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Abstract This paper presents the development of a
parameter optimization system that integrates mold flow
analysis, the Taguchi method, analysis of variance
(ANOVA), back-propagation neural networks (BPNNs),
genetic algorithms (GAs), and the Davidon–Fletcher–
Powell (DFP) method to generate optimal process
parameter settings for multiple-input single-output plas-
tic injection molding. In the computer-aided engineering
simulations, Moldex3D software was employed to
determine the preliminary process parameter settings.
For process parameter optimization, an L25 orthogonal
array experiment was conducted to arrange the number of
experimental runs. The injection time, velocity pressure
switch position, packing pressure, and injection velocity

were employed as process control parameters, with
product weight as the target quality. The significant
process parameters influencing the product weight and
the signal to noise (S/N) ratio were determined using
experimental data based on the ANOVA method. Exper-
imental data from the Taguchi method were used to train
and test the BPNNs. Then, the BPNN was combined with
the DFP method and the GAs to determine the final
optimal parameter settings. Three confirmation experi-
ments were performed to verify the effectiveness of the
proposed system. Experimental results show that the
proposed system not only avoids shortcomings inherent
in the commonly used Taguchi method but also produced
significant quality and cost advantages.

Keywords Parameter optimization .Mold flow analysis .

Taguchi method . ANOVA .GAs . DFP.
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1 Introduction

Determination of optimal process parameter settings is
critical work that has a direct and dramatic influence on
product quality and costs. In industry, trial-and-error
processes and the Taguchi method are frequently
employed to determine the initial process parameter
settings for injection molding. The Taguchi optimization
methodology uses the signal to noise (S/N) ratio approach
to determine the initial process parameter settings. In
previous studies, many researchers used the Taguchi
method to determine the initial process parameter settings
for an injection molding process. Tseng [1] determined
statistically significant parameters, including effects from
multiple interactions of the selected factors, through an

Int J Adv Manuf Technol (2009) 44:501–511
DOI 10.1007/s00170-008-1843-4

W.-C. Chen
Graduate School of Industrial Engineering and System
Management, Chung Hua University,
707 Wu Fu Rd., Sec. 2,
Hsinchu 30012, Taiwan

M.-W. Wang
Department of Mechanical Engineering,
National Kaohsiung University of Applied Sciences,
415 Chien Kung Road,
Kaohsiung 807, Taiwan

C.-T. Chen
Department of Computer Science and Information Engineering,
Ta Hwa Institute of Technology,
1 Tahwa Rd., Chiunglin,
Hsinchu 307, Taiwan

G.-L. Fu (*)
Department of Mechanical Engineering,
Minghsin University of Science and Technology,
1 Hsin Hsing Rd.,
Hsinchu 30401, Taiwan
e-mail: fu@must.edu.tw



analysis of variance (ANOVA) and the F test. Lin [2]
examined the effectiveness of the Taguchi technique with
regard to multiple performance characteristics by employ-
ing cutting parameters. Shiou and Chen [3] examined
optimal process parameters related to a Taguchi orthogo-
nal array in the finishing operation of freeform surface
plastic injection molding. Ghani et al. [4] described a
Taguchi optimization methodology for finding a combi-
nation of milling parameters using the S/N ratio approach
and ANOVA. Yang et al. [5] employed an orthogonal
array experiment to arrange 16 experimental runs. Melting
temperature, injection speed, and injection pressure were
adopted as the process control factors, and contour
distortions were utilized as the quality index. However,
the Taguchi method can only find the best set of specified
process parameter level combinations which are discrete
setting values of the process parameters. Application of
the conventional Taguchi method is unreasonable when
the variable of a process parameter is continuous, and it
cannot help engineers obtain optimal initial process
parameter setting results [6]. An unsuitable process
parameter setting can cause many defective products and
unstable product quality during the injection molding
process. Therefore, efficient analytical methodologies and
tools are necessary to efficiently and rapidly analyze
process parameters and control product quality.

