
ORIGINAL ARTICLE

Due window scheduling with sequence-dependent setup
on parallel machines using three hybrid
metaheuristic algorithms

J. Behnamian & M. Zandieh & S. M. T. Fatemi Ghomi

Received: 25 June 2008 /Accepted: 28 November 2008 /Published online: 13 January 2009
# Springer-Verlag London Limited 2009

Abstract Due-date determination problems have gained
significant attention in recent years due to the industrial
focus in the just-in-time philosophy. This paper considers a
machine scheduling problem where jobs should be com-
pleted at times as close as possible to their respective due
dates, and hence, both earliness and tardiness should be
penalized. It is assumed that earliness and tardiness (ET)
penalties will not occur if a job is completed within the due
window. However, ET penalties will occur if a job is
completed outside the due window. The objective is to
determine a schedule that minimizes sum of the earliness
and tardiness of jobs. To achieve this objective, three hybrid
metaheuristics are proposed. The first metaheuristic is a
hybrid algorithm which combines elements from both
simulated annealing (SA) as constructive heuristic search
and a variable neighborhood search (VNS) as local search
improvement technique. The second one presents a hybrid
metaheuristic algorithm which composed of a population
generation method based on an ant colony optimization
(ACO) and a VNS to improve the population. Finally, a
hybrid metaheuristic approach is proposed which integrates
several features from ACO, SA, and VNS in a new
configurable scheduling algorithm. A design of experi-
ments approach is employed to calibrate the parameters and

operators of the algorithm. Computational experiments
conducting on 252 randomly generated problems compare
the results with the VNS algorithm proposed previously and
show that the procedure is capable of producing consis-
tently good results.

Keywords Parallel machines scheduling .

Sequence-dependent setup times . Due window scheduling .

Variable neighborhood search . Ant colony optimization .

Simulated annealing

1 Introduction

A useful but difficult criterion in scheduling theory is the
minimization of both earliness and tardiness values. It comes
from the “just-in-time” (JIT) philosophy in management and
production theory: An item should be delivered exactly when
it is required by the customer. Therefore, both early and tardy
deliveries of a task with respect to its due date are penalized.
The earliness and tardiness problem was originally called the
minimum weighted absolute deviation problem, although
since about 1990, it has been commonly referred to as the ET
problem [2]. JIT scheduling models assume the existence of
job due dates and discourage early as well as tardy jobs. If a
job finishes before its due date, it incurs an earliness
penalty such as holding cost. On the other hand, complet-
ing the job after its due date can lead to such tardiness costs
as late charges, express delivery charges, or lost sales. A
schedule that minimizes the sum of these penalties is said
to be a JIT schedule. This paper assumes that earliness and
tardiness are penalized at the same rate for all jobs.

In the last two decades, many results have appeared in
the scheduling literature that consider both earliness and
tardiness penalties. There are two related scheduling models

Int J Adv Manuf Technol (2009) 44:795–808
DOI 10.1007/s00170-008-1885-7

J. Behnamian : S. M. T. Fatemi Ghomi
Department of Industrial Engineering,
Amirkabir University of Technology,
424 Hafez Avenue,
Tehran, Iran

M. Zandieh (*)
Department of Industrial Management,
Management and Accounting Faculty,
Shahid Beheshti University,
Tehran, Iran
e-mail: m_zandieh@sbu.ac.ir



studied in the literature. In the first model, the due date of a
job is only a point of time. There is no penalty if the job is
completed exactly at this point of time. An earliness penalty
is incurred if the job is completed before this time. More
recent results on this model include, among others,
Emmons [18], Kubiak et al. [36], Lee et al. [40], Herrmann
and Lee [28], Cheng and Chen [16], Chen [13], Federgruen
and Mosheiov [20], Almeida and Centeno [4], Chen and
Powell [15], Birman and Mosheiov [10], Esteve et al. [19],
and Bülbül et al. [11]. Recent surveys on these problems
have been published by Hoogeveen [30], Lauff and Werner
[39], and Gordon et al. [25].

The second model, which is more realistic, assumes that
the due date of a job is an interval rather than a point in
time. This interval of time is called the due window of the
job, and the left end and the right end of the window are
called the earliest due date and the latest due date of the job,
respectively. No penalty is incurred if the job is completed
at any time within its due window. An earliness penalty is
incurred if the job is completed before its earliest due date.
Clearly, this model is more general and practical than the
first one since it includes the first model as its special case
with due window of size zero. On the other hand, problems
with this model are generally more difficult to solve than
those with the first model. The earliest work on this model
was by Anger et al. [5] who considered the small size job
due window, and the objective is to minimize the number of
jobs that do not finish within their respective due windows.
Since then, several papers have appeared to address JIT
scheduling problems with due windows under different
criteria. The majority of the literature on JIT scheduling
deals with only single machine scheduling problems. The
work of Kramer and Lee [35], Chen and Lee [14], Wan and
Yen [59], and Yeung et al. [61] are a few papers that study
the multifacility problem with the due window model, and
other multifacility problems consider job due date at a point
of time.

In literature, just a few authors consider scheduling
problem with sequence-dependent setup times. Heady and
Zhu [27] minimized the total weighted deviation of the
completion times from the given due dates, where machines
may be unrelated and sequence-dependent setup times are
given. Lam and Xing [38] gave a short review of new
developments of parallel machine scheduling problem
(PMSP) associated with the problems of just-in-time
productions, preemption with setup and capacitated ma-
chine scheduling. Balakrishnan et al. [7] used a mixed
integer formulation that had substantially fewer zero one
variables than typical formulations for scheduling problems
of this type. The parallel machine scheduling problem of
minimizing total earliness and tardiness with a common
weight for earliness and tardiness, respectively, as well as
given sequence-dependent setup times for the jobs was

treated by Sivrikaya-Serifoglu and Ulusoy [51]. Machines
are either identical or uniform. For this problem, two
genetic algorithms (GAs) were given and tested on
problems with up to 60 jobs and four machines. With
respect to minimizing the total weighted tardiness in
unrelated parallel machines scheduling problem, Vignier
et al. [58] proposed a hybrid method that consists of an
iterative heuristic, a genetic algorithm, and a branch-and-
bound algorithm to solve sequence-dependent setup times
parallel machine scheduling problem with nonzero release
date, where there are two types of machines, both
processing and setup times depend on the machines, and
each job has a release date and a due date.

Radhakrishnan and Ventura [48] consider the case of
sequence-dependent setup time parallel machine scheduling
problem with the objective of minimizing the sum of the
total earliness and total tardiness. To solve the problem,
they propose a mathematical programming formulation that
can be used for limited-sized problems and proposed a
simulated annealing algorithm for large-sized problems.

Regarding uniform parallel machines and sequence-
dependent setup times, we can refer Tamimi and Rajan
[55]. They proposed a genetic algorithm to minimize the
total weighted tardiness. In their genetic algorithm, they
dynamically modified the mutation rate, crossover rate, and
insertion rate. For the same objective, Park et al. [46]
proposed the use of a neural network to obtain values for
the parameters in calculating a priority rule for the
sequence-dependent setup time parallel machine schedul-
ing. Their computational results indicated that the proposed
approach outperforms that of an earlier approach.

Kurz and Askin [37] used an integer programming
formulation for sequence-dependent setup time parallel
machine scheduling with nonzero release date. They
developed several heuristic methods including a genetic
algorithm and multifit-based approaches and empirically
evaluated them. Gendreau et al. [24] proposed lower
bounds and a divide and merge heuristics for addressed
problem. They compared their heuristic method with earlier
heuristic methods of tabu search and showed that their
heuristic is much faster while producing similar quality
results. Kim et al. [32] attempted to solve the unrelated
parallel machines and sequence-dependent setup times
through a new approach. In this particular case, the setup
times are not machine dependent and each job is composed
of n items. In the line of batch scheduling problems, we can
cite Kima et al. [33], where several search heuristics are
presented and tested considering unrelated parallel
machines.

