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Abstract This paper considers group scheduling problem in
hybrid flexible flow shop with sequence-dependent setup
times to minimize makespan. Group scheduling problem
consists of two levels, namely scheduling of groups and jobs
within each group. In order to solve problems with this
context, two newmetaheuristics based on simulated annealing
(SA) and genetic algorithm (GA) are developed. A design
procedure is developed to specify and adjust significant
parameters for SA- and GA-based metaheuristics. The
proposed procedure is based on the response surface
methodology and two types of objective function are
considered to develop multiple-objective decision making
model. For comparing metaheuristics, makespan and elapsed
time to obtain it are considered as two response variables
representing effectiveness and efficiency of algorithms. Based
on obtained results in the aspect of makespan, GA-based
metaheuristic is recommended for solving group scheduling
problems in hybrid flexible flow shop in all sizes and for
elapsed time SA-based metaheuristic has better results.
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1 Introduction

Manufacturing systems have a variety of forms. This depends
on jobs that would be processed on system. One of these
manufacturing systems which are spreading increasingly in
industries is hybrid flexible flow shop. In fact, hybrid flexible
flow shops are the extension of flow shops. In a flow shop,
there is just one machine at each stage and jobs are processed
in a linear fashion from the first stage to the last stage. There
may exist multiple machines at each stage to extend the
capacity. This results in an extension of flow shop called
hybrid flow shop. These parallel machines could be identical,
uniform, or unrelated. In a hybrid flow shop, jobs pass all
stages and are processed at each stage. If all jobs are not
supposed to go through all stages and permitted to skip certain
stages, we end up with a new manufacturing system known as
hybrid flexible flow shop [30].

A noticeable subject encountered in industries is setup.
In many real-world applications, setup times are required
when a machine switches from one work order to another.
This is very usual in automobile manufacture, printed
circuit board autoinsertion lines, or tile industries. Setup
times could be sequence independent or sequence depen-
dent. Considering setup times results in higher complexity
of scheduling problems and the most difficult case is when
the setup times are sequence dependent. In a sequence-
dependent setup, the estimated setup time depends on the
current job as well as the next job [6, 21, 31].

Another subject applied in some industries in order to
improve productivity is cellular manufacturing philosophy.
Cellular manufacturing can be defined as an application of
group technology that involves grouping machines accord-
ing to parts that should be processed using them. Group
technology is a management philosophy trying to put the
products with similar design or manufacturing character-
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istics or both in one group. In cellular manufacturing, the
main objective is simultaneously identifying machine cells
and part families and allocating part families to machine
cells. Cellular manufacturing is relatively a recent concept
that has been applied successfully in many manufacturing
environments and can achieve significant benefits such as
setup time reduction, work-in-process inventory reduction,
material-handling cost reduction, improvement in machine
utilization, improvement in employee moral, and so on [9].

After allocating groups of jobs to cells, groups and jobs
within each group must be scheduled. Scheduling of groups
in each cell results in a problem called group scheduling
and the objective is to identify the sequence of parts
belonging to each group as well as the sequence of groups
themselves to optimize some measure of performance.
Thus, group scheduling problem is comprised of two
levels. At level 1, the sequence of parts that belong to each
group is determined and, at level 2, the sequence of groups
themselves is determined [17].

There are many different objectives that can be consid-
ered for a scheduling problem. One that is used in many
researches is the completion time of the scheduling,
namely, makespan that is also the objective in this research.
Thus, group scheduling problem with sequence-dependent
group setup times in hybrid flexible flow shop in order to
minimize makespan is examined in this research.

Because different constraints and assumptions can result in
different scheduling problems in hybrid flexible flow shops,
for better definition, we introduce the following assumptions:

& All data are known deterministically.
& Machines are available at all times and there is no

breakdown.
& No preemption is allowed.
& There are infinite buffers between stages.
& There is no travel time between stages.
& All jobs are available at the beginning of scheduling.

& Machines are idle during setup.
& Parallel machines are identical.