To deal with these problems, many researchers of
injection molding processes have investigated the applica-
tion of artificial neural networks (ANNs) on quality
predictions [7–12]. The main reason for using ANNs is
that neural networks have the ability to learn arbitrary
nonlinear mappings between noisy sets of input and output
data. When the quality predictor is precise, the quality
controller can adjust the controllable parameters closer to
the target values of the injection molding process, and an
efficient model can be obtained. In finding the optimal
parameter settings of injection molding processes, ANNs
are frequently combined with genetic algorithms (GAs) [13,
14]. Ozcelik and Erzurumlu [13] employed an ANN model
to validate the predictive capability and then interfaced with
an effective GA to find optimum process parameter values.
The most important parameters were determined using
mold flow analytical results based on the ANOVA method.
Upon optimization, it was seen that the genetic algorithm
reduced the warpage that appeared in the initial samples.
Shi et al. [14] presented an improved hybrid strategy for
optimizing a plastic injection molding process. Numerical
software simulation, a GA, and a back-propagation neural
network (BPNN) were fused to optimize process parame-
ters. Costly numerical calculations were avoided by
creating an approximate model that used a BPNN. Kurtaran
and Erzurumlu [15] integrated finite-element (FE) analysis,
design of experimental method, response surface method-

ology, and a GA to effectively optimize warpage of thin-
shell plastic parts. In considering product warpage, an
ANOVA-based FE analysis can determine the most signif-
icant process parameters. Optimum values for those process
parameters can be determined through a predictive response
surface model in conjunction with a GA. The above
approaches used computer-aided engineering (CAE) simu-
lations with an optimization technique that can determine
the optimal process parameter settings for injection mold-
ing. The main problem with previous studies was that CAE
simulations are not practical since the molding environ-
ments create other noises to the part quality; besides, the
controllability, repeatability, and the precision of molding
machines provide more noises that contribute to part quality
in real molding. These noises are not considered in the
optimization processes using CAE simulations. To resolve
such problems, Chen et al. [16] integrated the Taguchi
method, BPNNs, GAs, and engineering optimization con-
cepts to optimize process parameters. A real-world plastic
injection molding (PIM) experiment was performed, and an
L25 orthogonal array experiment was conducted to arrange
the number of experimental runs. Experimental data from
the Taguchi method were used to train and test the BPNN.
Then, the BPNN was combined with GA to determine final
optimal parameter settings. Their research results indicated
that the BPNN–GA approach can effectively help engineers
determine optimal process parameter settings. However,
Chen et al. [16] used a standard testing slug; in the present
study, we used a real-world housing piece which is better
related to actual manufacturing experiences. In addition, the
proposed parameter optimization system integrates mold
flow analysis, the Taguchi method, ANOVA, BPNNs, GAs,
and the DFP method to generate optimal process parameter
settings for multiple-input single-output (MISO) plastic
injection molding. The final optimal process parameter
settings obtained from the proposed system should be more
reliable and practical.

Previously, researchers showed that product weight is a
critical quality attribute, and a good indicator of manufac-
turing process stability for plastic injection molding. Yang
and Gao [17] revealed that product weight is an important
quality index for injection-molded products because the
product weight has a closer relation to other quality
properties (e.g., surface properties and mechanical proper-
ties) and particularly dimensional properties (e.g., dimen-
sions and thickness). They also claimed that the
performance of a manufacturing process and its quality
control can be monitored through product weight. Kamal et
al. [18] showed that the control of injection-molded product
weight is of great commercial interest and can produce
great value for production management. Since injection
molding is commonly used in the production of plastic
housing components, product weight is a feasible single
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quality characteristic that can be used for product quality
control of plastic housing components.

Process parameter settings for plastic injection molding
critically influence the quality of the molded products. An
unsuitable process parameter setting inevitably causes a
multitude of production problems: long lead times, many
rejects, and substandard moldings. The negative impact on
efficiency raises costs and reduces competitiveness. This
research develops a process parameter optimization system
to help manufacturers make rapid, efficient, preproduction
setups for MISO plastic injection molding. The focus of
this study was molded housing components, with attention
to a particularly telling quality characteristic: weight. The
optimization system proposed herein includes two stages.
In the first stage, mold flow analysis was used to obtain
preliminary process parameter settings. In the second stage,
the Taguchi method with ANOVAwas applied to determine
optimal initial process parameter settings, and a BPNN was
applied to build up the prediction model. Then, the BPNN
was individually combined with the DFP method and with
a GA to search for the final optimal process parameter
settings. Three confirmation experiments were performed to
verify the effectiveness of the final optimal process
parameter settings. The final optimal process parameter
settings are not limited to discrete values as in the Taguchi
method and can determine settings for production that not
only approach the target value of the selected quality
characteristic more closely but also with less variation.

2 Optimization methodologies

The optimization methodologies including BPNNs, GAs,
and the DFP method are briefly introduced as follows.