Hiraishi et al. [29] investigated identical parallel machine
scheduling with sequence-dependent setup times to maxi-
mize the weighted number of jobs completed at their due
dates. Fowler et al. [22] develop a hybrid genetic algorithm

796 Int J Adv Manuf Technol (2009) 44:795–808



for the sequence-dependent setup time parallel machine
scheduling with nonzero release date. They considered
three separate problems with objective of makespan, total
weighted completion time, and total weighted tardiness. In
their algorithm, a genetic algorithm is used to assign jobs to
machines, and dispatching rules are used to schedule the
individual machines. Applying tabu search into sequence-
dependent setup time parallel machine scheduling with
nonzero release date was reported by Bilge et al. [9]. They
investigated several key components of tabu search and
identified the best values for these components.

Feng and Lau [21] use metaheuristic called squeaky
wheel optimization to schedule jobs on more general
problem with the objective of minimizing the sum of the
total weighted earliness and total weighted tardiness. They
showed that their heuristic method outperforms that of
Radhakrishnan and Ventura [48]. The sequence-dependent
setup time parallel machine scheduling with nonzero release
date was addressed by Nessah et al. [45]. For the total
weighted completion time minimization, they proposed a
heuristic method based on the defined conditions. They also
developed a lower bound. The quality of their heuristic
method was tested on randomly generated problems by
comparing the heuristic solution with a developed lower
bound. Tahar et al. [53] presented a heuristic method based
on linear programming modeling to minimize maximum
completion time for sequence-dependent setup time parallel
machine scheduling. The performance of their proposed
method was tested on problems with a lower bound.

Logendrana et al. [42] deal with the minimization of the
weighted tardiness of jobs in unrelated parallel machines
scheduling with sequence-dependent setups considering
dynamic release of jobs and dynamic availability of
machines. Rocha et al. [50] proposed a variable neighbor-
hood search algorithm to minimize the sum of the
completion times plus the sum of the weighted delays.
They showed that their algorithm outperforms a greedy
randomized adaptive search procedure algorithm.

This paper removes the due date assumption and
replaces it with a due window assumption so as to minimize
the sum of ET penalties. Note that our problem is a real-life
one, since most of the studies on parallel machine
scheduling problem setup times are not taken into account
to minimize the sum of the earliness and tardiness. The
setup time has often been considered to be negligible or as
a part of the processing time.

The scheduling problem with parallel machines and
sequence-dependent setup times is known to be of difficult
solution. The single-machine scheduling problem with
sequence-dependent setups is known to be nondeterministic
polynomial (NP)-hard [47]. And for the parallel machine
case, it is proved that the problem of minimizing the
makespan with two identical machines is NP-hard [41].

Thus, the more complex case of minimizing sum of the ET
penalties on a scheduling problem with m identical
machines is also NP-hard. Therefore, the use of metaheur-
istics is appropriate. In this paper, a hybrid metaheuristic
(HMH) customizable approach is proposed, which allows
the definition of scheduling algorithms by appropriately
selecting and combining several different features derived
from three main metaheuristics of reference, i.e., the ant
colony optimization, the simulated annealing, and the
variable neighborhood search. The purpose is to evaluate
the effectiveness of integrating such a specific subset of
features into a configurable hybrid metaheuristic, at least
for the class of difficult scheduling problems here consid-
ered, consisting of the generalization of the PMSP.

The paper is organized as follows. Section 2 is the
problem description. Section 3 introduces the proposed
hybrid algorithm. Section 4 presents the two VNS-based
hybrid algorithms used in the experiments. Section 5
presents and compares the hybrid algorithm with two
versions of VNS-based hybrid algorithm. Finally, Section 6
states our conclusions and further researches on this topic.

2 Problem description

This paper studies the problem of scheduling a set of n
independent jobs on m identical parallel machines. Each job
j has a processing time pj. When a job k is processed after
job j, a setup time sjk is incurred. All the jobs have a due
window [dj1, dj2], where dj1 is the earliest due date and dj2
(dj2≥ dj1) the latest due date. Furthermore, we assume that
this due window is given in advance, i.e., both dj1 and dj2
are prespecified. Each job j∈n is ready at time 0 and has a
known processing time pj. If the job j∈n is completed
before dj1, it will incur an earliness penalty and if the job is
completed after dj2, it will incur tardiness penalty.

3 The hybrid metaheuristic approach

The interest in the design and implementation of hybrid
metaheuristics has increased remarkably in recent years
[54]. However, to date, there has been little research effort
dedicated to the hybridization of metaheuristics for sched-
uling problem. The construction of hybrid metaheuristics is
motivated by the need to achieve a good tradeoff between
the capabilities of a heuristic to explore the search space
and the possibility to exploit the experience accumulated
during the search. In this work, the proposed hybrid
metaheuristic, integrating features also from different
approaches, should not be considered as an attempt to
transform a “main” metaheuristic (e.g., say the ant colony
optimization) into a hybrid metaheuristic by grafting some

Int J Adv Manuf Technol (2009) 44:795–808 797



contributions from other metaheuristics. Differently, the
HMH allows the possible integration of several basic
features from a reference set of metaheuristics and aims at
analyzing the effectiveness of the resultant customizable
algorithm for a difficult problem and a test problem.

3.1 Encoding scheme

The first important step in introduction of HMH algorithm
to parallel machine problems is the representation of a
solution. One of the most important decisions in designing
a metaheuristic lies in deciding how to represent solutions
and relate them in an efficient way to the searching space.
Bean [8] introduced a random key approach for real-coded
GA to solve sequencing problem. Subsequently, numerous
researchers show that this approach is robust and can be
applied for the solution of different kinds of scheduling
problems [12, 56]. In this approach, random numbers serve
as sort keys in order to decode the solution. The decoded
solution is evaluated with a fitness function that is
appropriate for the problem at hand. Each job is assigned
a real number whose integer part is the machine number to
which the job is assigned and whose fractional part is used
to sort the jobs assigned to each machine. In this paper, to
represent a schedule incorporated with the hybrid method-
ology, the random key approach is applied to address
problem. Let us now discuss which aspects have been
borrowed from ACO, VNS, and SA.

3.2 Ant colony optimization

Ant colony optimization is a metaheuristic to tackle hard
combinatorial optimization (CO) problem that was first
proposed in the early 1990s [17]. The inspiring source of
ACO is the foraging behavior of real ants. Real ants have
the ability to find the shortest path from a food source to
their nest without using visual cues. Instead, they commu-
nicate information about the food source by producing a
chemical substance, called pheromone, laid on their paths.
Since the shorter paths have a higher traffic density, these
paths can accumulate a higher amount of pheromone.
Hence, the probability of ants following these shorter paths
will be higher than the longer ones. The ACO algorithm
implemented in this paper is basically the ant colony system
version, but its pheromone values are limited to a bounded
value. Explicit limits on the pheromone values prevent the
probability to construct a solution falls below a certain
value greater than 0. This algorithm is called max–min ant
system (MMAS) [52]. The complete details of the
algorithm are presented in view of the fact that ACO
algorithms are relatively less knowing, as against simulated
annealing or genetic algorithms, with respect to the
application to scheduling problems.

The following presents the basic steps of the MMAS:

Step 1: Initialize the pheromone trails and parameters.
Step 2: While termination condition is not met, do the

following:

•Construct a solution.
•Improve the solution by local search.
•Update the pheromone trail or trail intensity,
denoted by τip, where τmax ≥ τip ≥ τmin.

