
ORIGINAL ARTICLE

Dynamic simulation of virtual prototypes
in immersive environment

Fabio Bruno & Francesco Caruso & Kezhun Li &
Alessandro Milite & Maurizio Muzzupappa

Received: 26 February 2008 /Accepted: 28 August 2008 /Published online: 19 September 2008
Springer-Verlag London Limited 2008

Abstract Virtual reality (VR) became a very common mean
during the development of the industrial products. One of the
main applications of VR in the industrial field is the
validation of virtual prototypes (VP). A virtual prototype
should be able to reproduce, as realistically as possible, the
behaviour of the product from any point of view. In this
paper we propose an unexploited approach to the simulation
of a VP in VR. A high level software library for the inter-
process communication has been developed to let the multi-
body solver communicate with the VR environment. Such
approach allows the designer to use different software
frameworks for the simulation and the visualisation. The
test case provided regards an excavator machine. It is
possible to simulate the action of the actuators to move arms
and bucket, and also perform visibility analyses discovering
the viewing volume of the operator.

Keywords Virtual reality . Numerical analysis .

Multi-body analysis . Visibility analysis

1 Introduction

The main target of the virtual reality (VR) in industry is the
preview and the discovery of any possible design flaws

before the realisation of physical prototypes. The aid
provided by VR is noticeable, since the user can interact
with the virtual prototype in a very natural way. The earliest
industrial VR applications merely provided the visualisation
of the virtual prototype (VP) in VR, in order to perform an
aesthetical validation of the product. VP visualisation in VR
is crucial to exploit the overall appearance of the product, but
it can also be useful in order to perform some analyses like
parts reachability, cabling, design, assembly, validation, etc.

More recent applications, on the other hand, try to
simulate the behaviour of the industrial products in VR, i.e.
they try to simulate the virtual prototype. In this way it is
possible to use VR not only for aesthetical purposes, but also
to discover any functional flaw. An overview of the possible
utilisation of VR in the industrial field has been presented in
[1], in which a taxonomy of all the employments of VR in
industry is presented.

However, as depicted in the previously mentioned work,
there is a lack of software tools able to support designers in
the development of interactive and fully functional virtual
prototypes. This lack is probably one of the main obstacles
in the diffusion of VR techniques for the product behaviour
simulation. Engineers in fact use specialised simulation
software to design the industrial product and, at the moment
it is not possible to evaluate the models developed in these
simulation packages directly in VR. As pointed out in [2] it
is necessary to work out a specific solution for the several
problems occurring during the integration between VR and
the other applications of the product development process
(PDP), including the simulation. One of the few approaches
devoted to the integration of simulation packages and VR
has been presented by Kirner et al. [3] [4] who developed the
VR-SIM, an object oriented C++ library, able to incorporate
a real-time systems (RTS) simulator with VR technologies.
The use of VR-SIM includes the creation of the system to be
validated and of a virtual environment related to this system.

Int J Adv Manuf Technol (2009) 43:620–630
DOI 10.1007/s00170-008-1736-6

F. Bruno (*) : F. Caruso :M. Muzzupappa
Department of Mechanical Engineering, University of Calabria,
87030 Arcavacata of Rende (CS), Italy
e-mail: f.bruno@unical.it

K. Li
Digital Prototyping and Simulation, Case New Holland,
Lake Forest, IL, USA

A. Milite
VR&CAE, Elasis ScPA,
Pomigliano d’Arco (NA), Italy

The case-study described in [3] is a robot arm coupled to an
automatic transport-belt, used in a factory for piling up
boxes. This work demonstrates that VR technology is
applicable and useful to support RTS simulations, as a form
used to evaluate the correctness of such systems. But the
VR-SIM is a tool addressed to software engineers responsi-
ble for the development of real-time, process control
systems; it requires code development for the implementa-
tion of the virtual product, and it is not suitable to be used by
industrial or mechanical engineers in the PDP.