2.1 Back-propagation neural networks

Many researchers have mentioned that BPNNs have the
advantage of fast response and high learning accuracy [19–
23]. A BPNN consists of an input layer, one or more hidden
layers, and an output layer. The parameters for a BPNN
include: the number of hidden layers, the number of hidden
neurons, the learning rate, momentum, etc. All of these
parameters have significant impacts on the performance of
a neural network. In this research, the steepest descent
method was used to find the weight and bias change and
minimize the cost function. The activation function is a
hyperbolic tangent function. In network learning, input data
and output results are used to adjust the weight and bias
values of the network. The more detailed the input training
classification is and the greater the amount of learning
information provided, the better the output will conform to
the expected result. Since the learning and verification of

data for the BPNN are limited by the function values, the
data must be normalized by the following equation:

PN ¼ P � Pmin

Pmax � Pmin
� Dmax � Dminð Þ þ Dmin; ð1Þ

where PN is the normalized data; P is the original data;
Pmax is the maximum value of the original data; Pmin is the
minimum value of the original data; Dmax is the expected
maximum value of the normalized data, and Dmin is the
expected minimum value of the normalized data. When
applying neural networking to the system, the input and
output values of the neural network fall in the range of
[Dmin, Dmax].

According to previous studies [24, 25], there are a few
conditions for network learning termination: (1) when the
root mean square error (RMSE) between the expected value
and network output value is reduced to a preset value; (2)
when the preset number of learning cycles has been
reached; and (3) when cross-validation takes place between
the training samples and test data. In this research, the first
approach was adopted by gradually increasing the network
training time to slowly decrease the RMSE until it was
stable and acceptable. The RMSE is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

di � yið Þ2
vuut ; ð2Þ

where N, di, and yi are the number of training samples, the
actual value for training sample i, and the predicted value of
the neural network for training sample i, respectively.

2.2 Genetic algorithms

GAs are a method of searching for optimized factors
analogous to Darwin's survival of the fittest and are based
on a biological evolution process. The evolution process is
random yet guided by a selection mechanism based on the
fitness of individual structures. There is a population of a
given number of individuals, each of which represents a
particular set of defined variables. Fitness is determined by
the measurable degree of approach to the ideal. The “fittest”
individuals are permitted to “reproduce” through a recom-
bination of their variables, in the hope that their “offspring”
will prove to be even better adapted. In addition to the strict
probabilities dictated by recombination, a small mutation
rate is also factored in. Less-fit individuals are discarded
with the subsequent iteration, and each generation pro-
gresses toward an optimal solution.

GAs consist of four main stages: evaluation, selection,
crossover, and mutation [26]. The evaluation procedure
measures the fitness of each individual solution in the
population and assigns it a relative value based on the
defining optimization (or search) criteria. Typically, in a
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nonlinear programming scenario, this measure reflects the
objective value of the given model. The selection procedure
randomly selects individuals of the current population to
develop the next generation. Various alternative methods
have been proposed, but all follow the idea that the fittest
have a greater chance of survival. The crossover procedure
takes two selected individuals and combines them about a
crossover point thereby creating two new individuals.
Simple reproduction can also occur which replicates a
single individual into the new population. The mutation
procedure randomly modifies the genes of an individual
subject by a small mutation factor, introducing further
randomness into the population.

2.3 Davidon–Fletcher–Powell method

Fletcher and Powell [27] revised Davidon’s variable
metric method and proposed the DFP method. The DFP
method is an improved alternative to Newton’s method,
which is too costly for many applications. The DFP
method is often called the quasi-Newton method. In the
DFP method, it is not necessary for practitioners to
actually evaluate the Hessian matrix as they must for the
Newton method. The DFP method uses a symmetrical,
positive, definite Mn×n matrix as an estimate for the
inverse Hessian matrix of Newton’s method. For any
given initial starting value vector of parameter variables,
the M(k) matrix will converge to the inverse Hessian
matrix after k iterative computations. Consequently, the
DFP method has advantages of faster convergence and
less computation than Newton’s method when applied to
nonlinear optimization problems. The iteration process of
the DFP method is given as follows after analysis defined
an objective function, f(X) [26].

Step 1 Set initial values X(0); decide a convergence
parameter, ɛ; let the initial symmetric positive
matrix, M(0), be the identity matrix, I; compute
the gradient vector as

C 0ð Þ ¼ rf X ð0Þ
� �

: ð3Þ

Step 2 Compute the norm of the gradient vector as
C kð Þ�� ��. If C kð Þ�� ��h", then stop the iteration

process. If not, the iteration process continues. k
is the number of iterations.