Step 3: Return the best solution found.

In the context of application of the ACO algorithm to
scheduling problems, τip denotes the trail intensity (or
desire) of setting job i in position p of a sequence. These
trails form a kind of adaptive memory of previously found
solutions and are modified at the end of every iteration. It is
to be noted that, for every job i, for any possible position p,
a pheromone value is stored and updated in each iteration
of the ACO algorithm. Hence, there are n2 such values of
τip. In order to ensure that the trail intensities do not go
beyond certain limits during the process of updating the
trail, Stützle [52] introduced the maximum and minimum
values for τips, denoted by τmax and τmin, respectively. This
more applicable ACO algorithm is shown in Algorithm 1.

Algorithm 1: Ant Colony Optimization

1: input: an instance x of a CO problem
2: while termination conditions not met do
3: Schedule activities
4: Ant based solution construction()
5: Pheromone update()
6: Daemon actions()
7: end schedule activities
8: Sbest ← best solution in the population of solutions
9: end while

10: output: Sbest, “candidate” to optimal solution for x

3.2.1 Generating the initial solution with an ant sequence

Initially, all τips are set equal to τmax, where τmax is set equal
to 1/((1−ρ)×Zbest) and ρ denotes the persistence of the trail.
The term “Zbest” refers to the best value of objective
function obtained so far. Initially, Zbest equals the objective
function value yielded by the seed sequence. Starting from
a null sequence, ant colony optimization algorithm makes
use of trail intensities to determine the job to be appended
in position p, where 1≤p≤n and n refers to the number of
jobs to be scheduled. Although the trail intensity τip
changes in every iteration of ant colony optimization
algorithm, the iteration counter is omitted simplicity for
simplicity of presentation. An ant starts constructing a
sequence by choosing a job for the first position, followed

798 Int J Adv Manuf Technol (2009) 44:795–808



by the choice of an unscheduled job for the second position,
and so on. A dummy job “0” is introduced on which an ant
is set initially, and the construction of partial sequences
begins, thereby leading to the buildup of a complete
sequence by the ant, called an ant sequence. In the case
of MMAS, the following procedure is used to choose an
unscheduled job, say job i, probabilistically for position p.

Choose randomly a machine j
Sample a uniform random number u in the range (0,1).
If u≤(n−4)/n
then

among the jobs that are not yet scheduled, choose the
job with the maximum value of τip to assign on
machine j;

else

job i is selected, from the set of first five unscheduled
jobs as present in the best sequence obtained so far, for
position p by sampling from the following probability
distribution:

"ip ¼ t ip

,P
i''

t i' 'p

0
@

1
A; ð1Þ

where job i″ belongs to the set of first five unscheduled
jobs, as present in the best sequence obtained so far. Note
that when there are less than five jobs unscheduled, all such
unscheduled jobs are considered.

3.2.2 Updating the trail intensities

An ant sequence is subjected to the position-based local
search procedure to enhance the quality of solution. Let the
objective function value of this improved sequence be
denoted by Zcurrent. The trail intensities are updated as
follows:

tnewip ¼ r� toldip þ 1=Zcurrentð Þ if job i is placed in position
p in the generated sequence;

r� toldip otherwise;

8<
:

ð2Þ
Update the best sequence and Zbest, if the generated
sequence is superior to the best sequence obtained so far
[23].

3.3 Variable neighborhood search

VNS is one of the most recent metaheuristics developed for
problem solving in an easier way. It is known as one of the
very well-known local search methods [43], takes more

attention day by day, because of its ease of use and success
in solving combinatorial optimization problems [26].
Basically, a local search algorithm carries out exploration
within a limited region of the whole search space. This only
facilitates to find better solutions without doing further
investigation. The VNS is a simple and effective search
procedure that proceeds to a systematic change of neigh-
borhood. An ordinary VNS algorithm starts with an initial
solution, x∈S, where S is the whole set of search space, and
manipulates it through a two-nested loop in which the core
one alters and explores via two main functions so-called
shake and local search. The outer loop works as a refresher
reiterating the inner loop, while the inner loop carries out the
major search. Local search explores for an improved solution
within the local neighborhood, while shake diversifies the
solution by switching to another local neighborhood.
The inner loop iterates as long as it keeps improving the
solutions, where an integer, k, controls the length of the loop.
Once an inner loop is completed, the outer loop reiterates
until the termination condition is met. Since the comple-
mentariness of neighborhood functions is the key idea
behind VNS, the neighborhood search (NS) should be
chosen very rigorously so as to achieve an efficient VNS.

This method is different from the most local search
heuristics in that it uses two or more neighborhoods, instead
of one, in its structure. In addition, to avoid costing too
much computational time, the best number of neighbor-
hoods is often three [50], which is followed by our
algorithm, so index l is defined to show local search type.

Note that the neighborhoods themselves (N1(S), N2(S),
and N3(S), respectively) are determined both by its
respective structure and by the solution it is being applied
to. The size of neighborhood N1(S) is O(m·n2), neighbor-
hood N2(S) is O(m

2·n2) and neighborhood N3(S) is O(n
2).

The basic VNS structure is designed as shown in
Algorithm 2.

Algorithm 2: Basic VNS structure

1: Find an initial solution S*;
2: l ← 1;
3: for iterations ← 1 to a maximum number of

iterations do
4: S ← S*;
5: Shake procedure: find a random solution S′∈ Nl

(S);
6: Perform a local search on Nl (S′) to find a

solution S″;
7: if f(S″)≤ f(S*) then
8: S* ← S″;
9: l ← 1;

10: end if
11: l ← l+1;
12: end for

Int J Adv Manuf Technol (2009) 44:795–808 799



3.3.1 Random solutions

Every time a neighborhood is selected, a random procedure
is called. This procedure selects a random solution from the
selected neighborhood structure. Therefore, three proce-
dures are created in the following manner, one for each
index l:

1. For N1(S):

& Choose randomly a machine i.
& Choose randomly two jobs j1 and j2 on machine i.
& Swap jobs j1 and j2.

2. For N2(S):

& Choose randomly two machines i1 and i2.
& Choose randomly a job j1 on i1 and a job j2 on i2.
& Swap jobs j1 and j2.

3. For N3(S):

& Choose randomly one job j1 and one machine i2,
where j1 does not belong to i2.

& Choose randomly a valid position “pos” in i2.
& Transfer job j1 to i2 at the position pos.

3.3.2 The local searches

There are several variations of the VNS structure. In our
version, we use a specific local search for each neighbor-
hood. The local searches are listed below.