A similar work has been presented by Sánchez et al. [5]
who developed the Easy Java Simulation (Ejs) [6], a
software tool designed to create interactive simulations in
Java using models created with Simulink. Basically, Ejs is
able to communicate with the Simulink model and to
tightly control its execution. The communication takes
place through a DLL library written in C and some utility
Java classes. The main advantage of this work is that Ejs
creates Java applets that are independent and multi-
platform, and can be visualised using any Web browser,
can read data across the net and be controlled using scripts
from within html pages. Ejs can also be used with Java 3D
to create interactive virtual products in 3D, but it has been
conceived mainly for educational purposes and it cannot be
efficiently integrated into a PDP because Java 3D is not
suitable for the visualisation of complex models. In [8], an
innovative framework for numeric co-simulation and three-
dimensional visualisation has been presented. This last
paper is addressed, above all, to the simulation of
mechatronic products, in which different physical domains
have to be simulated. It provides an approach to achieve a
co-simulation using several heterogeneous solvers and, at
the same time, visualise the results in a three-dimensional
environment. In [9], an environment for the behavioural
simulation of CAD assemblies is presented. The global
model is formed by several component objects. Each
component object has a behaviour (simulation model) and
a form (CAD model). To achieve the composition of
behavioural models, the authors introduce a port-based
modelling paradigm to describe the interactions among
the objects. The framework extracts data directly from the
CAD model to compute physical properties and define the
constraints of the assemblies, and then perform a numerical
simulation to predict the behaviour, but no visualisation of
the CAD model occurs. In [15] the Daimler–Chrysler
research group presented a research work for the simulation
of one-dimensional flexible part. The solver is integrated in
a virtual reality software for use in applications such as
cable routing and assembly simulation.

In [10] an innovative fork-lift simulator, suited for
training in industrial environments is presented. This
simulator aims to improve skills in driving and handling
materials using a fork-lift. The system can reply inertial

feedback on the operator and allows the user to control all
the tasks of a fork-lift, such as driving and handling
materials. The numerical model is modelled and simulated
using the ODE [11] C++ library, hence any modification to
the model implies the modification of the application code.

The use of VR together with simulation has proven to be
useful also for the creation of a virtual simulation
environment for manufacturing tasks [13]. In this work, a
training operator environment for a numerical control
milling machine is presented. The user can learn how to
control the CNC machine in a safe way, and it is even
possible to use a remote location through the web.

The use of VR and simulation for training tasks has been
also tried in the medical field [14].

In [12] the overall architecture of the immersive virtual
product design framework is presented. This framework is
still at an infancy stage. Theoretically, it enables users to
navigate and interact with 3D peripherals with the display
system. Participants may passively view the virtual world
revolving around them while others control navigation and
simulations (CFD and FEA). They may also interact with
other participants, e.g. to pass an object from one embodied
manikin to another. The authors do not explain how to
perform numerical simulations within the virtual environ-
ment, in fact they consider this topic an unsolved and
challenging problem. Another example of virtual prototype
simulation framework is presented in [16], in which a virtual
prototype of a hybrid electric vehicle is created within the
virtual test bed (VTB) environment, which has been
developed for modeling, simulation, analysis and virtual
prototyping of large-scale multi-technical dynamic systems.
VTB allows each component of a large-scale multi-technical
system to be described in the most appropriate language (e.
g., SPICE for electronic components, ACSL, advanced
continuous simulation language, for dynamic systems, and
SABER for power electronic circuits). Further, it provides
advanced visualisation of simulation results, including full-
motion animation of mechanical components, and imagina-
tive mappings of computed results onto the system topology.

None of the previously mentioned papers mentions the
simultaneous use of VR and numerical simulations for
validation tasks of industrial products.