Step 3 Calculate the search direction of k iterations:

D kð Þ ¼ �M kð ÞC kð Þ: ð4Þ

Step 4 Calculate the optimum step size αk=α. Any one-
dimensional search procedure can be used to
minimize f X kð Þ þ aD kð Þ� �

and obtain the α value.

Step 5 Update the design variables as

X kþ1ð Þ ¼ X kð Þ þ akD
kð Þ: ð5Þ

Step 6 Update the symmetric positive matrix M(k) as
follows:

M kþ1ð Þ ¼ M kð Þ þ N kð Þ þ O kð Þ; ð6Þ
where

N kð Þ ¼ S kð ÞS kð ÞT

S kð Þ � Y kð Þð Þ ; ð7Þ

OðkÞ ¼ �ZðkÞZðkÞT

Y ðkÞ � ZðkÞð Þ ; ð8Þ

S kð Þ ¼ akD
kð Þ

the change in design of k iterationsð Þ;
ð9Þ

Y kð Þ ¼ C kþ1ð Þ

� C kð Þ the change 2 gradient of k iterationsð Þ;
ð10Þ

C kþ1ð Þ ¼ rf X kþ1ð Þ
� �

; ð11Þ

Z kð Þ ¼ M kð ÞY kð Þ; ð12Þ

and superscript T denotes transposition of a matrix.
Step 7 Set k=k+1 and go to step 2.

3 Parameter optimization system for MISO plastic
injection molding processes

This section presents the process parameter optimization
system for MISO PIM under four process control factors
and one response. The proposed optimization system
integrates mold flow analysis, the Taguchi method,
ANOVA, BPNNs, GAs, and the DFP method. The product
is a plastic injection-molded push-button housing compo-
nent. The injection time (IT), velocity pressure switch
position (VP), packing pressure (PP), and injection velocity
(IV) were selected as process control factors. Product
weight was selected as the only response for the case
study. The proposed optimization system herein has two
stages. In the CAE simulations, the preliminary process
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parameter settings were determined using a mold flow
analysis. In the process parameter optimization, the Taguchi
method was used to arrange an L25 orthogonal array
experiment and reduce the number of set test cycles.
Subsequently, the S/N ratio and ANOVA were used to
determine the initial process parameter settings that have
minimal sensitivity to noise with consideration of the major
quality characteristic. The experimental data of the Taguchi
method were used to effectively train and test the BPNN
that finely maps the relationship between the input process
control factors and the output response. Then, the BPNN
was individually combined with the DFP method and GAs
to determine the final optimal parameter settings. Finally,
three confirmation experiments were performed to confirm
the effectiveness of the final optimal process parameter
settings. The statistical averages, standard deviations, and
process capability indices were compared in order to judge
the best approach for determining the final optimal process
parameter settings. The flow chart of the proposed
parameter optimization system is shown in Fig. 1. The
procedures of the proposed system consisted of two stages
and are given as follows.

Stage I Determine the preliminary process parameter
settings via mold flow analysis.

Step 1 Identify the simulation parameters and quality
characteristics.

Step 2 Perform the mold flow analysis to obtain the
preliminary process parameter settings. Mol-
dex3D software was used for the mold flow
analysis.

Stage II Determine the final optimal process parameter
settings via the Taguchi method, ANOVA,
BPNN, the DFP method, and GAs.

Step 1 Identify the feasible quality response as the
target requirement of the experiment. The
response must be confirmed to have signifi-
cant influences on the final product quality.

Step 2 Determine the feasible control parameters
and levels that influence the performance of
the quality characteristic. The number of
control parameters which should be included
in the experiment and the number of levels
for each parameter can be decided using
experience, preliminary studies, or brain-
storming.

Step 3 Select an appropriate orthogonal array for
arranging the experiment and acquiring the
experimental treatments.

Step 4 Perform experiments for each treatment and
collect the performance measurements of the
responses.

Step 5 Select an appropriate formulation for the S/N
ratio and calculate the S/N ratio for each
response under different treatments of the
orthogonal array. The S/N ratio has three
types: nominal-the-best, larger-the-better, and
smaller-the-better.

Step 6 Implement the S/N ratio and ANOVA method
to determine the initial parameter settings.