LS 1: Job swaps at one machine: This local search
analyzes every possible swap on one machine
(see Fig. 1). Even when the chosen machine is not
the one with the greatest completion time, the
objective function can be improved by reducing
the delay of some jobs. The algorithm has the time
complexity O(m.n2):

Algorithm 3: Local search 1

1: for each i do
2: for each j1 in i do
3: for each j2 in i, j1≠ j2, do
4: if solution considering j1 and j2 swapped <

current solution then

5: Swap j1 and j2.
6: end if
7: end if
8: end for
9: end for

LS 2: Job swaps on different machines: In this local
search, all job swaps between jobs belonging to
these different machines are evaluated (see Fig. 2).
A larger number of solutions are searched. The
time complexity of our algorithm is O(m2.n2):

Algorithm 4: Local search 2

1: for each i1 do
2: for each j1 in i1 do
3: for each i2, i1≠ i2, do
4: for each j2 ∈i2 do
5: if solution considering j1 and j2 swapped <

current solution then
6: Swap j1 and j2.
7: end if
8: end for
9: end for

10: end for
11: end for

LS 3: Job insertion: This procedure searches for new
solutions transferring jobs from the machine with
the highest sum of the earliness and tardiness to the
machine with the lowest one (see Fig. 3). The time
complexity of our implementation is O(n2):

Algorithm 5: Local search 3

1: Find the machine with the highest sum of the
earliness and tardiness i1;

2: Find the machine with the lowest sum of the
earliness and tardiness i2, i1 ≠ i2;

3: for each j in i1 do

1 2 3 4 5

6 7 8 9 10

3 2 1 4 5

6 7 8 9 10

Fig. 1 Local search 1

1 2 3 4 5

6 7 8 9 10

9 2 3 4 5

6 7 8 1 10

Fig. 2 Local search 2

1 2 3 4 5

6 7 8 9 10

1 3 4 5

6 7 8 2 9 10

Fig. 3 Local search 3

800 Int J Adv Manuf Technol (2009) 44:795–808



4: for each valid position pos in i2 do
5: if solution considering j transferred from i1 to i2

in position pos < current solution then
6: Transfer j from i1 to i2 on position pos.
7: end if
8: end for
9: end for

The algorithm always tries to use the fastest local search
available first. If after an iteration no improvement is made,
another neighborhood is used (l is incremented), and every
time a new solution is found, the first and the fastest local
search is used (l=1). Further reading about neighborhood
search techniques can be found on Ahuja et al. [3].

3.4 Simulated annealing

The SA technique, proposed by Kirkpatrick et al. [34], is an
iterative, stochastic, neighborhood-based search method
motivated from an analogy between the simulation of the
annealing of solids and the strategy of solving combinato-
rial optimization problems. SA has been widely applied to
solve combinatorial optimization problems [60]. It is
inspired by the physical process of heating a substance
and then cooling it slowly, until a strong crystalline
structure is obtained. This process is simulated by lowering
an initial temperature by slow stages until the system
reaches to an equilibrium point, and no more changes
occur. The algorithmic framework of SA is described in
Algorithm 6.

Algorithm 6: Simulated annealing

1: input: an instance x of a CO problem
2: S ← Generate Initial solution()
3: k ← 0
4: Tk ← Set Initial temperature()
5: while termination conditions not met do
6: S′ ← Pick neighbor at random(N(S))
7: if f(S′)≤ f(S) then
8: S ← S′;
9: else

10: Accept S′ as new solution with probability p(Tk,
S′, S)

11: end if
12: Adapt temperature(Tk)
13: end while
14: Sbest ← S
15: output: Sbest, “candidate” to optimal solution for x

The main idea of this technique is to start from some
initial solution, π′, and successively move among neigh-
boring solutions until the stopping condition is satisfied. At
each iteration, iter, a random solution, π′, is selected from

the neighborhood of actual solution (πiter) and it replaces
with a probability

Pðtiter; piter; p'Þ ¼ min 1; expð� f ðp'Þ � f ðpiterÞ
titer

� �
ð3Þ

where titer is a parameter called the temperature at iteration
iter. The temperature decreases during the search process
according to the cooling scheme. The performance of SA
depends on the following parameters, which have to be
precisely selected:

& Initial temperature
& Cooling scheme
& Final temperature

The following presents the implementation of SA
algorithm. For detailed description of the SA method,
the reader is referred to the literature, see, e.g., Aarts
and Lenstra [1], Kirkpatrick et al. [34], and Tian et al.
[57].

3.4.1 Initial temperature

The initial temperature is selected on the basis of K=nm+1
solutions π0; π1;...; πK, where πj is randomly selected from
the neighborhood of πj−1 and π0 is an initial solution. The
initial temperature is defined as

t0 ¼ ϕ1
d
mn

; ð4Þ

where d ¼ maxj¼1;::::k f pj
� �� f pj�1

� �� �
.

3.4.2 Cooling scheme

The temperature changes in every iteration according to the
logarithmic cooling scheme:

tjþ1 ¼ tj
1þ ltj

; ð5Þ

where parameter λ is defined as

l ¼ t0 � tf
ftf t0

ð6Þ

and f is 200. The final temperature tf is determined from the
following expression [31]:

tf ¼ ϕ2
f p0ð Þ
mn

: ð7Þ

Int J Adv Manuf Technol (2009) 44:795–808 801



3.5 Hybrid algorithm

The hybrid algorithm proposed here combines three
methods previously presented. The steps of the HMH
algorithm are as follows:

Step 1: Generating the initial solution with an ant
sequence. The method starts with generating
initial solutions by employing ACO.

Step 2: Intensification phase using VNS. The concept
borrowed by the HMH from the VNS is that
varying the neighborhood structure during the
search process could facilitate the avoidance of
traps and enlarge the search scope. In this first
phase, the ET value for each neighborhood
solution is calculated. VNS works by performing
movements that upgrade the solutions. So, the
solution that has the minimal ET value is selected
as a move.

Step 3: Diversification phase via a SA and VNS. In HMH,
a SA only is applied to diversification the solution.
The asymptotic convergence of SA to a global
optimum has been proved, even if such a result
has only a theoretical relevance [6]. At iteration, a
solution π′ is selected from the neighborhood
based on the VNS technique. When each move-
ment is available, unlike VNS technique, SA
executes a second phase where moving from the
current solution to a worse solution is allowed
with the probability given by expression Eq. 3,
with the expectation that this movement will
eventually guide to a better solution. However, if
π′ is not accepted, neighborhood structure is
changed in the same way as in VNS technique
(shaking function).

Step 4: Global pheromone update phase and ant genera-
tion for next solution by means of ACO. This
phase is performed after each ant has completed
its schedule. In order to make the search more
directed, the global pheromone update rule is
intended to better schedules.

The proposed hybrid metaheuristic mechanics is sche-
matically presented in Fig. 4. The basic proposed hybrid
algorithm structure is designed as shown in Algorithm 7.

Algorithm 7: Main body of hybrid algorithm (namely
HMH)

1: Rtime ← Set run time()
2: while run time <Rtime do
3: S* ← Generate initial solution()
4: l ← 1;
5: for each ant do
6: S ← S*;
7: k ← 0
8: Tk ← Set initial temperature()
9: Tf ← Set final temperature()

10: while current temperature > Tf do
11: Shake procedure: find a random solution S′ ∈ Nl

(S);
12: Perform a local search on Nl (S′) to find a solution

S″;
13: if f(S″) ≤ f(S*) then
14: S* ← S″;
15: l ← 1;
16: else
17: Accept S″ as new solution with probability p(Tk, S″,

S*)
18: end if
19: Adapt temperature(Tk)
20: l ← l+1;
21: end while
22: generate schedule
23: evaluate schedule
24: end for
25: verify for global or local best
26: evaporate pheromone in all trials
27: deposit pheromone on best global schedule
28: end while

4 VNS-based hybrid algorithms

This section discusses in details the proposed two VNS-
based algorithms with reference to the following steps that
summarize the hybridization procedure. In each algorithm,
first we generate the initial solution randomly then combine
the main metaheuristic ACO and SA algorithm with
variable neighborhood search. Basically, these hybrid
metaheuristics consist of two parts: the construction of a
main algorithm and a local search that make with VNS
algorithm. Details of metaheuristic used in these algorithms
are same as the hybrid approach that we describe

Global pheromone

updates and ant 

generation 

(ACO)

Intensification:

generating the

neighborhood 

(VNS)

Diversification: 

shake procedure,

accept

neighborhood

(VNS, SA)

Generate and 

evaluate new 

solution

(VNS)

Generating the 

initial solution

(ACO)

Fig. 4 The hybrid metaheuristic
mechanism step by step

802 Int J Adv Manuf Technol (2009) 44:795–808



previously. The algorithmic frameworks of two VNS-based
hybrid metaheuristics are described in Algorithms 8 and 9.