In our opinion, the union of both these techniques, can
lead to great improvements in this direction. Further, it
enhances the concept of VR, commonly used for visual-
isation purposes, with the integration of numerical simu-
lations. Moreover, in almost all the previously mentioned
work, a unique software environment is employed for both
simulation and visualisation. Our approach, instead, is
based on the inter-process communication among different
software modules, and relies on a middleware for the
software communication. This approach make possible to
freely choose the software to be employed, either for the

Int J Adv Manuf Technol (2009) 43:620–630 621

simulation and either for the visualisation. In this way
engineers can use their favourite software during the
product development phase.

2 Dynamic simulations in VR

The aim of this work is the development of an environment
for the evaluation and the validation of both aesthetical and
functional features of the industrial products in VR. VR
environments are certainly one of the best solutions for the
validation of aesthetical features. Using VR applications, the
user is fully immersed in a three-dimensional synthesised
environment and can perceive the appearance of the virtual
objects as if they were real. VR applications, in fact, provide
a high quality, immersive visual representation of virtual
prototypes, and the user can easily evaluate aesthetical
qualities and/or discover any styling defect. However, a VR
software is conceived mainly to reproduce only the visual
appearance, i.e. to be a kind of high-end visualisation
system. For this reason, in fact, the term visual reality was
neologised, in order to more appropriately describe the VR
environment. However, at the moment, the validation of the
functional features is not as easy to achieve as the aesthetical
one. Some of the modern VR software allow one to define a
behaviour for each object in the virtual world, providing
built-in physics simulators, oriented, above all, to video-
games, in order to simulate mainly collisions and rigid
bodies dynamics. Such simulators can provide fast results,
but they are not as accurate and flexible as the simulation
software used by engineers. As a consequence, the behaviour
we obtain is an animation, and not a simulation and it cannot
be considered as a robust validation tool. It is not possible,
for example, to validate the correct dimensioning of an
actuator, because the dynamics is not taken into account.
Furthermore, a kind of “translation” of the behaviour from
the simulation software into the VR software is necessary.
The core of our work is the idea of creating a VR
environment, able to use the results of the simulators which
are commonly used by engineers. To achieve such goal, VR
software and simulation software have to interact in order to
obtain a simulation in VR. The numerical model used for the
VR simulation is exactly the model created by the engineer
during the design phase.

The idea is to use the VR environment as a back-end for
simulations. The simulation software computes the displace-
ments and the rotations of the mechanical parts, and sends
the results to the visualisation environment, which moves the
parts in accord with the simulation results. Further, any
control logic is simulated by the simulation environment.

Our approach offers the following advantages:

– The integration with numerical solvers allows one to
simulate a very wide range of physical domains, while

in the previously mentioned approaches (re-creation of
the animation within the VR software) only kinematics
can be simulated.

– It allows the hardware in loop (HIL) technique, since
some numerical simulation software, e.g.: Simulink,
can perform an HIL simulation. This is a noticeable
advantage, because it is possible to test the real control
logic hardware (Fig. 1).

– There is no need to convert and re-describe the control
logic behaviour in the VR software, thus allowing us to
save time and avoid design bugs due to errors or
imprecision in the conversion.

The integration of the VR environment with a
simulation environment enhances the VR and makes it
closer to the real environment. As a consequence, VP
simulation improves and become more effective, be-
cause it is closer to the simulation with physical
prototypes. Obviously, in order to improve the overall
availability, the quality of the user interaction with the
virtual prototype is crucially important. For this reason
the interface of product should be reproduced as
realistically as possible, and the user should be able to
interact with it in the most natural way. As regards the
interaction, there are two possible scenarios. The first
case is when the interface to reproduce is physically
available (Fig. 2) or it can be physically simulated, e.g. a
joystick used to simulate a command lever. In this
scenario, the user sends the commands directly to the
simulation environment. The latter processes the user’s
actions and computes the positions of the VP parts, in
keeping with the mathematical model implemented by the
designer, or, in other words, it computes the current
configuration of every degree of freedom (DOF) of the
assembly. Subsequently, the simulation software sends
data about every DOF in the 3D assembly to the VR
software that updates the status of the 3D models. So the
VP is continuously updated by the simulation model.