Identify the simulation parameters 
and quality characteristics

Perform mold flow analysis to obtain 
the preliminary process parameter 

settings

Choose an orthogonal array and the 
experimental levels

Implement the Taguchi method and 
ANOVA to obtain the initial 

parameter settings

Develop a quality predictor using the 
BPNN model

Apply a GA plus the BPNN to find 
the optimal process parameters

Apply the DFP plus the BPNN to find 
the optimal process parameters

Conduct the PIM confirmation 
experiment

Was/Is the quality 
requirement achieved ?

Accept the optimal process 
parameter settings

Y

N

Fig. 1 The flow chart of the proposed parameter optimization system

Fig. 2 The push-button housing and runner system
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Step 7 Build a BPNN quality predictor that will finely
map the relationship between the input process
control parameters and the output response.

Step 8 Formulate the objective function of the DFP
method and the fitness function of the GA
with ranges of the process parameters.

Step 9 Determine the final optimal process parameter
settings via soft computing. The DFP method
and GA are individually coupled with the
BPNN model to yield two optimal solutions.

Step 10 Conduct three confirmation experiments.

3.1 Experimental equipment and illustrative example

In this study, the experimental material used was polypro-
pylene. The injection molding machine was a Nissei ES-

400. The product in this illustrative example was a plastic
injection-molded push-button housing piece shown in Fig.
2. Product weight was selected as the only quality
response. This study used a Mettler AE-100 electronic
balance to measure the product weight to an accuracy of
0.5 mg.

3.2 CAE simulations

The CAE simulations of the plastic part were carried out
to identify the preliminary process parameter settings. The
ranges of the parameters were set based on the material
processing guide for the selected polypropylene. Simu-
lations of the plastic part were performed to validate the
processing windows using Moldex3D software. Simula-
tion results indicated that the plastic part could be
successfully filled with good weight repetitiveness inside
the processing window. Figure 3 shows the simulation
result at the end of filling with the molding parameter
values shown in Table 1.

Table 1 Processing parameters employed in Moldex3D analysis

Control parameters Value

Injection time 1.5 s
Velocity pressure switch position 7.9 mm
Packing pressure 45 MPa
Injection velocity 46 mm/s
Melt temperature 250°C
Mold temperature 50°C
Injection pressure 175 MPa

Table 2 Product parameter setting ranges

Control parameters Setting ranges

Injection time 1.3∼1.7 s
Velocity pressure switch position 7.5∼8.3 mm
Packing pressure 35∼55 MPa
Injection velocity 40∼52 mm/s

Fig. 3 Simulation result at the
end of filling
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3.3 Implementation of the Taguchi method and BPNN
quality predictor

The Taguchi method normally selects an appropriate formu-
lation of the S/N ratio and calculates the S/N ratio for each
treatment. There are three types of S/N ratios: nominal-the-
best, larger-the-better, and smaller-the-better. Most engineers
choose the highest S/N ratio treatment as the preliminary
optimal initial process parameter setting. In this study, product
weight was selected as the only response for a plastic
injection-molded standard since it is easily monitored online,
and weight is a critical quality attribute [17, 18]. The weight
of the plastic injection-molded push-button housing piece
was a nominal-the-best-type response. Prior to this research,
the molder found that parts weighing 10.58 g had good and

acceptable dimensions and mechanical qualities. So the
target value of the push-button housing piece was set to
10.58 g, and the formula of the nominal-the-best is given as
follows:

S=N ¼ �10� log

Pn
i¼1

yi � mð Þ2

n

0
BB@

1
CCA

¼ �10� log y� mð Þ2þS2
� �

; ð13Þ

where yi is the response value of a specific treatment under i
replications; n is the number of replications; y is the average
of all yi values; m is the target value, and S is the standard

Table 4 Experimental treatments, response statistics, and the signal to noise (S/N) ratio

No. Weight (g)
Y1

Weight (g)
Y2

Weight (g)
Y3

Weight (g)
Y4

Weight (g)
Y5

Average weight
(g)