Algorithm 8: Main body of hybrid ACO/VNS (namely
ANV)

1: Rtime ← Set run time()
2: while run time < Rtime do
3: S* ← Generate initial solution()
4: l ← 1;
5: for each ant do
6: S ← S*;
7: k ← 0
8: for stopping criteria meet do
9: Shake procedure: find a random solution S′∈Nl (S);

10: Perform a local search onNl (S′) to find a solution S″;
11: if f(S″) ≤ f(S*) then
12: S* ← S″;
13: l ← 1;
14: end if
15: Adapt temperature(Tk)
16: l ← l+1;
17: end for
18: Generate schedule
19: Evaluate schedule
20: end for
21: Verify for global or local best
22: Evaporate pheromone in all trials
23: Deposit pheromone on best global schedule
24: end while

Algorithm 9: Main body of hybrid SA/VNS (namely
SAV)

1: Rtime ← Set run time()
2: while run time < Rtime do
3: S* ← Generate initial solution()
4: l ← 1;
5: for iterations ← 1 to a maximum permitted

number of iterations do
6: S ← S*;
7: k ← 0
8: Tk ← Set initial temperature()
9: Tf ← Set final temperature()

10: while current temperature > Tf do
11: Shake procedure: find a random solution S′∈Nl (S);
12: Perform a local search on Nl (S′) to find a solution

S″;
13: if f(S″) ≤ f(S*) then
14: S* ← S″;
15: l ← 1;
16: else
17: Accept S″ as new solution with probability p(Tk, S″,

S*)
18: end if

19: Adapt temperature(Tk)
20: l ← l+1;
21: end while;
22: end for
23: Verify for global or local best
24: end while

5 Experimental design

5.1 Data generation and settings

An experiment was conducted to test the performance of the
hybrid algorithms. Following Kurz and Askin [37], data
required for a problem consist of the number of jobs, number
of machines, range of processing times, and the range of
sequence-dependent setup times. The ready times are set to 0
for all jobs. To analyze the algorithms developed for this
problem, several classes of instances are defined. In each
class, there is a change in one of the inputs. Processing times
are distributed uniformly over two ranges with a mean of 60:
(50, 70) and (20, 100). The setup times are uniformly
distributed from 12 to 24 which are 20% to 40% of the mean
of the processing time. The setup time matrices are
asymmetric and satisfy the triangle inequality. The setup
time characteristics follow Rios-Mercado and Bard [49].

The problem data can be characterized by three factors,
and each of these factors can have at least two levels. These
levels are shown in Table 1. Another important issue is the
earliest and latest due dates of the jobs. To generate the due
dates of jobs, we proposed the following steps:

– Compute total processing time on a machine.

Pt ¼
Xn
i¼1

pi ð8Þ

– Compute total setup time for all possible subsequent
jobs and sum it on a machine.

St ¼
Xn
i¼1

Xn
j¼1

sij ð9Þ

Table 1 Factor levels of problem

Factor Levels

Number of jobs 6 30 100
Machine distribution Constant:1 2 10

Variable:
uniform (1, 4)

Uniform (1, 10)

Processing times Uniform (50, 70) Uniform (20, 100)

Int J Adv Manuf Technol (2009) 44:795–808 803



– Then dj1 and dj2 are generated as follows:

& Determine an earliest due date for each job.

di1 ¼ 1þ random

3

� �
� St

n
þ Pt

� �	
m;8i 2 N ð10Þ

& Determine a latest due date for each job.

di2 ¼ di1 þ random

3
� St

n
þ Pt

� �	
m

� �
; 8i 2 N

ð11Þ

where random is a random number from a uniform
distribution over range (0.5, 1). This method generates
very tight due window interval for each job.

5.2 Hybrid algorithm parameters tuning

It is known that the different levels of the parameters
clearly affect the quality of the solutions obtained by a
hybrid algorithm. A number of different hybrid algorithms
can be obtained with the different combinations of the
parameters. We have applied parameters tuning only for the
minimum values for trail intensity (τmin), persisting the trail
intensities (ρ) in ACO, initial temperature parameter (ϕ1),
and final temperature parameter (ϕ2) in SA algorithm,
considering the following ranges:

& τmin: two levels (1/7 τmax and 1/10 τmax)
& ρ: three levels (0.7, 0.8 and 0.9)
& 81: three levels (0.4, 0.6, and uniform (0.5, 1))
& 82: three levels (0.1, 0.01 and uniform (0, 0.1)).

Fifty-four different crosses are obtained by these levels.
We generate six instances, two small, two medium, and two
large, for each combination of n, m, SDST resulting a total
of 252 instances. All 252 instances are solved by 54
different hybrid algorithms.

The results are analyzed by the means of multifactor
analysis of variance (ANOVA) technique. (see [44]). Table 2
shows the results for different sizes of problems: small,
medium, and large.

5.3 Stopping rule

The stopping criterion used when testing all instances
with the algorithms is set to a computational time (CPU
time) limit fixed to m2 � nþ 1ð Þ=2ð Þ second. This
stopping criterion is not only responsive to the number of
parallel machines but also is sensitive towards rise in the
number of jobs.

5.4 Experimental results

In this section, we are going to compare the proposed
hybrid algorithms with the VNS algorithm which proposed
by Rocha et al. [50] for the SDST parallel machine
scheduling with the objective of minimizing the sum of
the completion time plus the sum of the weighted delays. In
this paper, VNS algorithm was adapted to the ET problem.
The proposed algorithms and VNS algorithm are coded in
C++ and run with an Intel Pentium IV dual core 2.5 GHz
PC at 896 MB RAM under a Microsoft Windows XP
environment.

We use Relative Percentage Index (RPI) as performance
measure to compare the methods, because RPI fulfills some
drawbacks of relative percentage deviation (RPD) in case of
the tardiness objectives. When the ET penalties of each
algorithm has been obtained for its instances, the best and
worst solutions obtained for each instance (which are
named MINsol and WORSTsol, respectively) by any of the
four algorithms are calculated. RPI is obtained by given
formula as follows:

RPI ¼ Algsol �Minsol
WORSTsol �Minsol

ð12Þ

where Algsol is the ET penalties obtained for a given
algorithm and instance. RPI takes value between 0 and 1.
Clearly, lower values of RPI are preferred.

5.4.1 Experimental results

The results of the experiments for two subsets, averaged for
each one of the n and m configurations, are shown in
Table 3. Each instance is solved using six different seeds
and the average solution is considered.

As it can be seen, the hybrid algorithm provides better
results than other algorithms. In order to verify the
statistical validity of the results shown in Table 3 and to
confirm which the best algorithm is, we have performed a
design of experiments and an ANOVA where we consider
the different algorithms as a factor and the response
variable RPI.

The results demonstrate that there is a clear statistically
significant difference between performances of the algo-
rithms. The means plot and least significant difference

Table 2 Parameters tuning

Parameters Problems

Small Medium Large

τmin 1/7 τmax 1/10 τmax 1/10 τmax

ρ 0.9 0.7 0.7
81 Uniform (0.5, 1) Uniform (0.5, 1) 0.4
82 0.01 0.01 0.01

804 Int J Adv Manuf Technol (2009) 44:795–808



(LSD) intervals (at the 95% confidence level) for two
algorithms are shown in Fig. 5.

5.4.2 Analysis of controlled factors

Analysis of problem size factor (number of jobs) In order to
see the effect of number of jobs on two algorithms, a two-
way ANOVA is applied. Means plot and LSD intervals (at
the 95% confidence level) for the interaction between the
factors of type of algorithm and number of jobs are shown
in Fig. 6. As we can see, in all the cases of n=100, n=30,
and n=6, the HMH algorithm works better than other
algorithms.