The other scenario (Fig. 3) is when the interface has to
be virtually simulated. In this case, it is common practice to
use VR specialised devices, like data-gloves, tracking and
haptic devices. The choice of the VR devices is a crucial
and challenging issue, as described in [7]. In this scenario
VR application recognises the user’s generated commands
and it sends these events to the simulation package that, as
previously described, computes the new configuration of
the model and consequently sends the displacements of
each moving part to the virtual reality environment.

To achieve the aimed integration, a communication
channel between the two environments is obviously
necessary. In this channel, the VR software receives data
from the simulations, and updates the configuration of the
three-dimensional model.

622 Int J Adv Manuf Technol (2009) 43:620–630

To achieve this target, it is obviously important to consider
both the geometrical model and the behavioural model of the
product and let them interact with each other. The geometric
model is the three-dimensional representation of the product.

The behavioural model considers the dynamic features
of the product, due to its mechanical and electronics

properties. From a mathematical point of view, it is a
differential equations system, but it is modelled and
simulated using a Computer-Aided Control Engineering
(CACE) software and/or a multi-body solver. Through this
integration, the virtual environment becomes active and
closer to the real environment. Virtual reality becomes an

Fig. 1 A possible working loop
of a dynamic simulation in VR

Fig. 2 A possible interaction scenario using physical devices for the
user interface

Fig. 3 A possible interaction scenario using VR devices for the user
interface

Int J Adv Manuf Technol (2009) 43:620–630 623

environment for the experimentation on virtual prototypes,
which helps engineers to better understand the results of
numerical simulations.

3 Development of the simulation framework

In order to achieve our purpose, a high level software
library for the inter-process communication (IPC) has been
developed. This library allows the simulation software to
communicate with the VR environment (Fig. 4).

We have chosen Matlab/Simulink as a simulation
software. This environment is almost a standard for the
general purpose simulation. It is very diffused and
versatile. Further, a lot of optional packages (called
toolboxes) are present. These packages provide further
sets of high level operations for a specific task. In this
work the SimMechanism toolbox has been used as multi-
body solver. With the SimMechanism toolbox it is
possible to model and simulate a mechanic assembly,
specifying properties for bodies and joints.

The software used as a virtual environment is Division
MockUp by PTC. It provides several virtual environments
visualisation and exploration functionalities and, further,
every application can be customised. Division MockUp, in
fact, provides an SDK for the plug-in development, and a
scripting language to create virtual environments.

Virtual environments are re-created using a VDI file, i.e.
a plain ASCII file containing the description of the virtual
scene. It contains both the hierarchy of the assembly and
the attributes of each part of the assembly. Division is made
up by two software modules: a low-level core called dVS,
and a high level interface, called dVISE. It is also possible
to use the EC library, i.e. an API to dVISE, in order to
easily achieve the following tasks:

– Define new action functions to customise the assem-
blies’ behaviour;

– Create assemblies, cameras, reference points and
annotations;

– Execute functions on the assembly’s hierarchy.

The communication between the two applications can be
synchronous or asynchronous. The sender (i.e. Matlab/
Simulink) sends data deriving from the simulation in
asynchronous mode using non-blocking sockets, and does
not take care of the reception of the visualisation environ-
ment. In this way, the simulator computes the simulation
results also for the next simulation cycles, without stopping
the computation.

On the other hand, Division adopts the synchronous
mode communication, using the blocking sockets. It
stops its execution until it gets the message from
Matlab/Simulink. Having received the message, it moves
the 3D model using the obtained information, and it
sends the request for the new data. As it is easy to
understand, a new thread takes care of the communica-
tion. In this way the user can still interact with the 3D
scene (Fig. 5).