Standard
deviation

S/N
ratio

1 10.4959 10.4915 10.5003 10.4817 10.4942 10.4927 0.0069 21.15
2 10.5188 10.5184 10.5221 10.5172 10.5190 10.5191 0.0018 24.30
3 10.5534 10.5479 10.5568 10.5523 10.5529 10.5526 0.0031 31.20
4 10.5755 10.5741 10.57 10.5792 10.5757 10.5763 0.0019 47.62
5 10.5984 10.598 10.5938 10.5950 10.5910 10.5952 0.0030 36.16
6 10.5585 10.5599 10.552 10.5540 10.5500 10.5548 0.0042 31.87
7 10.5773 10.5800 10.5791 10.5731 10.5800 10.5779 0.0029 48.91
8 10.6002 10.6039 10.6029 10.6037 10.6035 10.6028 0.0015 32.80
9 10.5855 10.5789 10.5756 10.5851 10.5854 10.5821 0.0045 45.95

10 10.4853 10.4863 10.4439 10.5066 10.4976 10.4839 0.0240 20.09
11 10.6018 10.6008 10.6026 10.6036 10.6023 10.6022 0.0010 33.05
12 10.5925 10.5883 10.5852 10.5914 10.5851 10.5885 0.0034 40.75
13 10.6113 10.6140 10.6161 10.6161 10.6167 10.6148 0.0022 29.14
14 10.5379 10.5300 10.5383 10.5410 10.5452 10.5384 0.0055 27.55
15 10.5687 10.5722 10.5653 10.5711 10.5710 10.5696 0.0027 39.41
16 10.6168 10.6205 10.6153 10.6197 10.6226 10.6189 0.0029 28.15
17 10.6362 10.6335 10.6368 10.6349 10.6363 10.6355 0.0013 25.10
18 10.5646 10.5668 10.5651 10.5660 10.5665 10.5658 0.0009 36.93
19 10.5877 10.6011 10.5955 10.5925 10.5914 10.5936 0.0050 36.75
20 10.583 10.5782 10.5863 10.5853 10.5831 10.5831 0.0031 47.01
21 10.6596 10.6546 10.6603 10.6560 10.6562 10.6573 0.0024 22.22
22 10.5847 10.5840 10.5913 10.5785 10.5853 10.5847 0.0045 43.62
23 10.5892 10.5829 10.5787 10.5881 10.5768 10.5831 0.0055 43.95
24 10.6155 10.6189 10.6078 10.6158 10.6136 10.6143 0.0041 29.22
25 10.6368 10.6328 10.6352 10.6404 10.6369 10.6364 0.0027 24.96

Table 3 Control factors and
settings of the various levels Variable notation Control factors Level

1 2 3 4 5

A Injection time 1.3 1.4 1.5 1.6 1.7
B Velocity pressure switch position 7.5 7.7 7.9 8.1 8.3
C Packing pressure 35 40 45 50 55
D Injection velocity 40 43 46 49 52
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deviation of all yi values. This research applied an L25(5
6)

orthogonal array to assign four factors to the rows, with IT
(from the beginning of injection to completion of packing),
VP, PP, and IVassigned to rows A, B, C, and D, respectively.
Table 2 shows the four process control factors and parameter
setting ranges. Table 3 shows the control parameters and
settings of the various levels. There were 25 treatments in
total with different level combinations of the four factors.
Five replications were taken to increase the amount of
analytical data, in order to increase the sensitivity of the
statistical analysis. In total, 125 sample data points were
collected. During the collection of samples, ten shots of each
treatment were made before the official sample collecting job
began to ensure that the injection molding process was
operating stably. Since the response of the experiment was
the weight of the injection-molded plastic housing piece and
the company’s production consulting team had concluded
that the target product weight was 10.58 g with a tolerance of
0.048 g, nominal-the-best was applied to calculate the S/N
ratio for each treatment. From the experimental treatments,
response statistics, and the S/N ratio, the response average
and standard deviation of each treatment with five replica-
tions and the S/N ratio were obtained. Experimental treat-
ments, response statistics, and the S/N ratio are shown in
Table 4. The initial optimal process parameters that had the
highest S/N ratio were determined from the factor levels. The
value of the S/N ratio for each factor under different levels is
shown in Table 5. Table 6 shows the ANOVA results of the
product weight and indicates that all four control factors
were significant in terms of product weight. Table 7 reveals
that the influences of the four factors on the S/N ratio were
insignificant. Treatment no. 7 (A2B2C3D4) in Table 4 had the
highest S/N ratio and was employed as the possible initial
optimal process parameter settings. Therefore, the optimal
initial process parameter settings were an IT of 1.4 s, a VP of
7.7 mm, a PP of 45 MPa, and an IV of 49 mm/s.
Furthermore, the experimental data of the Taguchi method
were used to effectively train and test the BPNN quality
predictor that was used to finely map the relationship
between the input process control factors and output
responses. The network performance was obtained by
calculating the RMSE. The RMSE was 0.00108 for the test
BPNN. Comparisons between the target and predicted values
are shown in Fig. 4.