Analysis of m factor (number of machines) Another two-
way ANOVA and LSD test are applied to see the effect of
magnitude of machines on quality of the algorithms. The
results are shown in Fig. 7. As we can see, in all the cases,
the HMH algorithm works better than others.

6 Conclusions and future works

In this paper, a sequence-dependent setup time parallel
machine scheduling problem with earliness and tardiness
penalties is attacked by means of a hybrid algorithm
approach. The problem involves job specific due window
time with sequence-dependent setup time, and this exten-

sively complicates the problem. The objective function
includes earliness/tardiness penalties. It is assumed that
the ET penalties will not occur if the job is completed
within the due window. However, ET penalties will occur
if a job is completed outside the due window. We have
defined an efficient method to calculate the earliest and
latest due date.

This paper suggested hybrid metaheuristic algorithm
which combines ACO, SA, and VNS in a population-based
context. For each new generation of schedules, the key is to
use hybridizing the population-based evolutionary search-
ing ability of ACO with the local improvement ability of
some VNS and SA to balance exploration and exploitation.

Table 3 Average relative percentage deviation RPI
� �

for algorithms grouped by n and m

Problem size Algorithm

Number of job Number of machine HMH SAV ANV VNS

6 1 0.09838 0.74112 0.56562 0.61579
2 0.09245 0.75468 0.45992 0.50747
Uniform (1, 4) 0.13762 0.71381 0.46910 0.50643
Uniform (1, 6) 0.11258 0.72304 0.47928 0.53404
6 Job 0.10785 0.72907 0.50806 0.56129

30 1 0.09143 0.56329 0.76991 0.69430
2 0.16619 0.55195 0.78134 0.77440
10 0.04865 0.77529 0.74111 0.74734
Uniform (1, 4) 0.16224 0.52754 0.77627 0.74659
Uniform (1, 10) 0.12055 0.59705 0.79841 0.74225
30 Job 0.09808 0.62332 0.77903 0.72995

100 1 0.06528 0.72822 0.62594 0.59018
2 0.04952 0.78619 0.67684 0.56156
10 0.15261 0.68874 0.76454 0.55859
Uniform (1, 4) 0.05769 0.77425 0.72227 0.59794
Uniform (1, 10) 0.06064 0.79950 0.68098 0.54634
100 Job 0.08124 0.75790 0.68455 0.56013

Average 0.09572 0.70343 0.65722 0.61712
R

P
I

0

0.2

0.4

0.6

0.8

HMH SAV ANV VNS

Fig. 5 Plot of RPI for the type of algorithm factor

Int J Adv Manuf Technol (2009) 44:795–808 805



In the proposed HMH, the balance between the global
exploration and the local exploitation was stressed. This
approach was generated new individuals that can effective-
ly guide and speed up the search. We believe that the
contribution of this method is not only the development of
a framework by which due date-related problems can be
solved but also the generality of the framework, as it can
solve different categories of scheduling problems readily
and with very good performance. The flexibility of this
algorithm in the exploration is plausible. For example,
depending on the number of machines, algorithm can

intelligently change local search type defined in VNS
algorithm and leading to better results.

Our computational experiments demonstrated that this
algorithm yields excellent results, which outperforms the
VNS algorithm proposed in a lately published literature for
this problem. There are a number of opportunities for future
research. Of most significance include generalizations in
the model to accommodate (1) multiple objectives, (2) other
versions of the scheduling problems, e.g., single machine or
job shop scheduling problems, and (3) dynamic job
arrivals.

R
P

I 

0

0.2

0.4

0.6

0.8

1

m=1 m=2 m=10 Unif(1,4) Unif(1,10) m=1 m=2 m=10 Unif(1,4) Unif(1,10)

HMH

SAV 

number of machine

0

0.2

0.4

0.6

0.8

1

HMH

VNS

number of machine

m=1 m=2 m=10 Unif(1,4) Unif(1,10) m=1 m=2 m=10 Unif(1,4) Unif(1,10)

number of machine number of machine

R
P

I 

0.6

0.65

0.7

0.75

0.8

SAV 

ANV

0.5

0.6

0.7

0.8

ANV

VNS

Fig. 7 Plots of RPI for the
interaction between the type of
algorithm and magnitude of
machines

R
P

I 

0

0.2

0.4

0.6

0.8

1

6 Job 30 Job 100 Job 6 Job 30 Job 100 Job

6 Job 30 Job 100 Job 6 Job 30 Job 100 Job

HMH

SAV 

number of Job

0

0.2

0.4

0.6

0.8

1

HMH

VNS

number of Job

R
P

I

0.4

0.6

0.8

SAV 

ANV

number of Job

0.4

0.6

0.8

ANV

VNS

number of Job

Fig. 6 Plots of RPI for the
interaction between the type of
algorithm and number of jobs

806 Int J Adv Manuf Technol (2009) 44:795–808



References

1. Aarts E, Lenstra JK (1997) Search in combinatorial optimization.
Wiley, New York

2. Ahmed MU, Sundararaghavan PS (1990) Minimizing the weight-
ed sum of late and early completion penalties in a single machine.
IIE Trans 22(3):288–290. doi:10.1080/07408179008964183

3. Ahuja RK, Ergun O, Orlin JB, Punnen AP (2002) A survey of
very large-scale neighborhood search techniques. Discrete Appl
Math 123:75–102. doi:10.1016/S0166-218X(01)00338-9

4. Almeida MT, Centeno M (1998) A composite heuristic for the
single machine early/tardy job scheduling problem. Comput Oper
Res 25:625–635. doi:10.1016/S0305-0548(97)00097-X

5. Anger FD, Lee CY, Martin-Vega LA (1986) Single-machine
scheduling with tight windows. Research Paper, 86–16, University
of Florida

6. Anghinolfi D, Paolucci M (2007) Parallel machine total tardiness
scheduling with a new hybrid metaheuristic approach. Comput
Oper Res 34:3471–3490. doi:10.1016/j.cor.2006.02.009

7. Balakrishnan N, Kanet JJ, Sridharan SV (1999) Early/tardy
scheduling with sequence-dependent setups on uniform parallel
machines. Comput Oper Res 26:127–141. doi:10.1016/S0305-
0548(98)00051-3

8. Bean JC (1994) Genetic algorithms and random keys for
sequencing and optimization. ORSA J Comput 6(2):154–160

9. Bilge U, Kirac F, Kurtulan M, Pekgun PA (2004) Tabu search
algorithm for parallel machine total tardiness problem. Comput
Oper Res 31:397–414. doi:10.1016/S0305-0548(02)00198-3

10. Birman M, Mosheiov G (2004) A note on a due-date assignment
on a two-machine flow-shop. Comput Oper Res 31:473–480.
doi:10.1016/S0305-0548(02)00225-3

11. Bülbül K, Kaminsky P, Yano C (2007) Preemption in single
machine earliness/tardiness scheduling. J Sched 10:271–292.
doi:10.1007/s10951-007-0028-6

12. Chang P-C, Chen S-H, Fan C-Y (2008) A hybrid electromagne-
tism-like algorithm for single machine scheduling problem. Expert
Syst Appl 36:1259–1267. doi:10.1016/j.eswa.2007.11.050

13. Chen ZL (1996) Scheduling and common due date assignment
with earliness–tardiness penalties and batch delivery costs. Eur J
Oper Res 93:49–60. doi:10.1016/0377-2217(95)00133-6

14. Chen ZL, Lee CY (2002) Parallel machine scheduling with a
common due window. Eur J Oper Res 136:512–527. doi:10.1016/
S0377-2217(01)00068-6