Resuming, Matlab/Simulink does not send new data
computed for the next simulation cycles until a Division
request occurs. Whereas Division stops the execution until
it has received all the data from Matlab/Simulink, then it
sends a data request to the simulator.

3.1 The SimLib library

In order to simplify the development of such applica-
tions, it is necessary to implement a high level
communication library. This library should provide an
easy to use IPC channel for the communication between
the VR environment and the solver. Therefore, we
implemented the SimLib library. It is a versatile library
that can be easily adapted to all the possible test cases.
SimLib uses TCP socket, therefore it is possible to run
the simulator and the VR application on different
machines.

The SimLib library is quite easy to use. It has few
functions, implementing the code for the TCP/IP commu-
nication and synchronisation. Therefore, the developer must
not take care of sockets and threads.

The functions of the library are:

– SimLib_Channel* SIMServerOpen(unsigned short
port, int connections, u_long non_blocking).

– SimLib_Channel* SIMClientOpen(const char* host,
unsigned

– int SIMClose(SimLib_Channel* s)
– SimLib_Channel* SimLib_Accept(SimLib_Channel*

server)
– int SimLib_synchroSend(SimLib_Channel* to, Sim-

Lib_Data* r)
– int SimLib_synchroReceive(SimLib_Channel* s,

SimLib_Data* r)
– void SimLib_SendNextData(SimLib_Channel* s)Fig. 4 Framework architecture

624 Int J Adv Manuf Technol (2009) 43:620–630

– void SimLib_StartListener(SimLib_Channel* server,
void (*ptActionCB)(const SimLib_Data))

– void SimLib_StopListener()

The SIMServerOpen function creates a server commu-
nication channel listening on the specified port. It is
possible to set it as a blocking or non-blocking communi-
cation channel.

The SIMClientOpen function creates a client communi-
cation channel, which attempts to connect to the server

specified by the parameter. It is possible to set it as a
blocking or non-blocking communication channel.

The SIMClose function closes and removes a commu-
nication channel from the memory.

SimLib_Accept function establishes a connection be-
tween the server specified as a parameter and the
connecting client. It returns a new communication channel
which will be used by the client for the communication.

The SimLib_synchroSend and Sim-Lib_synchroRe-
ceive functions send and receive data using a common
protocol for the IPC. The developer must specify the
SimLib_Data data structure used for the communication.
After which, the structure is sent and received through the
IPC channel. The data structure can also be very complex,
but in this case the communication speed is slower. In our
implementation, we defined the SimLib_Data structure as
follows:

– typedef struct {
– char partName[128]; // name of the part to move
– int partId; // id of the part to move
– float tx; //x-axis translation value
– float ty; //y-axis translation value
– float tz; //z-axis translation value
– float rx; //x-axis rotation value
– float ry; //y-axis rotation value
– float rz; //z-axis rotation value
– } SimLib_Data;

The SimLib_StartListener and SimLib_StopListener
functions respectively create and destroy the listener thread.
The listener thread can be created by a server communica-
tion channel in order to handle the connection with a client.
If there is a listener, the server communication channel
must be in blocking mode. A listener thread calls another
thread (called Answer thread) for each connecting client.
The answer thread receives data from the client, and then
calls a callback function (if specified) which can use data
received from the client (Fig. 6).

Fig. 5 Asynchronous receiving of the Division OK message

Fig. 6 Finite State Diagram of the overall behaviour

Int J Adv Manuf Technol (2009) 43:620–630 625

3.2 The Simulink S-Function for the communication

The Matlab/Simulink environment can be extended by the
development of user defined S-Functions (). These ones can
be used within a Simulink model as a conventional
Simulink building block, with a user defined behaviour
and set of actions. In our study, the S-Function is
responsible for the communication between Matlab/Simu-
link and Division. As it is easy to understand, the
communication uses the SimLib library and relies on the
IPC channel provided by the library itself. The main task of
this S-Function is the asynchronous data sending to
Division. In other words, the S-Function sends simulation
data to Division, without stopping the simulation. In order
to obtain a consistent visualisation in fact, it is necessary to
send all data of each time-step. Since in the model there is
more than one part governed by the simulator, it is
important not to send data of different time-steps to achieve
correct visualisations. To achieve this target, we used the
information from the Matlab ssGetT function, which
returns the simulation time. As explained in the next image,
once the OK message from Division is obtained, all the
blocks send data in a sequential order.

