consequentð Þ

This form is referred to as the IF–THEN rule. It typically
expresses an inference, such that if we know the fact
(premise), then we can infer another fact (conclusion). In
this study, the general case where the fuzzy rule base

consists of M rules is considered and is in the following
form:

Rj : IF x1 is A
j
1 and x2 is A

j
2 and ::: and xn is Aj

n;
THEN z is Bj for j ¼ 1; 2; . . . ;M

where Rj is the fuzzy rule, xi(i=1,2,…,n) are the input
variables, z is the output variable of the fuzzy system, and
Aj
iand Bj are the linguistic terms characterized by fuzzy

membership function uAj
i
xið Þand uBj zð Þ, respectively.

The overall fuzzy inference function is

f xð Þ ¼
PM

j¼1 z
j
Qn

i¼1 uAj
i
xið Þ

� �
PM

j¼1

Qn
i¼1 uAj

i
xið Þ

� � ð1Þ

where f:Rn→R, uAj
i
xið Þ is the Gaussian membership func-

tion, and z j is the point in the output space at which uBj zð Þ
achieve its maximum value.

In this case, the fuzzy basis function can be denoted as

pj xð Þ ¼
Qn

i¼1 uAj
i
xið ÞPM

j¼1

Qn
i¼1 uAj

i
xið Þ

� � : ð2Þ

Then f(x) can be viewed as a linear combination of the
fuzzy basis function (FBF). In other words, the fuzzy
inference system in Eq. 1 is equivalent to the FBF expansion

f xð Þ ¼
XM
j¼1

pj xð Þz j: ð3Þ

Moreover, this linear combination of fuzzy basis
function is capable of evenly approximating any real
continuous function on a compact set to arbitrary accuracy.

2.2 SVM for regression estimation

We further describe the linear function using the form
ϖ � xh i þ b. As to the nonlinear case, we transfer the
nonlinear problem into a linear problem using a nonlinear
map ϕ(x) from the low dimensional input space to a higher-
dimensional feature space. SVM approximates the function
using the following form:

f xð Þ ¼ ϖ � f xð Þh i þ b: ð4Þ
The regression problem is equivalent to the following

optimization problem:

min 1
2 ϖk k2 þ C

Pl
i¼1

xi þ x�i
� �

s:t:
yi � ϖT � f xið Þh i � b � "þ xi
ϖT � f xið Þh i þ b� yi � "þ x�i
xi; x

�
i � 0

8<
:

ð5Þ
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where minimizing ϖk k2
.
2 means minimizing the model’s

complexity and, at the same time, f(x) approximately pairs
(xi, yi) with ɛ precision. Thus, the above optimization
problem is a realization of the structure risk minimization
principle. Therefore, the obtained regression estimation
possesses reliable generalization ability. C>0 is cost
coefficient, which represents a balance between the model’s
complexity and the approximation error. When the con-
straint conditions are unfeasible, slack variables xi; x

�
i

should be introduced.
To solve the optimization problem more easily, dual

formulation is obtained by utilizing Lagrange multipliers:

min
a;a*

1
2 a � a*
� �T

Q a � a*
� �

þ"Pl
i¼1

aiþa*i
� �

þPl
i¼1

yi ai � a*i

� �

s: t:
Pl
i¼1

ai � a*i

� �
¼ 0; 0 � ai;a*i � C; i ¼ 1; . . . ; l;

ð6Þ

where Qij ¼ K xi; xj
� � � f xið ÞTf xj

� �
is the so-called kernel

function.
Based on the Karush–Kuhn–Tucker conditions [11, 12],

the samples can be classified into:

E set: error support vectors: E ¼ i ai � a�
i

�� �� ¼ C
��� �

S set: margin support vectors: S ¼ i 0 � ai � a�
i

�� �� � C
��� �

R set: remaining samples: R ¼ i ai � a�
i ¼ 0

��� �

By solving Eq. 6, the approximate function is then
obtained:

f xð Þ ¼
Xl
i¼1

ai � a�
i

� �
K xi; xð Þþb: ð7Þ

An advantage of using the kernel function is that one can
deal with the feature space of the arbitrary dimension
without having to explicitly compute the map ϕ(x). As
such, any function that satisfies Mercer’s condition [13] can
be used as a kernel function.