3.4 Hybrid BPNN–DFP and BPNN–GA search approaches
to optimize the system

To optimize the process parameter settings of the proposed
optimization system, an effective GA was coupled with the
BPNN model to yield a global optimal solution. In addition,
the DFP method was combined with the BPNN model to
produce a local optimal solution. Experimental data of the
Taguchi method were used to effectively train and test the
BPNN model that finely maps the relationship between
the input process control factors and the output response. In
this application, the objective function of the DFP method
and the fitness function of the GA were minimized by
optimizing four independent process parameters, namely,
the injection time, velocity pressure switch position,
packing pressure, and injection velocity. Product weight
was the target quality which was the output value of the
BPNN model. The mathematical formulation of the
objective function of the DFP method and the fitness
function of the GA with the ranges of process parameters
were the same and are given as follows [16]:

Min F Xð Þ ¼ yo � ytð Þ2
s:t:

LSRi � xi � USRi i ¼ 1; 2; 3 � � �m
; ð14Þ

where X ¼ x1; x2; x3 � � � xmð Þ is the process control param-
eters; yo is the predicted value (weight); yt is the target

Table 7 ANOVA for the signal to noise (S/N) ratio

Source of
variance

Sum of
squares

Degrees of
freedom

Mean
square

F0 p
value

A 121.771 4 30.443 1.013 0.944
B 129.475 4 32.369 1.078 0.380
C 161.149 4 40.287 1.341 0.587
D 162.766 4 40.691 1.354 0.086
Error 240.323 8 30.040
Total 815.483 24

*p≤0.0001

Table 6 ANOVA for product weight

Source
of variance

Sum of
squares

Degrees
of freedom

Mean
square

F0 p value

A 7.703E−02 4 1.926E−02 375.802 0.000*
B 1.988E−03 4 4.970E−04 9.700 0.000*
C 1.110E−01 4 2.785E−02 543.591 0.000*
D 1.594E−02 4 3.985E−03 77.777 0.000*
Error 5.534E−03 108 5.124E−05
Total 2.119E−01 124

*p≤0.0001

Table 5 Response table of the signal to noise (S/N) ratio

Level A B C D

1 32.092 27.295 29.872 39.769
2 35.929 36.543 35.261 26.183
3 33.985 34.810 37.885 28.142
4 34.793 37.424 34.863 39.025
5 32.801 33.528 31.719 36.482
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value (weight); xi is the notation of process parameter i, and
m is the total number of parameters. LSRi and USRi are the
lower and upper search ranges of process parameter i,
respectively. The method of setting LSRi and USRi is given
as follows:

LSRi ¼ PSni � Di

2
and ð15Þ

USRi ¼ PSni þ Di

2
; ð16Þ

where PSni is the process parameter setting value of
parameter i which generates the highest S/N ratio of the
response n, and Di is the factor level’s equivalent range of
parameter i in the Taguchi experiment. The initial values of
parameter variables X(0) for both the hybrid BPNN–DFP
search approach and the hybrid BPNN–GA search ap-
proach were the preliminary initial process parameter
settings obtained from the Taguchi method. Therefore, the
initial values of parameter variables X(0) were an injection
time of 1.4 s, a velocity pressure switch position of 7.7 mm,
a packing of pressure 45 MPa, and an injection velocity of
49 mm/s. According to Eqs. 14, 15, and 16, the search

ranges of process parameters in the GA or DFP method can
be obtained as follows:

1:35 � x1 � 1:45; 7:6 � x2 � 7:8;

42:5 � x3 � 47:5; 47:5 � x4 � 50:5:
ð17Þ

For this research, a Visual Basic program was developed
to effectively determine the final optimal process parameter
settings of the illustrative example. The target value of
product weight was 10.58 g.

4 Experimental results and discussion

Following the hybrid BPNN–DFP and hybrid BPNN–GA
search approaches, the final optimal process settings are
shown in Table 8. To demonstrate the effectiveness of the
proposed optimization system, this research performed
three confirmation experiments. One experiment utilized
preliminary initial process parameter settings obtained from
the Taguchi method. The other two experiments utilized the
final optimal initial process parameter settings obtained
from the hybrid BPNN–GA and BPNN–DFP search
approaches, respectively. Each experiment produced 30
product samples. The statistical averages, standard devia-
tions, and process capability indices of all three methods
were compared in order to judge the best approach for
determining the final optimal process parameter settings.