The remainder of the paper is organized as follows.
“Section 2” contains a literature review. In “Section 3,” the
proposed metaheuristics are described. The way of generat-
ing test problems is described in “Section 4.” For adjusting
parameters, we provide a new approach in “Section 5.” In
“Section 6,” the metaheuristics are compared. “Section 7”
concludes the paper with a look at future works.
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Fig. 1 Global taxonomy of
parameter setting in
metaheuristics

Current solution: G1 (J11, J12, J13) – G2 (J21, J22, J23) – G3 (J31, J32, J33) 
New neighborhood solution: G1 (J11, J12, J13) – G3 (J33, J32, J31) – G2 (J22, J21, J23) 

Fig. 2 Neighborhood-solution-generation mechanism
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Fig. 3 Flow chart of the SA-based algorithm
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2 Literature review

This literature review will have one component regarding
group scheduling and a second regarding parameter setting
in metaheuristic algorithms.

Liaee and Emmons [13] reviewed the literature on
scheduling groups of jobs on single or parallel machines
with the presence of setup times. They considered make-
span and number of tardy job objectives for the scheduling
with and without the group technology assumption. Regular
flow shop scheduling problem was considered by some
authors and they proposed heuristic methods for minimiz-
ing the makespan in level-1 problem [2, 14, 26]. Nakamura
et al. [22] and Ozden et al. [24] examined the single-
machine scheduling problem with the objective of mini-
mizing the total tardiness. For minimizing the mean
completion time, a dynamic programming in order to
identify an optimal sequence of parts was proposed by
Baker [3]. The group scheduling problem to minimize
maximum lateness and the total weighted flow time was
reviewed by Webster and Baker [29]. They considered item
availability, batch availability, and batch processing and
proved some properties to avoid searching the whole
feasible schedules.

To minimize the makespan in a two-machine group
scheduling problem with sequence-independent setups, a
polynomial-time algorithm is proposed by Ham et al. [8].

Allison [1] combined a single-pass heuristic by Petrov
(PT) [25] and a multiple-pass heuristic by Campbell et al.
(CDS) [4]. He examined the performance of it to minimize
the makespan in group scheduling problem.

Longendran and Nudtasomboon [14] proposed a new
algorithm (LN) for solving the level-1 problem. Based on

this new algorithm, the m machine group scheduling problem
is considered by Logendran et al. [15]. They compared the
performance of LN with CDS when each is combined with
PT to minimize the makespan of the problem.

Schaller et al. [28] developed some heuristics and a
branch and bound approach to solve the sequence-depen-
dent flow shop group scheduling. The sequence-dependent
group scheduling problem is examined by Reddy and
Narendran [27]. They used simulation methods for solving
problem under some dynamic conditions like nonavailabil-
ity of all jobs at the beginning of the planning horizon.

Kurz and Askin [11, 12] compared scheduling rules for
flexible flow lines to minimize makespan with sequence-

 M1 J1 J2 J3 

G1 1.22 0.34 0.92 -

G2 2.31 0.45 0.21 0.72

G3 1.89 0.88 0.51 0.12

G4 2.65 0.67 0.25 -

M11: G1 (J11- J12) – G3 (J33- J32-J31) 
M12: G2 (J22- J21- J23) – G4 (J42-J41) 

Fig. 4 Representation of solu-
tions in GA

 M1 J1 J2 J3  M1 J1 J2 J3 

G1 1.35 0.68 0.59 0.33 G1 2.64 0.12 0.68 0.94

G2 2.53 0.15 0.42 0.88 G2 2.39 0.38 0.41 0.19

G3 1.86 0.94 0.32 0.57 G3 1.25 0.29 0.85 0.71

Parent 1 Parent 2 

 M1 J1 J2 J3  M1 J1 J2 J3 

G1 0.26 0.85 0.92 0.68 G1 1.35 0.12 0.68 0.33

G2 0.18 0.52 0.91 0.76 G2 2.53 0.15 0.41 0.19

G3 0.83 0.29 0.67 0.46 G3 1.25 0.94 0.32 0.57

Mask Offspring 

Fig. 5 Uniform crossover example
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Evaluate initial population 
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Evaluate new generation 

End 

Stopping criteria met?