15. Chen ZL, Powell WB (1999) A column generation based
decomposition algorithm for a parallel machine just-in-time
scheduling problem. Eur J Oper Res 116:221–233

16. Cheng TCE, Chen ZL (1994) Parallel-machine scheduling with
earliness and tardiness penalties. J Oper Res Soc 45:685–695

17. Dorigo M, Stuetzle T (2004) Ant colony optimization. MIT,
Boston, MA

18. Emmons H (1987) Scheduling to a common due-date on parallel
uniform processors. Nav Res Logistics Q 34:803–810. doi:10.1002/
1520-6750(198712)34:6<803::AID-NAV3220340605>3.0.CO;2-2

19. Esteve B, Aubijoux C, Chartier A, Tkindt V (2006) A recovering
beam search algorithm for the single machine just-in-time
scheduling problem. Eur J Oper Res 172:798–813. doi:10.1016/
j.ejor.2004.11.014

20. Federgruen A, Mosheiov G (1997) Heuristics for multi-
machine min–max scheduling problems with general earliness
and tardiness costs. Nav Res Logistics 44:287–299.
doi:10.1002/(SICI)1520-6750(199704)44:3<287::AID-
NAV4>3.0.CO;2-4

21. Feng G, Lau HC (2005) Efficient algorithms for machine
scheduling problems with earliness and tardiness penalties. In:
Proceedings of the 2nd Multidisciplinary International Conference

on Scheduling: Theory and Applications, New York, USA, July
18–21, 2005, pp 196–211

22. Fowler JW, Horng SM, Cochran JK (2003) A hybridized genetic
algorithm to solve parallel machine scheduling problems with
sequence-dependent setups. Int J Ind Eng Theory Appl Pract
10:232–243

23. Gajpal Y, Rajendran C (2006) An ant-colony optimization
algorithm for minimizing the completion-time variance of jobs
in flowshops. Int J Prod Econ 101:259–272. doi:10.1016/j.
ijpe.2005.01.003

24. Gendreau M, Laporte G, Guimaraes EM (2001) A divide and
merge heuristic for the multiprocessor scheduling problem with
sequence-dependent setup times. Eur J Oper Res 133:183–189.
doi:10.1016/S0377-2217(00)00197-1

25. Gordon V, Proth JM, Chu C (2002) A survey of the state-of-the-
art of common due-date assignment and scheduling research. Eur
J Oper Res 135:1–25. doi:10.1016/S0377-2217(01)00181-3

26. Hansen P, Mladenovic N, Dragan U (2004) Variable neighbor-
hood search for the maximum clique. Discrete Appl Math 145
(1):117–125. doi:10.1016/j.dam.2003.09.012

27. Heady RB, Zhu Z (1998) Minimizing the sum of job earliness and
tardiness in a multimachine system. Int J Prod Res 36:1619–1632.
doi:10.1080/002075498193192

28. Herrmann JW, Lee CY (1993) On scheduling to minimize earliness–
tardiness and batch delivery costs with a common due date. Eur J
Oper Res 70:272–288. doi:10.1016/0377-2217(93)90239-J

29. Hiraishi K, Levner E, Vlach M (2002) Scheduling of parallel
identical machines to maximize the weighted number of just-in-
time jobs. Comput Oper Res 29:841–848. doi:10.1016/S0305-
0548(00)00086-1

30. Hoogeveen JA (2005) Multicriteria scheduling. Eur J Oper Res
167:592–623. doi:10.1016/j.ejor.2004.07.011

31. Janiak A, Kozan E, Lichtenstein M, Oguz C (2007) Metaheuristic
approaches to the hybrid flowshop scheduling problem with a
cost-related criterion. Int J Prod Econ 105:407–424. doi:10.1016/j.
ijpe.2004.05.027

32. Kim D, Kim K, Jang W, Chen F (2002) Unrelated parallel machine
scheduling with setup times using simulated annealing. Comput
Integr Manuf 18:223–231. doi:10.1016/S0736-5845(02)00013-3

33. Kima DW, Na DG, Chenb FF (2003) Unrelated parallel machine
scheduling with setup times and a total weighted tardiness
objective. Comput Integr Manuf 19:173–181. doi:10.1016/
S0736-5845(02)00077-7

34. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220:671–680. doi:10.1126/science.
220.4598.671

35. Kramer FJ, Lee CY (1994) Due window scheduling for parallel
machines. Math Comput Model 20:69–89. doi:10.1016/0895-
7177(94)90208-9

36. Kubiak W, Lou S, Sethi R (1990) Equivalence of mean flow time
problems and mean absolute deviation problems. Oper Res Lett
9:371–374. doi:10.1016/0167-6377(90)90056-B

37. Kurz ME, Askin RG (2001) Heuristic scheduling of parallel
machines with sequence-dependent setup times. Int J Prod Res
39:3747–3769. doi:10.1080/00207540110064938

38. Lam K, Xing W (1997) New trends in parallel machine
scheduling. Int J Oper Manage 17:326–338. doi:10.1108/
01443579710159932

39. Lauff V, Werner F (2004) Scheduling with common due date,
earliness and tardiness penalties for multimachine problems: a
survey. Math Comput Model 40:637–655. doi:10.1016/j.
mcm.2003.05.019

40. Lee CY, Danusaputro S, Lin CS (1991) Minimizing weighted
number of tardy jobs and weighted earliness–tardiness penalties
about a common due date. Comput Oper Res 18:379–389.
doi:10.1016/0305-0548(91)90098-C

Int J Adv Manuf Technol (2009) 44:795–808 807

dx.doi.org/10.1080/07408179008964183
dx.doi.org/10.1016/S0166-218X(01)00338-9
dx.doi.org/10.1016/S0305-0548(97)00097-X
dx.doi.org/10.1016/j.cor.2006.02.009
dx.doi.org/10.1016/S0305-0548(98)00051-3
dx.doi.org/10.1016/S0305-0548(98)00051-3
dx.doi.org/10.1016/S0305-0548(02)00198-3
dx.doi.org/10.1016/S0305-0548(02)00225-3
dx.doi.org/10.1007/s10951-007-0028-6
dx.doi.org/10.1016/j.eswa.2007.11.050
dx.doi.org/10.1016/0377-2217(95)00133-6
dx.doi.org/10.1016/S0377-2217(01)00068-6
dx.doi.org/10.1016/S0377-2217(01)00068-6
dx.doi.org/10.1002/1520-6750(198712)34:6<803::AID-NAV3220340605>3.0.CO;2-2
dx.doi.org/10.1002/1520-6750(198712)34:6<803::AID-NAV3220340605>3.0.CO;2-2
dx.doi.org/10.1016/j.ejor.2004.11.014
dx.doi.org/10.1016/j.ejor.2004.11.014
dx.doi.org/10.1002/(SICI)1520-6750(199704)44:3<287::AID-NAV4>3.0.CO;2-4
dx.doi.org/10.1002/(SICI)1520-6750(199704)44:3<287::AID-NAV4>3.0.CO;2-4
dx.doi.org/10.1016/j.ijpe.2005.01.003
dx.doi.org/10.1016/j.ijpe.2005.01.003
dx.doi.org/10.1016/S0377-2217(00)00197-1
dx.doi.org/10.1016/S0377-2217(01)00181-3
dx.doi.org/10.1016/j.dam.2003.09.012
dx.doi.org/10.1080/002075498193192
dx.doi.org/10.1016/0377-2217(93)90239-J
dx.doi.org/10.1016/S0305-0548(00)00086-1
dx.doi.org/10.1016/S0305-0548(00)00086-1
dx.doi.org/10.1016/j.ejor.2004.07.011
dx.doi.org/10.1016/j.ijpe.2004.05.027
dx.doi.org/10.1016/j.ijpe.2004.05.027
dx.doi.org/10.1016/S0736-5845(02)00013-3
dx.doi.org/10.1016/S0736-5845(02)00077-7
dx.doi.org/10.1016/S0736-5845(02)00077-7
dx.doi.org/10.1126/science.220.4598.671
dx.doi.org/10.1126/science.220.4598.671
dx.doi.org/10.1016/0895-7177(94)90208-9
dx.doi.org/10.1016/0895-7177(94)90208-9
dx.doi.org/10.1016/0167-6377(90)90056-B
dx.doi.org/10.1080/00207540110064938
dx.doi.org/10.1108/01443579710159932
dx.doi.org/10.1108/01443579710159932
dx.doi.org/10.1016/j.mcm.2003.05.019
dx.doi.org/10.1016/j.mcm.2003.05.019
dx.doi.org/10.1016/0305-0548(91)90098-C