The configuration of each communication block is quite
easy. It is possible in fact, to set the network parameters and
the part name via GUI as shown in Figs. 7, 8 and 9.

The parameters needed by each block are:

– IP and port of the host to which data are sent
– The name of the part which is governed by the block
– Number of the blocks in the Simulink model

3.3 The divison plug-in

The plug-ins are software tools used to link Division to
customised applications.

In our purpose, the plug-in has to read simulation data
coming from Matlab, and move the parts of the assembly in
accord with the received data. There is no bi-directional
communication, since

Firstly, during the plug-in initialisation, a server com-
munication channel is created. Then a new thread for the
communication is created using a SimLib_listener. The call-
back functions of the latter are applyAction and isReceived.
The applyAction function implements the modification of
the assembly in accord with received data, while the
isReceived function sends the signal of end reception.

It is necessary to save the references to the assemblies to
be moved in order to animate the model. These references
in fact, are used by the applyAction call-back to animate the
model. The _saveRef function has been implemented, in
order to save the references to the assemblies into a hash
table. It is important to save the reference to the assembly
with the same name specified in the Matlab S-Function. As
a matter of fact, the name of the assembly contained in the
SimLib_Data sent by the S-Function is the key search
within the hash table.

4 Test case

The test case regards the simulation and relative visual-
isation of a tractor. In particular we focused on the
simulation of the movements of arm and bucket. This test
case required six communication blocks in the Simulink
model. These blocks send the orientation of:

– Lower hinge of the arm
– Lower hinge of the support cylinder of the arm
– Lower hinge of the bucket
– Lower hinge of the support cylinder of the bucket

And the translations of:

– Piston of the arm
– Piston of the bucket

These communication blocks are highlighted in the
figure below.

Each of these communication blocks receives data
concerning the position/orientation of a joint. The first
three ports (starting from the upper side of the block) are
used for the rotations in the three axes, and the last three
ports are used for the translations on the three axes.

As regards the 3D model of the tractor, it is necessary to
find and to register the assembly corresponding to the
Simulink blocks. Once the part has been found, it must be
renamed using the same name as the parameter in the
Simulink communication block, as previously described. In
the 3D model, there is a hierarchy of the several parts
forming the assembly. In other words, it is possible toFig. 7 GUI for the S-Function configuration

626 Int J Adv Manuf Technol (2009) 43:620–630

specify a parent/child relationship between two parts. Once
this relationship has been defined, the child will follow the
same movements as its parent. Therefore, if one moves a
part, all the children of this part will follow the same
movements. This feature is useful for our task, because
once we have defined the relationship between the parts, it
is sufficient to move the parent of a kinematic chain to
obtain the movement of all its children. In the 3D model of
the tractor e.g., a parent/child relationship between cylinder
and piston of a hydraulic actuator has been defined.

With the use of a common joystick, it is possible to
govern the actuators, like in a real tractor. The Matlab/
Simulink environment in fact, provides the interface with
such devices via virtual reality toolbox. During the simula-
tion, it is possible to notice a delay between the command
and the response. This delay is due only to the complexity of

the 3D model. Division, in fact, has to complete the
rendering for each position. After having simplified the 3D
model, and deleted all the parts not affected by the
simulation, the response of the system was really high.

5 Visibility analysis

As a further investigation, in this test case, we have
implemented an application for visibility analysis. Quite
often, in fact, visibility requirements are unavoidable
constraints for the final product.