Fig. 6 Flow chart of the GA-based algorithm

Table 1 Factor levels

Factor Levels

Number of stages 2–3 (s), 5–6 (m), 8–9 (l)
Number of groups 4–5 (s), 7–9 (m), 11–12 (l)
Number of jobs 3–5 (s), 7–9 (m), 10–12 (l)
Processing times Uniform (5–75)
Setup times Uniform (5–25)
Skipping probability 0.2
Flexibility 1/3, 2/3, 3/3

s Small problem, m medium problem, l large problem
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dependent setup times. Zandieh et al. [31] considered hybrid
flow shop and described an immune algorithm approach to
the scheduling of a sequence-dependent setup time hybrid
flow shop. Group scheduling problem in hybrid flexible flow
shops with sequence-independent setups to minimize make-
span was investigated by Logendran et al. [16]. To the best of
the authors’ knowledge, the only research that is available in
hybrid flexible flow shop group scheduling problem with
sequence-dependent setup times has been done by Logendran
et al. [17]. They developed three tabu search-based algo-
rithms to minimize the makespan required to process jobs in
all groups released on the shop floor.

The issue of setting the values of various parameters of
metaheuristic algorithm is crucial for good performance.
Finding the appropriate setup for metaheuristic algorithm is
a long-standing grand challenge of the field. The values of
these parameters greatly determine whether the algorithm will
find an optimal or near-optimal solution and whether it will
find such a solution efficiently. Generally, there are two major
forms of setting parameter values: parameter tuning and
parameter control. By parameter tuning, we mean the
commonly practiced approach that amounts to finding good
values for the parameters before the run of the algorithm and
then running the algorithm using these values, which remain
fixed during the run. Parameter control forms an alternative,
as it amounts to starting a run with initial parameter values
that are changed during the run [5, 7, 19, 20].

Methods for changing the value of a parameter can be
classified into one of three categories.Deterministic parameter
control takes place when the value of a strategy parameter is
altered by some deterministic rule. This rule modifies the
strategy parameter in a fixed, predetermined way without
using any feedback from the search. Adaptive parameter
control takes place when there is some form of feedback from
the search that serves as inputs to a mechanism used to
determine the direction or magnitude of the change to the
strategy parameter. And finally, the idea of the evolution can
be used to implement the self-adaptation of parameters. The
forms of setting parameters are provided in Fig 1.

3 Proposed metaheuristics

3.1 Simulated annealing algorithm

Simulated annealing (SA) is motivated by an analogy to
annealing in solids. The idea of SA comes from a paper
published by Metropolis et al. in 1953 [18]. Metropolis
algorithm simulated the material as a system of particles.
The algorithm simulates the cooling process by gradually
lowering the temperature of the system until it converges to
a steady, frozen state. Kirkpatrick et al. [10] took the idea of
the Metropolis algorithm and applied it to combinatorial
and other optimization problems.

The major advantage of SA over other methods is an
ability to avoid becoming trapped at local minimum. The
algorithm employs a random search, which not only accepts
changes that improve objective function but also some
changes that do not improve it.

SA is a variation of hill climbing in which, during search
process, some nonimproving moves may be made. SA first

Table 2 SA-based metaheuristic factor levels

Problem size Factor

N Nlimit

Lower
limit

Upper
limit

Lower
limit

Upper
limit

Small 20 50 20 50
Medium 30 60 40 90
Large 40 100 90 140

Table 3 GA-based metaheuristic factor levels

Problem
size

Factor

Gen size Pop size Pc

Lower
limit

Upper
limit

Lower
limit

Upper
limit

Lower
limit
(%)

Upper
limit
(%)

Small 10 50 25 50 75 80
Medium 25 75 50 100 75 80
Large 30 100 75 100 75 80

Table 4 Significant factors for makespan in SA

Problem size Factor

N Nlimit N×Nlimit

Small ● ●
Medium ● ●
Large ● ●

Table 5 Significant factors for elapsed time in SA

Problem size Factor

N Nlimit N×Nlimit

Small ● ●
Medium ● ● ●
Large ● ●
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generates neighborhood solutions from a current solution
and move to one of them until stopping criteria is met.

The performance of SA is influenced by some factors
such as initial temperature (T0), final temperature (Tf),
number of temperature decline (N), and number of
iterations at each temperature (Nlimit).