3 SVM-based fuzzy rules acquisition system
with adaptive learning

In this section, we introduce a new fuzzy rule-based
inference system utilizing SVM based on [8]. The archi-
tecture of the proposed SVM-based fuzzy inference is
shown in Fig. 1. In this approach, the first step is to use
SVM to extract the IF–THEN rules, then to adopt the fuzzy
basis function inference system as the fuzzy inference
system in the next step, and finally, to apply adaptive
learning for the fuzzy rules and parameters in the fuzzy
inference system. The main difference between SVM-
FRAS and [8] is that the parameters in SVM-FRAS and
fuzzy rules can be automatically tuned.

 

Support vector learning mechanism
extract margin support vector

S1,S2,...,Sm

from the process

If X is S1 then B1

If X is Sm then Bm

If X is S2 then B2
Input X

Fuzzy inference system
(Fuzzy basis function

inference system)

Output Y

Step I: Extract rules

Step II: Inferrence system

Step III: Adaptive learning
Process

Adaptive learning

Fig. 1 Schematic diagram of
the SVM-based fuzzy rules ac-
quisition system
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3.1 Extract fuzzy rules using SVM

The SVM learning mechanism provides a solid foundation
to extract the support vectors for further use in the
generation of the IF–THEN rules. As described in the
preceding section, only a minimal part of training data,
particularly the support vectors, contribute to the solution.
Geometrically, there are points that lie on or outside the
ɛ-tube. In other words, they are in “key position”. It is
important to note that we choose only the margin support
vectors (0 � ai � a*i

��� ��� � C) because error support vectors

( ai � a*i

��� ��� ¼ C) may be far from the regression curve, as

the empirical error should be equal or more than ɛ in this
case.

3.2 Fuzzy inference system

We adopt the following fuzzy basis function inference
system as the fuzzy inference system in this study:

y ¼ f xð Þ ¼ PN R

j¼1
pj xð Þzj ;

pj xð Þ ¼ exp � PN D

k¼1
rk � xk � xjk
� �2� 	,PN R

j¼1
exp � PN D

k¼1
rk � xk � xjk
� �2� 	

ð8Þ
where f:RN_D→R, N_D is the number of the dimension of
the input/output variables, N_R is the number of rules, pj (x)
is the fuzzy basis function, which indicates how close the
sample is to the jth rule, zj is the output of the jth rule, rk is
the coefficient of the kth dimension, xk is the value of the
kth dimension of the sample, and xjk is the value of the kth
dimension of the jth rule.

Apparently, the most important advantage of using fuzzy
basis functions is that an IF–THEN rule is directly related
to a fuzzy basis function. Therefore, it provides a natural
framework for combining both numerical and linguistic
data in a uniform fashion. The inference system reflects the
human habit of thinking: the closer the sample is to the rule,
the closer the output of the sample is to the output of the
rule.

3.3 Adaptive learning

In this section, we propose two adaptive learning methods
for SVM-FRAS. The main focus is that the fuzzy rules are
extracted by SVM directly from the samples, and although
they are in key position, they do not exactly fit the fuzzy
system. For this reason, it is important that the fuzzy rules
and the fuzzy inference system should be tuned, so that the
fuzzy system’s output could fit well the regression curve.
To do such, we use the gradient methods to tune the output
of the rule z in the fuzzy rules and rk in the fuzzy inference

system. The experiments show that in terms of accuracy,
the adaptive learning methods exhibit excellent results.

3.3.1 Adaptive batch learning algorithm

As the term implies, in batch algorithm, the input data are
supplied in batch. The goal of adaptive learning is to
minimize the total errors of the batch samples so we define
the following error function:

E* ¼ 1

2

XN S

l¼1

yl � yldð Þ2 ð9Þ

where yl is the output of the lth training sample, yld is the
desired output, and N_S is the number of samples.

The gradient method is used to solve the tuning problem
for zj, the output of the jth rule:

Δzj ¼ �h
@E*

@zj
ð10Þ

where η is the learning rate.
Combining Eqs. 8, 9, and 10, we obtain the tuning

formula for zj, where the output of the jth rule is

Δzj ¼ �h
XN S

l¼1

yl � yldð Þ � pj xlð Þ: ð11Þ

Using the gradient method to solve for the tuning
approach for the coefficient of the kth dimension, rk, we
obtain the following:

Δrk ¼ �h
@E*

@rk
ð12Þ

Combining Eqs. 8, 9, and 12, we obtain the following:

Δrk ¼ �h
XN S

l¼1

yl � yldð Þ �
XN R

j¼1

zj

� pj xlð Þ � xlk � xjk
� �2 þXN R

j¼1

xlk � xjk
� �2 � pj xlð Þ

 ! !
:

ð13Þ

3.3.2 Adaptive incremental learning algorithm

In incremental algorithm, the input data are supplied in
sequence. The goal of adaptive learning is to minimize the
training error of an incremental sample, and so we define
the following error function:

E* ¼ 1

2
y� ydð Þ2 ð14Þ

where y is the output of the training sample and yd is the
desired output.
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Moreover, the derivation is similar to the derivation in
batch algorithm, so we give the update rule directly:

Δzj ¼ �h y� ydð Þpj xð Þ ð15Þ

Δrk ¼ �h y� ydð Þ PN R

j¼1
zj

� pj xð Þ � � xk � xjk
� �2þ PN R

j¼1
xk � xjk
� �2

pj xð Þ
 ! !