As regards tractors, the ISO 5721 normative describes
different visibility requirements for different types of
agricultural tractors. In particular, there are three main
visibility concerns in most agricultural tractors: visibility

Fig. 8 Building block for data communication within the Simulink model

Int J Adv Manuf Technol (2009) 43:620–630 627

forward, including the view over the hood, the view forward
and down to the ground and tyres, and the view forward and
up; visibility to the side, including the view over side
consoles and fenders; and visibility rearward, especially the
view to the drawbar, pickup hitch, and PTO.

Tractors that have to be roaded, especially small and
medium-size tractors, must often meet minimum forward
over-hood visibility requirements. Market standards and

requirements should be consulted to ensure conformity with
such requirements.

Large articulated and non-articulated tractors used
primarily for drawbar-type work may have less demanding
visibility requirements for certain areas of the visual field,
such as the view to the hitch and to the side.

The visibility requirements for row-crop tractors may be
the greatest. High importance should be given to the view

Fig. 9 The division environment during the simulation

Fig. 11 Visualisation of the viewing cone of the operatorFig. 10 The operator’s view inside the cabin

628 Int J Adv Manuf Technol (2009) 43:620–630

down to the ground inside and behind the front tyres, the view
over the side and the view out the back down to the hitch.

Virtual reality is certainly a powerful mean in order to
discover any possible design flaw as regards visibility.
Therefore, we tried to exploit VR capabilities also in the
visibility analysis field.

This application allows us to simultaneously run two
executions of dv/Mockup. One execution is directly
connected to the input devices and it runs the simulation
in first person. The operator wears the head mounted
display and controls the virtual tractor through a pair of
joysticks (Figs. 10, 11 and 12).

The second execution allows engineers to view in third
person what happens in the simulation. And, in particular,
they may also analyse the viewing cone of the operator that
controls the tractor.

6 Conclusions

This paper describes an experimental environment for the
validation of functional virtual prototypes. Two environ-
ments are needed in order to achieve this task: a virtual
reality environment and a numerical simulation one. The link
between them is an inter-process communication library
developed for this purpose. The idea is to enrich the standard

VR environment with numerical simulations. In this way,
VR becomes closer to a real environment, because the
overall behaviour can be simulated and predicted by the
numerical simulation software and then visualised in VR.

In the test case we used Division as a VR environment
and Matlab/Simulink as a numerical solver, but the
methodology we employed can be used with other software
environments, even if the development of the interfaces
between each software and the IPC library is needed. The
effort for the interface development represents the main
drawback of the proposed methodology.

In the test-case, the real interface, formed by two
command levers, has been replicated by two joysticks.
The numerical simulator computes the displacements of the
parts composing the assembly. Certainly, the simulation can
be more complex, and it is possible to increase the overall
realism by enriching the simulation model, e.g. adding the
collision detection simulation to prevent the penetration of
the parts.

Another drawback is represented by the part names. As a
matter of fact, in order to animate the model, the simulator
sends the name of the part together with its displacement to
the VR software. Therefore, there must be consistency
between part names of the 3D assembly and part names in
the simulator, but. the achievement of this consistency can
be a time-consuming and error-prone operation.

Fig. 12 Visualisation of both
the first person and third person
views and the simulation model

Int J Adv Manuf Technol (2009) 43:620–630 629

Moreover, in the test case, a new approach to the
visibility analysis is proposed, which is a quite important
task for almost all kinds of machines. With the help of this
tool, designers can easily discover all the non-visible areas
during the validation.

Finally, as it is easy to understand, the validation
environment can be easily converted and used within a
training operator environment, since the user can learn the
effects of the commands in the virtual environment.