SA begins with an initial solution (IS) and, after
evaluating it by means of a cost function, a new
neighborhood is generated. This new neighborhood solu-
tion is accepted when it improves the value of cost
function. In a condition where the value of cost function
of new neighborhood solution is worse, it also can be
accepted if it satisfies the following criteria:

r > exp �Δ
T

� �
ð1Þ

where r is generated using uniform distribution between 0
and 1; Δ is the difference between the value of the cost
function of the current solution and the new neighborhood
solution, and T is the current temperature.

3.1.1 Initial solution

Initial solution is generated according to the last initial
solution-finding mechanism (IS3) in Logendran et al. [17].
To do this, a key machine (stage) is identified using the
longest cumulative processing time (LCPT) for all groups.
Because setup times are sequence dependent, the minimum
setup time is used to calculate LCPT. Cumulative process-
ing time for a machine is evaluated as the sum of the
minimum setup time for each group on that machine and
the run times for jobs in all groups. The group sequence is
identified based upon the longest cumulative run time on
the key machine for each group and the job sequence
within each group is identified based upon the longest run

time. Should there be a tie in the determination of LCPT, it
is broken in favor of the smallest machine number.

3.1.2 Neighborhood-solution-generation mechanism

In order to start the optimization process in SA, we need a
neighborhood solution-generation mechanism to generate
neighborhoods from current solution. To do this, we
consider the current sequence of groups and jobs within
each group (current solution) and we select two groups and
two jobs within each group randomly and swap them. That
is, we change the positions of two groups and then two jobs
within each group swapped. For example, consider a
current solution where there are three groups and three
jobs within each group. Suppose the selected groups are G2

and G3 and the jobs that must be swapped are J21, J22 in G2,
and J31, J33 in G3. Figure 2 shows the current solution and
the new neighborhood solution.

The steps of SA-based metaheuristic are provided in
Fig. 3. Further explanations about algorithm parameters and
their values are discussed in “Section 5”.

3.2 Genetic algorithm

Genetic algorithm (GA) was introduced by Holland,
DeJong, and Goldberg in 1970. A genetic algorithm is a
directed random search technique that evolves an initial
population of solutions using genetic operators to create
generations that are successively better with respect to the
objective of interest and is especially suitable when the
search space is unknown. In GA, every individual or
chromosome is encoded into a structure that represents its
properties. The set of chromosomes forms the population.
The chromosomes evolve through successive iterations,
called generations. During each generation, the chromo-
somes are evaluated using some measures of fitness. A new

Table 6 Significant factors for
makespan in GA Problem size Factor

Gen size (a) Pop size (b) Pc (c) (a)×(b) (a)×(c) (b)×(c) (a)×(b)×(c)

Small ● ●
Medium ● ● ●
Large ● ● ● ●

Table 7 Significant factors for
elapsed time in GA Problem size Factor

Gen size (a) Pop size (b) Pc (c) (a)×(b) (a)×(c) (b)×(c) (a)×(b)×(c)

Small ● ● ●
Medium ● ● ● ● ●
Large ● ● ● ● ●
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generation is obtained as follows: A selection mechanism
picks chromosomes and the selected chromosomes mate
and generate new chromosomes, called the offsprings. This
is done by crossover operator and sometimes another
operator called mutation is used. So a new generation is
formed according to the fitness values of chromosomes by
genetic operators. Then, a new generation is evaluated and
this process is repeated until stopping criteria is met. The
effectiveness of GA greatly depends on the correct choice
of solution representation, selection mechanism, stopping
criteria, genetic operators, mechanism used to create initial
population, and parameter values.