:

ð16Þ

4 SVM-FRAS-based adaptive inverse control

The architecture of the proposed SVM-FRAS-based adap-
tive inverse control is shown in Fig. 2. The control
algorithm can be separated into two substages, namely,
the identification stage and the control stage, where the (1)
SVM-FRAS algorithm to train the system model was used
and (2) u was obtained by using the SVM-FRAS inverse
model to control output y according to reference input yd.

4.1 SVM-FRAS based identification

The mathematical model of the discrete-time nonlinear
single-input single-output system can be described by
Eq. 17:

y k þ 1ð Þ ¼ f y kð Þ; . . . ; y k � nð Þ; u kð Þ; . . . ; u k � mð Þð Þ
ð17Þ

where y 2 Rn; u 2 Rm;m � n; u and y represent the control
input and output of the nonlinear system, respectively.

Define

X ið Þ ¼ y ið Þ; y i� 1ð Þ; . . . ; y i� nð Þ; u ið Þ; u i� 1ð Þ; . . . u i� mð Þð Þ
ð18Þ

where i=1,2,...N refers to the number of samples. Equation 17
can be represented as

y iþ 1ð Þ ¼ f X ið Þð Þ ð19Þ
where f is the desired function. Constructing the learning
sample X ið Þ; y iþ 1ð Þð Þ and using the supporting vector

regression, the common form of fuzzy rules has been
extracted:

Rj : IF X is X jð Þ;
THEN y is y jþ 1ð Þ

where j=1, 2,..., N_R, N_R is the rule number, X is the input
variable, and y is the output variable of the fuzzy system.

The model of y(k+1) is

y k þ 1ð Þ ¼ PN R

j¼1
pj xð Þ � zj

pj xð Þ ¼ exp �r X jð Þ � X kð Þk k2
� �

:

ð20Þ

In this model, pj(x) is the fuzzy basis function which
measures the extent to which the sample approaches the j
rule, and zj is the output of the Rj rule.

4.2 SVM-FRAS-based inverse controller

Reference [14] is a detailed study on the invertible problem
of Eq. 17. From such, the following conclusion is made:

Theorem 1 If Eq. 17 is strictly monotone for u, the system
is invertible at y kð Þ; . . . ; y k � nð Þ; u kð Þ; . . . ; u k � mð Þ½ 	T .

If the control process is revertible, then it is possible to
construct the inverse model of the process using an
appropriate method. This inverse model is the controller
designed in this paper. Suppose that the system is
invertible, then the inverse model of the system is the
controller, that is,

u kð Þ ¼ f �1 y k þ 1ð Þ; y kð Þ; . . . ; y k � nð Þ; u k � 1ð Þ; . . . ; u k � mð Þð Þ
ð21Þ

where f
−1

is the desired nonlinear function. As for the
nonlinear system, it is difficult to obtain the analytical
solution of the inverse model. However, since the process is
invertible, there must exist an inverse model which may be
estimated by the SVM-FRAS method.

Define

Y kð Þ ¼ y k þ 1ð Þ; y kð Þ; y k � 1ð Þ; . . . ; y k � nð Þ; u i� 1ð Þ; . . . u k � mð Þð Þ:
ð22Þ

In constructing the learning sample Y ið Þ; u ið Þð Þ, we extract
the fuzzy rule model through the SVM-FRAS method:

Rj : IF Y is Y jð Þ;
THEN u is u jð Þ

where j=1,2,..., N_R, N_R is the rule number, Y is the output
variable, and u is the output variable of the fuzzy system.