Fig. 5 Comparisons of quality characteristics (weight) among the
Taguchi, BPNN–DFP, and BPNN–GA approaches

Table 9 Comparisons of quality statistics among the Taguchi,
BPNN–DFP, and BPNN–GA approaches

Average Standard deviation Cpk

Taguchi approach 10.5739 0.0071 0.585
BPNN–DFP approach 10.5805 0.0035 1.69
BPNN–GA approach 10.5794 0.0021 2.75

Table 8 Optimal process parameter settings for both the BPNN–DFP
and BPNN–GA approaches

IT (s) VP (mm) PP (MPa) IV (mm/s)

BPNN–DFP
approach

1.39 7.70 44.8 49.0

BPNN–GA
approach

1.44 7.68 43.0 48.9

Fig. 4 Comparison between the target and predicted values
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Comparisons of quality statistics between the Taguchi,
BPNN–DFP, and BPNN–GA approaches are shown in
Table 9. In addition, comparisons of quality characteristics
(weight) between the Taguchi, BPNN–DFP, and BPNN–
GA approaches are shown in Fig. 5. According to the
experimental results, the standard deviation of the Taguchi
approach was 0.0071. That is approximately two times that
of the BPNN–DFP approach (0.0035) and 3.5 times that of
the BPNN–GA approach (0.0021). In the practical assess-
ment, the process capability index is a major criterion for
assessing the ability of a production process to make
products that meet specifications. The practical minimum
process capability index (Cpk) is 1.33 in many manufactur-
ing industries. If the process capability index (Cpk) is <1.33,
then manufacturers will not achieve a high yield rate and
may produce many nonconforming products. Therefore,
this research utilized the process capability index as the
major criterion for the quality requirement. As the results in
Table 9 show, the Cpk of Taguchi’s approach was 0.585;
which is roughly one third that of the BPNN–DFP approach
(1.69) and one fifth that of the BPNN–GA approach (2.75).
Consequently, the optimal process parameter settings
generated by the proposed two approaches definitely
produced better performances than the Taguchi method.
Experimental results also revealed that the BPNN–GA
approach produced the highest Cpk value and the best-
quality products. The BPNN–DFP approach did not
perform quite as well but was still better than the original
process parameter calculation method (the Taguchi meth-
od). The main reason is that the BPNN–GA approach is a
global search methodology for determining an optimal
solution, whereas the BPNN–DFP approach is a local
search methodology for finding an optimal solution. The
Taguchi method can only find the best set of specified
process parameter level combinations which comprises
discrete setting values of the process parameters. The
plastic injection molding industry produces myriad prod-
ucts, and each product has its own optimal machine
settings. An unsuitable process parameter setting can cause
many defective products and unstable product quality
during the injection molding process. In comparing the
three methods to arrive at those parameters settings, the
BPNN–GA search approach was clearly the best. There-
fore, the proposed optimization system is practical and
effective for parameter optimization in the plastic injection
molding process.

5 Conclusions

Costs of production in plastic injection molding are directly
affected by strategies for choosing parameter settings,
especially when setting up production runs. Setup strategies

have traditionally relied on some combination of skilled
trial and error, plus the Taguchi method. These traditional
strategies, however, often produce less than optimal results.
In seeking to alleviate some of those shortcomings, this
research made use of the Taguchi method, adding back-
propagation neural networks, genetic algorithms, the
Davidon–Fletcher–Powell method, and engineering optimi-
zation concepts to determine efficient strategies that
optimize both the setup process and product quality. Test
results showed that measurably better performance was
obtained using a tailored combination of approaches than
with the Taguchi method alone. Specifically, the Taguchi
method with BPNN plus DFP and BPNN plus GA and
statistical techniques optimally predicted process parameter
settings for MISO plastic injection molding setup proce-
dures. Application of these simple techniques produced
dramatic improvements in productivity by: (1) improving
the quality of the parts produced; (2) reducing the number
of rejects produced; (3) reducing waste or the regrinding of
rejects; (4) reducing inspection times required during
production; and (5) improving the scheduling of produc-
tion. Thus, the proposed system is a feasible and effective
method for process parameter optimization of MISO plastic
injection molding and can result in significant quality and
cost advantages.
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