In this paper, in order to develop a metaheuristic based
on genetic algorithm for solving the problem, we use the
idea of a random key genetic algorithm (RKGA). RKGA
differs from traditional genetic algorithms most notably in
solution representation. In RKGA, random numbers are
used in coding the solutions. For example, Norman and
Bean [23] suggested the following solution representation
for an identical multiple-machine problem. Each job is
assigned a real number whose integer part is the machine
number to which the job is assigned and whose fractional
part is used to sort the jobs assigned to each machine. In
this research, this idea is used to assign and sort the groups
and jobs within each group at the first stage. Because we

assume that only one setup is performed for each group at
each stage, group assignment determines job assignment.
To assign the groups to the first stage, machines’ number of
groups (ng) random real numbers in the interval of one and
number of machines in the first stage plus one are
generated. The integer part is the machine number to which
the group is assigned and the fractional part is used to sort the
groups assigned to each machine. In order to determine the
sequence of jobs within each group for each job, a random
number using uniform distribution between 0 and 1 is
generated and the job with the smallest number is processed
first. In subsequent stages, the group and job assignment is
done according to completion time in the previous stages. An
example for representation and its related schedule is shown
in Fig. 4. In this example, there are four groups and number
of jobs within each group is 2, 3, 3, and 2, respectively. We
assume that the number of identical parallel machines at the
first stage is two (M11, M12).

The initial population is generated randomly. To evaluate
each solution, we use makespan as fitness function. Triple
genetic operators (reproduction, crossover, and mutation) are
applied to form a new generation. An elitist strategy is used for
reproduction. Each chromosome from the current generation
is decoded and its makespan is evaluated. Twenty percent of
chromosomes with the best value of makespan are copied to
the next generation. Uniform crossover is used to generate the
most proportion of the next generation. This percentage varies
for different problem sizes. Two chromosomes from the
current generation are selected according to the roulette wheel
selection strategy and the better chromosome is known as
parent 1 and the other is called parent 2. Then, for each gen, a
random number between 0 and 1 is generated. If this value is
less than 0.7, the value from the parent 1 is copied to the new
chromosome; otherwise, the value from parent 2 is selected.
Mutation operator forms the remaining of the new generation.
To do this, related values of the two groups in a randomly
selected chromosome based on roulette wheel are swapped
and for each group the values of two jobs are swapped
randomly. The above procedures are repeated until stopping

Fig. 7 General MODM model for solving problem

Table 8 SA-based metaheuristic parameter values

Problem size Factor

N Nlimit

Small 50 46
Medium 60 74
Large 100 94

Table 9 GA-based metaheuristic parameter values

Problem size Factor

Gen size Pop size Pc (%)

Small 50 50 80
Medium 75 100 75
Large 100 100 75

Table 10 Average RPD for small problems

Algorithm TS SA GA

Average RPD 2.5086 0.1666 0.3833
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criteria is met. Here, a number of generations is used as
stopping criteria, which is different for each problem size.

An example of the uniform crossover is provided in
Fig. 5. In this example, there are three groups and three jobs
within each group. The number of identical parallel
machines at the first stage is two.

Complementary explanations about generation size,
population size, and percentage of crossover operator are
presented in “Section 5.” For further explanation, the flow
chart of the algorithm is presented in Fig. 6.

4 Data generation

In order to evaluate and compare the performance of the
existing algorithm based on tabu search and the two new
metaheuristics developed in this research for solving the
group scheduling problem, a plan to generate test data is
considered. Required data to define a problem are problem
size (ns, ng, nj), jobs’ processing time, setup times, number
of machines at each stage, and skipping probability. In a
flow shop group scheduling, problem size is defined by
three parameters: number of machines, number of groups
(ng), and number of jobs (nj) [15]. In hybrid flexible flow
shop, the representative parameter for number of machines
is number of stages (ns), so some stages can have parallel
machines [15]. Based on Logendran et al. [15], three
different problem sizes, namely small, medium, and large,
are considered. The ranges of each parameter to determine
the problem size are as follows. Number of stages varies
from 2 to 3, 5 to 6, and 8 to 9 for small, medium, and large
problems, respectively. These values vary from 4 to 5, 7 to
9, and 11 to 12 for number of groups, while the number of
jobs within each group varies from 3 to 5, 7 to 9, and 10 to
12 for three instances, respectively. In order to determine
the number of machines at each stage, another parameter
called flexibility is considered. The flexibility in a hybrid

flexible flow shop is introduced by the number of stages
having identical parallel machines. According to Logendran
et al. [17], three levels of flexibility is considered: low,
medium, and high. In low flexibility, one third of stages
have parallel machines; for medium and high cases, two
thirds and three thirds of stages have parallel machines. To
determine which stages have parallel machines, we generate
a random permutation of the value number of stages (ns)
and then multiply flexibility by the number of stages (d=
flex×ns). If the answer is not an integer, we round it to the
next integer number. Then, the first d numbers are assumed
to have parallel machines. For parallel stages, number of
machines is 2 or 3 with equal probability of 0.5. Other data
are generated exactly in the same way as in Logendran et
al. [17]. Factors and their levels are show in Table 1. Thus,
there are 36, 54, and 36 test problems as small, medium,
and large, respectively.