SVM-FRDS adptive
inverse controller

Object

SVM-FRDS
process model

yd u

ŷec

ep

£«

£-

£«

£-

y

Fig. 2 Adaptive inverse control architecture based on SVM-FRAS
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The model of u(k) is

u kð Þ ¼ PN R

j¼1
pj xð Þ � zj

pj xð Þ ¼ exp �r Y jð Þ � Y kð Þk k2
� �

:

ð23Þ

In this case, N_R is the rules number, and pj(x) is the
fuzzy basis function which measures the extent to which
the sample approaches the j rule. zj is the consequent of R
rule. SVM-FRAS is applied to approximate the nonlinear
function of f and f

−1
. Furthermore, forward and inverse

models are constructed, respectively. The accurate inverse
model constructed by SVM-FRAS makes a steady-state
gain between the controller and the model to be ranked 1.
Thus, this guarantees no steady-state error in the tracking
characteristic of the control system.

5 SVM-FRAS-based adaptive inverse control
for the pulse GTAW process

5.1 The technological parameters of welding and data
collection

We use the experimental system of aluminum GTAW in
[15]. Figure 3 shows the experiment system. The double-
side visual sensor system captures the topside and backside
images of the weld pool simultaneously. Aluminum alloy
with 3 mm thickness is applied. With respect to the welding
current, the scope is 160–230 A if it randomly changes
every single sampling period. The scope is 165–215 A if it
changes randomly every double sampling period. The wire
feeding speed is 10 mm/s, and the welding speed is 3 mm/s.
The parameters of welding technology are shown in Table 1.
Accordingly, we collected 760 samples.

The schematic diagram of SVM-FRAS adaptive inverse
control is shown in Fig. 4. The system consists of a

controlled object, process identification, a controller, and a
sensor system of back weld width. The sensor system of
backside weld width functions to predict backside weld
width using key information on weld pool and weld
parameters. System identification accomplishes the investi-
gation of the forward model in the GTAW welding process
through SVM-FRAS. The inverse model during the GTAW
welding process constructed by SVM-FRAS constitutes the
controller, where Wbd is the expected backside weld width,
Wb is the backside weld width, that is, the output of the
GTAW process, W

_

b is the predicted back weld width of
SVM-FRAS, that is, the model output of the GTAW
process, and I is the peak current of pulse, which controls
the input of the GTAW process.

5.2 GTAW process model based on SVM-FRAS

From Eq. 17, the relation between backside weld width Wb

and the peak current of pulse I could be obtained:

Wb k þ 1ð Þ ¼ f Wb kð Þ; . . . ;Wb k � nð Þ; I kð Þ; . . . ; I k � mð Þð Þ:
ð24Þ

Wire
feeder

Current
controller

Host
computer

Speed
controller

Power
supply

Image
capturing

board

Welding
   gun

Workpiece

CCD camera Filter glass Dimmer glass

 light path

Fig. 3 The structure diagram of experimental system for GTAW

SVM-FRDS
adaptive inverse

controller

GTAW
process

SVM-FRDS
process model

Wbd I

bWec

ep

£«

£-

£«£-

prediction
model for Wb

Wb

sensor
system

Wb

Fig. 4 Adaptive inverse control architecture for the GTAW welding
process based on SVM-FRAS

Table 1 Welding parameters of the AL alloy pulsed GTAW
experiment

Welding joint Closed flat
butt joint

Peak value of the
pulse current

Variable

Size of workpiece 250×50×4 mm Peak current
duration

250 ms

Base metal Aluminum
alloy LD 10

Base current
duration

250 ms

Protective
atmosphere

Argon gas
(99.99%)

Diameter of
tungsten electrode

4 mm

Welding current Pulse
alternating
current

Arc length 4.5 mm

Current frequency 50 Hz Welding speed 3 mm/s
Base value of the
pulse current

90 A Angle of tungsten
electrode

85°

Int J Adv Manuf Technol (2009) 44:686–694 691



The parameters m, n should be identified in Eq. 24.
Suppose m=n in consideration of the model precision and
model complexity in the welding process. To investigate
the influence of parameters m, n to the model, the data set is
randomly split into 500 training samples and 260 test
samples. The system identification of the GTAW process
is initially made in the training set by SVM-FRAS.
Moreover, the test in the above-mentioned model is made
from the remaining 260 data. The testing method is used
to compare the real value of the test sample and the
output value of the model. When m, n≥1 in the SVM-
FRAS model, the root mean square (RMS) error of the
system identification is 1 mm, meeting the requirement of
process precision of welding and thus proving the validity of
the SVM-FRAS-basedmethod in the welding process’ system
identification. When m=n=2, the model will be much more
precise. However, we set m=n=1 in this experiment
considering the aspect of model complexity.

The RBF kernel function K xi; xj
� �¼ exp �g xi � xj



 

2� �
;

g > 0 is applied for SVM-FRAS modeling in the welding

process. Using the obtained margin support vectors, we can
derive a set of IF–THEN rules as Table 2.