References

1. Jimeno A, Puerta A (2006) State of the art of the virtual reality
applied to design and manufacturing processes. Int J Adv Manuf
Technol doi:10.1007/s00170-006-0534-2

2. Barbieri L, Bruno F, Caruso F, Muzzupappa M (2007) “Innovative
integration techniques between Virtual Reality systems and CAx
tools”. Int J Adv Manuf Technol doi:10.1007/s00170-007-1160-3

3. Kirner TG, Kirner C (2005) Simulation of real-time systems: an
object-oriented approach supported by a virtual reality-based tool.
In Proceedings of 38th Annual Simulation Symposium, 4–6 April,
San Diego, California

4. Gimenez AM, Kirner TG (1997) Validation of real-time systems
using a virtual reality simulation tool, Systems, Man, and
Cybernetics, ‘‘Computational Cybernetics and Simulation’., 1997
IEEE International Conference on Volume 2, 12–15 Oct. 1997
Page(s):1586–1591 vol.2 doi:10.1109/ICSMC.1997.638225

5. Sánchez J, Esquembre F, Martín C, Dormido S, Dormido-Canto S,
Canto RD, Pastor R, Urquía A (2005) Easy java simulations: An

open-source tool to develop interactive virtual laboratories using
MATLAB/Simulink. Int J Eng Educ 21(5):798–813

6. http://fem.um.es/Ejs
7. Stefani O, Karaseitanidis I (2004) Designing 3D Input Devices for

Immersive Environments, 2004 IEEE International Conference on
Systems, Man and Cybernetics

8. Bruno F, Caruso F, Muzzupappa M, Stork A (2007) An
experimental environment for the runtime communication among
different solvers and visualisation modules, Proceedings of 19th
European Modeling and Simulation Symposium, Genova, Octo-
ber 2007

9. Sinha R, Paredis C, Koshla P (2000) Integration of Mechanical CAD
and Behavioural Modeling, 2000 IEEE/ACM International Work-
shop on Behavioural Modeling and Simulation (BMAS’00) p. 31

10. Bergamasco M, Perotti S, Avizzano CA, Angerilli M, Carrozzino M,
Facenza G et al (2005) Fork-lift truck simulator for training in
industrial Environment, Conference on Emerging Technologies and
Factory Automation doi:10.1109/ETFA.2005.1612593

11. www.q12.org
12. Bao JS, Jin Y, Gu MQ, Yan JQ, Ma DZ (2002) Immersive virtual

product development. J Mater Process Technol 129(1):592–596
(5), 11 October 2002

13. Acal AP, Lobera AS (2007) Virtual reality simulation applied to a
numerical control milling machine. International Journal of
Interactive Design and Manufacturing 1(3):143–154, (August)

14. Grantcharov TP (2006) Virtual reality simulation in training and
assessment. Eur Clin Obstet Gynaecol doi:10.1007/s11296-006-
0054-5

15. Grégoire M, Schöme E (2007) Interactive simulation of one-
dimensional flexible parts. Comput-aided Des 39(8):694–707,
(August 2007)

16. Gökdere LU, Benlyazid K, Dougal RA, Santi E, Brice CW (2002)
A virtual prototype for a hybrid electric vehicle. Mechatronics 12
(4):575–593 doi:10.1016/S0957-4158(01)00009-5

630 Int J Adv Manuf Technol (2009) 43:620–630

http://dx.doi.org/10.1007/s00170-006-0534-2
http://dx.doi.org/10.1007/s00170-007-1160-3
http://dx.doi.org/10.1109/ICSMC.1997.638225
http://dx.doi.org/10.1109/ETFA.2005.1612593
http://dx.doi.org/10.1007/s11296-006-0054-5
http://dx.doi.org/10.1007/s11296-006-0054-5
http://dx.doi.org/10.1016/S0957-4158(01)00009-5

	Dynamic simulation of virtual prototypes in immersive environment
	Abstract
	Introduction
	Dynamic simulations in VR
	Development of the simulation framework
	The SimLib library
	The Simulink S-Function for the communication
	The divison plug-in

	Test case
	Visibility analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