5 Parameter setting

The performance of an algorithm is affected by some various
factors such as the assigned values to parameters. If these
values do not select correctly, we do not obtain good solutions.
To select the values that result in solutions with high quality, we
consider problems in three different sizes that were described
before and try to set parameters for each size separately. Some
problems are selected as a sample at each size. Sample sizes are
4, 6, and 4 for small, medium, and large problems, respectively.

To determine the values of parameters, we use response
surface methodology (RSM). We try to set parameters by
employing RSM because compared with factorial design it

Table 11 ANOVA results for small problems

Source df SS MS F P value

Algorithm 2 0.0171 0.0085 52.6 0.000
Error 465 0.0755 0.0002
Total 467 0.0926

Table 12 Fisher’s least-significant difference method results for small
problems

Algorithms Difference of
means

LSD Significant difference at
95% level

TS and SA 0.0234 0.0045 Yes
TS and GA 0.0213 0.0045 Yes
SA and GA 0.0022 0.0024 No

Algorithm
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Interval Plot of RPD vs Algorithm

Fig. 8 Means and interval plot for small problems

Table 13 Average RPD for medium problems

Algorithm TS SA GA

Average RPD 4.7613 1.7637 0.8984
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can result in continuous parameter setting. First, we try to
recognize factors that are statistically significant for each
algorithm in the aspects of makespan and elapsed time. To
identify significant factors, a two-level factorial design for
each algorithm is considered. Thus, for SA-based meta-
heuristic, two factors and for GA-based metaheuristic three
factors are considered. In the case of SA, independent
variables are number of temperature decline (N) and
number of iterations at each temperature (Nlimit). In GA,
they are generation size (gen size), population size (pop
size), and percentage of crossover (pc). Each factor is
measured at two levels, which can be coded as value −1
when the factor is at its low level and +1 when the factor is
at its high level. Coded variable can be defined as follows:

xi ¼
ri � hþl

2

� �
h�l
2

� � ð2Þ

where xi and ri are coded variable and natural variable,
respectively. h and l represent high level and low level of
factor. Factors and their levels are shown in Tables 2 and 3.

Each algorithm is run using different combinations of
factors in Tables 2 and 3 and there are three replicates for
each combination (R=3). For each run, the best makespan
and the related elapsed time are recorded. The response
variables of the experiment are then calculated with the
following expression:

Relative percentage deviation RPDð Þ

¼ Algsol �Minsol
Minsol

ð3Þ

where Algsol is the solution obtained by a given algorithm
alternative on a given instance and Minsol is the minimum
solution for given instances. Significant factors and inter-
actions are shown in Tables 4, 5, 6, and 7.

After identifying significant factors and interactions, we
develop regression models for each problem size separately,

with respect to significant factors that were identified
before. For example, for small problems, because we have
the sample size of four and on the other hand two objective
functions (i.e., makespan and elapsed time), we develop
eight regression models (i.e., four models related to make-
span and four models for elapsed time). In these models,
two mentioned objective functions are response variables
and independent variables are those given in Tables 4, 5, 6,
and 7. These regression models are developed for each
response variable and for each sample. Consequently, there
are eight, 12, and eight regression models for small,
medium, and large problems, respectively.

General models for SA and GA can be represented in
Eqs. 4 and 5:

Y ¼ b0 þ
X2

i¼1
bixi þ bijxixj i > j ð4Þ

Y ¼ b0 þ
X3

i¼1
bixi þ

X3

i¼1

X3

j¼1
bijxixj þ bijkxixjxk i > j > k

ð5Þ

Independent variables are represented as xi. Then, using
multiple-objective decision making (MODM), the model is
solved and the values of factors for each metaheuristic and
each problem size is determined. For solving MODM
problem, we use fuzzy logic. General model is provided in
Fig. 7. We assume that the weight of makespan objective
functions is seven times more than the weight of elapsed
time objective functions. The obtained values for each
factor are provided in Tables 8 and 9.