The model of W
_

b k þ 1ð Þ is:

W
_

b k þ 1ð Þ ¼ PN R

j¼1
pj xð Þ �W bj

pj xð Þ ¼ exp �r X jð Þ � X kð Þk k2
� �

X ið Þ ¼ Wb ið Þ;Wb i� 1ð Þ; I ið Þ; I i� 1ð Þð Þ:

ð25Þ

Here, N_R is the number of rules which is about 50. pj(x)
is the fuzzy basis function which measures the extent to
which the sample approaches the j rule. W bj is the result of
the Rj rule. Wb(i) is the backside weld width at time i; I(i) is
the peak current at time i.

The prediction performance of the W
_

b k þ 1ð Þ model is
shown in Fig. 5. The identification of results shows that the
SVM-FRAS model could better approximate the GTAW
welding process.

Table 2 Part rules extracted by SVM in the system identification for
the pulsed GTAW process

I O

Wb(k) Wb(k−1) I(k) I(k−1) Wb(k+1)

6.8 5.6 200 200 6.6
7.3 8.4 172 211 9
7.6 8.6 192 217 8
9.6 9.1 213 230 9.7
7.2 9.2 169 221 7.8
8.7 6.8 223 171 8.6

Fig. 5 Identification results of the GTAW welding process using SVM-FRAS

Table 3 Part rules extracted by SVM in the controller for the pulsed
GTAW process

I O

Wb(k+1) Wb(k) Wb(k−1) I(k−1) I(k)

6.6 6.8 5.6 200 200
8 7.6 8.6 217 192
6.7 6.5 6.8 176 198
6.2 6.1 6.1 182 184
7.7 9.8 10.4 212 196
6.6 8.5 7.2 199 199
5.1 3.8 2 171 194
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5.3 Controller design based on SVM-FRAS

When m=n=1, the relation model between pulse peak
current I and back weld width Wb is obtained from Eq. 21:

I kð Þ ¼ f �1 Wb k þ 1ð Þ;Wb kð Þ;Wb k � 1ð Þ; I k � 1ð Þð Þ:
ð26Þ

In this study, the training set (500 data) and the test set
(260 data) are randomly split to investigate the performance
of the model. The controller design is first made in the
training set using the SVM-FRAS inverse model. The rules
set is obtained using margin support vectors through SVM,
as shown in Table 3.

The reasoning model of the GTAW process controller is

I kð Þ ¼ PN R

j¼1
pj xð Þ � I j

pj xð Þ ¼ exp �r Y jð Þ � Y kð Þk k2
� �

Y kð Þ ¼ Wb k þ 1ð Þ;Wb kð Þ;Wb k � 1ð Þ; I i� 1ð Þð Þ

ð27Þ

where N_R is the number of rules, which is about 50. In
addition, pj(x) is the fuzzy basis function which measures
the extent to which the sample approaches the j rule. I j is
the result of the Rj rule, Wb(i) is the backside weld width at
time, and I(i) is the peak current at time i.

A test is conducted using the remaining 260 test samples
of the above-mentioned model. Comparison is as well made
between the real values of the test sample and the output of
the model in order to observe error changes. The identifi-
cation precision of the SVM-FRAS inverse model, namely,
the mean absolute error and RMS is 8.22 and 8.74 A,
respectively. In Fig. 6, the identification result of the SVM-
FRAS inverse model is shown. This further indicates the
feasibility of making the SVM-FRAS inverse model as the
controller of GTAW.

5.4 Simulation experiment of adaptive inverse control
for the pulse GTAW welding process

In the simulation process, the backside weld width is
calculated using the SVM-FRAS identification model,
given that the welding process by the SVM-FRAS inverse
controller could then be simulated. The initial welding
condition is at the pulse peak current of I=185 A, and the
remaining parameters are all parameter values of the static
model in the modeling process. Moreover, in the simulation
process, the back weld width is set to 6 mm. Figure 7
shows the simulation result when Wb=6 mm, and then from
this simulation result, the maximum overshoot δp is 3.3%.
The regulating time is 3.5 s, and the steady-state error is
0.13 mm. The results obtained from the simulation show
that SVM-FRAS inverse control can satisfy the require-
ments of the welding process.

6 Conclusion

A new method of adaptive inverse control based on the
SVM-FRAS is proposed in this study. The proposed
adaptive inverse control method can automatically extract
control rule from the weld process data. Overall, the
simulation experiments for the GTAW process show the
efficacy of the SVM-FRAS adaptive inverse control method.

Fig. 6 Identification results of the GTAW welding process using the SVM-FRAS inverse model
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