41. Lenstra J, Rinnooy Kan A, Brucker P (1977) Complexity of
machine scheduling problems. Ann Discrete Math 1:343–362.
doi:10.1016/S0167-5060(08)70743-X

42. Logendrana R, Mcdonellb B, Smuckera B (2007) Scheduling
unrelated parallel machines with sequence-dependent setups.
Comput Oper Res 11:3420–3438. doi:10.1016/j.cor.2006.02.006

43. Mladenovic N, Hansen P (1997) Variable neighborhood search.
Comput Oper Res 24:1097–1100. doi:10.1016/S0305-0548(97)
00031-2

44. Montgomery DC (2000) Design and analysis of experiments, 5th
edn. Wiley, New York

45. Nessah F, Yalaoui F, Chu C (2005) New heuristics for identical
parallel machine scheduling with sequence-dependent setup times
and dates. In: Proceedings of the International Conference on
Industrial Engineering and Systems Management, Marrakech,
Morocco, May 16–19, 2005, pp 32–41

46. Park Y, Kim S, Lee YH (2000) Scheduling jobs on parallel
machines applying neural network and heuristic rules. Comput Ind
Eng 38:189–202. doi:10.1016/S0360-8352(00)00038-3

47. Pinedo M (1995) Scheduling theory, algorithms, and systems.
Prentice-Hall, Englewood Cliffs, NJ

48. Radhakrishnan S, Ventura JA (2000) Simulated annealing for
parallel machine scheduling with earliness–tardiness penalties and
sequence-dependent setup times. Int J Prod Res 38:2233–2252.
doi:10.1080/00207540050028070

49. Rios-Mercado RZ, Bard JF (1998) Computational experience with
a branch-and-cut algorithm for flowshop scheduling with setups.
Comput Oper Res 25(5):351–366. doi:10.1016/S0305-0548(97)
00079-8

50. Rocha M, Gómez Ravetti M, Mateus GR, Pardalos PM (2007)
Solving parallel machines scheduling problems with sequence-
dependent setup times using variable neighborhood search. IMA J
Manage Math 18:101–115. doi:10.1093/imaman/dpm016

51. Sivrikaya-Serifoglu F, Ulusoy G (1999) Parallel machine sched-
uling with earliness and tardiness penalties. Comput Oper Res
26:773–787. doi:10.1016/S0305-0548(98)00090-2

52. Stützle T (1998) An ant approach for the flowshop problem. In:
Zimmerman H (ed) Proceedings of the Sixth European Congress
on Intelligent Techniques and Soft Computing (EUFIT‘98), vol 3.
Mainz, Aachen, Germany, pp 1560–1564

53. Tahar DN, Yalaoui F, Chu C, Amodeo L (2006) A linear
programming approach for identical parallel machine scheduling
with job splitting and sequence-dependent setup times. Int J Prod
Econ 99:63–73. doi:10.1016/j.ijpe.2004.12.007

54. Talbi E (2002) A taxonomy of hybrid metaheuristics. J Heuristics
8(5):541–564. doi:10.1023/A:1016540724870

55. Tamimi SA, Rajan VN (1997) Reduction of total weighted
tardiness on uniform machines with sequence-dependent setups.
In: Proceedings of the 6th Industrial Engineering Research
Conference, pp 181–185

56. Tasgetiren MF, Sevkli M, Liang YC, Gencyilmaz G (2007) Particle
swarm optimization algorithm for makespan and total flowtime
minimization in permutation flowshop sequencing problem. Eur J
Oper Res 177(3):1930–1947. doi:10.1016/j.ejor.2005.12.024

57. Tian P, Ma J, Zhang DM (1999) Application of the simulated
annealing algorithm to the combinatorial optimization problem
with permutation property: an investigation of generation mech-
anism. Eur J Oper Res 118:81–94. doi:10.1016/S0377-2217(98)
00308-7

58. Vignier A, Sonntag B, Portmann MC (1999) Hybrid method for a
parallel-machine scheduling problem. In: IEEE Symposium on
Emerging Technologies and Factory Automation, ETFA, 1, 671–678

59. Wan G, Yen BPC (2002) Tabu search for single machine
scheduling with distinct due windows and weighted earliness/
tardiness penalties. Eur J Oper Res 142:271–281. doi:10.1016/
S0377-2217(01)00302-2

60. Yao X (1995) A new simulated annealing algorithm. Int J Comput
Math 56:161–168. doi:10.1080/00207169508804397

61. Yeung WK, Oğuz C, Cheng TCE (2004) Two-stage flowshop
earliness and tardiness machine scheduling involving a common
due window. Int J Prod Econ 90:421–434. doi:10.1016/S0925-
5273(03)00044-6

808 Int J Adv Manuf Technol (2009) 44:795–808

dx.doi.org/10.1016/S0167-5060(08)70743-X
dx.doi.org/10.1016/j.cor.2006.02.006
dx.doi.org/10.1016/S0305-0548(97)00031-2
dx.doi.org/10.1016/S0305-0548(97)00031-2
dx.doi.org/10.1016/S0360-8352(00)00038-3
dx.doi.org/10.1080/00207540050028070
dx.doi.org/10.1016/S0305-0548(97)00079-8
dx.doi.org/10.1016/S0305-0548(97)00079-8
dx.doi.org/10.1093/imaman/dpm016
dx.doi.org/10.1016/S0305-0548(98)00090-2
dx.doi.org/10.1016/j.ijpe.2004.12.007
dx.doi.org/10.1023/A:1016540724870
dx.doi.org/10.1016/j.ejor.2005.12.024
dx.doi.org/10.1016/S0377-2217(98)00308-7
dx.doi.org/10.1016/S0377-2217(98)00308-7
dx.doi.org/10.1016/S0377-2217(01)00302-2
dx.doi.org/10.1016/S0377-2217(01)00302-2
dx.doi.org/10.1080/00207169508804397
dx.doi.org/10.1016/S0925-5273(03)00044-6
dx.doi.org/10.1016/S0925-5273(03)00044-6

	Due window scheduling with sequence-dependent setup on parallel machines using three hybrid metaheuristic algorithms
	Abstract
	Introduction
	Problem description
	The hybrid metaheuristic approach
	Encoding scheme
	Ant colony optimization
	Generating the initial solution with an ant sequence
	Updating the trail intensities

	Variable neighborhood search
	Random solutions
	The local searches

	Simulated annealing
	Initial temperature
	Cooling scheme

	Hybrid algorithm

	VNS-based hybrid algorithms
	Experimental design
	Data generation and settings
	Hybrid algorithm parameters tuning
	Stopping rule
	Experimental results
	Experimental results
	Analysis of controlled factors


	Conclusions and future works
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