For SA-based metaheuristic, we consider 20 and 0.0001
for initial and final temperature, respectively, and assume
that temperature is decreased in a linear fashion.

Table 14 ANOVA results for medium problems

Source df SS MS F P value

Algorithm 2 0.0708 0.0354 183.06 0.000
Error 699 0.1351 0.0002
Total 701 0.2059

Table 15 Fisher’s least-significant difference method results for
medium problems

Algorithms Difference of
means

LSD Significant difference at
95% level

TS and SA 0.03 0.004 Yes
TS and GA 0.039 0.004 Yes
SA and GA 0.0087 0.0021 Yes
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Fig. 9 Means and interval plot for medium problems

Table 16 Average RPD for large problems

Algorithm TS SA GA

Average RPD 4.9145 1.6657 0.8899
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6 Computational results

In this section, we are going to compare two developed
metaheuristics based on GA and SA and existing meta-
heuristic based on TS. In order to compare the algorithms,
we consider makespan and elapsed time as measures of
effectiveness and efficiency and examine algorithms on
small, medium, and large problems separately.

Algorithms are coded in MATLAB 7.1 and we carry out
six independent runs for each algorithm (with the exception
of TS) and at each run the best makespan and related
elapsed CPU time are recorded. Algorithms run on a PC
with a Pentium 4 3-GHz processor with 512 MB of RAM
and Windows XP professional operating system. For
evaluating the different methods, we use the same perfor-
mance measure given in Eq. 3. This means each test
problem is run six times and the minimum value is
considered as Minsol (this is done for both objective
functions separately) and then related percentage deviation
(RPD) for that test problem is calculated using this
minimum value. Average related percentage deviation is
computed using average of all RPDs.

6.1 Comparing effectiveness of algorithms

We use makespan as a measure that shows the effectiveness
of algorithms and at each run the related makespan for each
algorithm is recorded.

6.1.1 Small problems

Average related percentage deviation of algorithms on
small problems is shown on Table 10. In order to determine
if there is a significant difference among the performance of
algorithms, a single-factor analysis of variance (ANOVA)

was performed and results are shown in Table 11. These
results indicate that there is at least one algorithm that is
different in mean response. This motivated the use of
Fisher’s least-significant difference (LSD) method, with the
results summarized in Table 12. These values indicate that
SA- and GA-based algorithms are preferred with 95%
confidence and there is no significant difference between
them, although the former algorithm has smaller mean
response. The means and interval plot for small problems
can be observed in Fig. 8.

6.1.2 Medium problems

Average RPD of algorithms on medium problems is shown
on Table 13 and the results of single-factor ANOVA are
provided in Table 14. These results indicate that at least one
algorithm is different in mean response. To further analysis,
we performed LSD method and results are shown in
Table 15. These results demonstrate that GA-based algo-
rithm is preferred with 95% confidence. Figure 9 shows the
corresponding interval plot.

6.1.3 Large problems

For large problems, obtained results for average RPD,
ANOVA, and LSD methods are shown in Table 16, 17, and
18, respectively. Based on these results, it is clear that GA-
based algorithm outperforms SA and TS and SA is
preferred to TS with 95% confidence. Figure 10 shows
interval plot for large problems.Table 18 Fisher’s least-significant difference method results for large

problems

Algorithms Difference of
means

LSD Significant difference at
95% level

TS and SA 0.0325 0.0033 Yes
TS and GA 0.0402 0.0033 Yes
SA and GA 0.0078 0.001 Yes

Table 17 ANOVA results for large problems

Source df SS MS F P value

Algorithm 2 0.0505 0.0252 285.91 0.000
Error 465 0.0410 0.0001
Total 467 0.0915
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Fig. 10 Means and interval plot for large problems

Table 19 Average RPD for small problems

Algorithm TS SA GA

Average RPD 1,102.969 486.811 630.318
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Table 20 ANOVA results for small problems

Source df SS MS F P value

Algorithm 2 1,207.4 603.7 9.48 0.000
Error 465 29,615.5 63.7
Total 467 30,822.9

Table 21 Fisher’s least-significant difference method results for small
problems

Algorithms Difference of
means

LSD Significant difference at
95% level

TS and SA 6.162 2.82 Yes
TS and GA 4.727 2.82 Yes
SA and GA 1.435 1.51 No
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Fig. 11 Means and interval plot for small problems

Table 22 Average RPD for medium problems

Algorithm TS SA GA

Average RPD 1,301.13 284.46 592.7498

Table 24 Fisher’s least-significant difference method results for
medium problems

Algorithms Difference of
means

LSD Significant difference at
95% level

TS and SA 10.17 3.35 Yes
TS and GA 7.08 3.35 Yes
SA and GA 3.09 1.79 Yes

Table 23 ANOVA results for medium problems

Source df SS MS F P value

Algorithm 2 5,248 2,624 19.37 0.000
Error 699 94,684 135
Total 701 99,932
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Fig. 12 Means and interval plot for medium problems

Table 25 Average RPD for large problems

Algorithm TS SA GA

Average RPD 1,751.908 196.9846 267.0161
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6.2 Comparing efficiency of algorithms

We compare different algorithms in another aspect that is
efficiency and use the elapsed CPU time to obtain the best
makespan as efficiency measure.

6.2.1 Small problems

Average RPD of algorithms on small problems is shown in
Table 19. Based on ANOVA results that are provided in
Table 20, there is a significant difference among algo-
rithms’ performance. LSD method results are shown in
Table 21 and indicate that SA and GA are preferred with
95% confidence. SA has better results than GA but it is not
statistically significant. Interval plot for small problems is
provided in Fig. 11.

6.2.2 Medium problems

Average RPD of algorithms on medium problems is shown
in Table 22 and the results of single-factor ANOVA are
provided in Table 23. These results indicate that at least one
algorithm is different in mean response. To further analysis,
we performed LSD method and results are shown in
Table 24. These results demonstrate that SA is preferred
with 95% confidence. Interval plot for medium problems
can be observed in Fig. 12.

6.2.3 Large problems

For large problems, obtained results for average RPD,
ANOVA, and LSD methods are shown in Table 25, 26, and

27, respectively. Based on these results, it is clear that SA
and GA are preferred with 95% confidence and there is no
significant difference between them, although SA results in
smaller mean response. Figure 13 shows the corresponding
interval plot.

7 Conclusions and future work

This paper examined three methods to find schedules
minimizing makespan in group scheduling problems with
sequence-dependent setup times in hybrid flexible flow
shops. These methods are based on TS, SA, and GA. TS-
based algorithm was developed by Logendran et al [17] and
two new metaheuristics based on SA and GA were
developed in this research. To evaluate the different
methods, 126 test problems were generated including small,
medium, and large problems. The data characteristics
investigated were designed to reflect characteristics used
by other researchers. The metaheuristics are compared on
small, medium, and large problems separately in two
different aspects: first, best makespan and, second, elapsed
CPU time to obtain best makespan. Generally, GA and SA
performed best on makespan and CPU time measures,
respectively, on the problems examined here.

There are potentially unlimited opportunities for re-
search in scheduling to minimize the makespan in group
scheduling in hybrid flexible flow shops with sequence
setup times. In this paper, we have addressed only a few
areas. In this research, we assume that parallel machines
are identical and we can consider a new problem in group
scheduling with uniform or unrelated parallel machines.
Considering major and minor setup times can be used to
define new problems, in this context, when a machine
switches from one group to another, a major setup is
required and a minor setup occurred between jobs within

Table 26 ANOVA results for large problems

Source df SS MS F P value

Algorithm 2 7,730 3,865 33.57 0.000
Error 465 53,542 115
Total 467 61,271

Table 27 Fisher’s least-significant difference method results for large
problems

Algorithms Difference of
means

LSD Significant difference at
95% level

TS and SA 15.55 3.78 Yes
TS and GA 14.85 3.78 Yes
SA and GA 0.7 2.02 No
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Fig. 13 Means and interval plot for large problems
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each group and these setups can be sequence independent
or sequence dependent.
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