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Abstract To overcome deficiency in the global capacity of
a single dispatching rule, it is vital to select a dispatching
rule in real time for dynamic scheduling. Among the studies
addressing the method for selecting dispatching rules, few
have no requirements for domain knowledge or accurate
training example, which is hard to acquire from the real
production system. In this paper, a new learning algorithm,
along with the presentation of an adaptive scheduling
control policy, is proposed to obtain the dynamic schedul-
ing knowledge effectively, and different dispatching rules
are selected to schedule the jobs in the machine buffer
according to the current transient state of the system. Case
studies are given to illustrate the validity of the scheduling
control policy.
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1 Introduction

With the rapid development in the technologies of
electrons, information, artificial intelligence, and control,
various advanced manufacturing modes and manufacturing
conceptions, such as intelligent manufacturing [1], lean

production [2], green manufacturing [3], agile manufactur-
ing [4, 5], and concurrent engineering [6, 7], have emerged.
Most of them, capable of meeting certain demands of the
manufacturing system, still have limitations of their appli-
cation scope due to the multiple demands of various
enterprises. Therefore, knowledgeable manufacturing, a
new manufacturing idea brought forward in 2000 [8], is
being given more and more attention. The technique takes
an advanced manufacturing mode as advanced manufac-
turing knowledge, so that all kinds of complementary
advanced manufacturing modes can be transformed into
their corresponding advanced manufacturing knowledge in
the advanced manufacturing system. On the basis of one-to-
one isomorphic mapping between agent mesh and knowl-
edgeable mesh, the existing advanced manufacturing mode
can be incorporated into the knowledgeable manufacturing
system (KMS) to meet different demands from different
enterprises [9–11]. The KMS, a highly intelligent manu-
facturing system characterized by self-adaptation, self-
learning, self-evolution, self-reconfiguration, self-training,
and self-maintenance, can constantly adapt to environ-
mental change by self-learning and self-evolution.

Self-adaptation, as a key technology in the realization of
KMS, involves many fields in the manufacturing system. In
real production, dynamic scheduling often faces manufac-
turing situation with many unpredicted turbulences, like
stochastic arrival or uncertain process time of job, uncertain
delivery date, machine failure, and shortage of raw material,
which raise many scheduling problems as dynamic sched-
uling to be dealt. At present, the research on dynamic
scheduling mainly focuses on optimization [12], systems
simulation [13], heuristic algorithm [14, 15], multi-agent
method [16, 17], and artificial intelligence method [18–20].
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To the authors’ best knowledge, most of the dynamic
scheduling problems prove to be NP-hard. The dispatching
rule method, as a heuristic algorithm, bearing advantages of
insensitivity to the NP characteristic and real-time quality, is
widely used in practice.

Under different system parameter conditions and by
simulation experiments and making comparisons of various
dispatching rules, Baker [21] found crossover points
between performance curves of different dispatching rules.
They concluded that there was no dominant optimal
dispatching rule for different scheduling criteria; i.e., when
there was a change in the manufacturing system state,
former effective dispatching rule may become less effec-
tive. As a result, a single dispatching rule may have a
poorer overall effect, and for a dynamic scheduling with
frequent changes of the system parameter, it does not
provide the ideal effect.

In order to improve the capacity of dispatching rule, Arzi
and Iaroslavitz [22] used a neural network to construct a
flexible manufacturing cell controller, which can train the
neural network to choose the proper dispatching rules.
Nevertheless, this method requires a long training period
with a poor explanation capacity, which also complicates
the network structure as the problem scale grows. Wan [23]
used the nearest neighbor method to train fuzzy system
under job shop environment, so the scheduling rules are
selected dynamically in terms of training results. However,
with few scheduling rules employed, expert knowledge is
hard to gain.

Piramuthu et al. [24] presented an adaptive scheduling
policy for dynamic manufacturing system scheduling using
information obtained from snapshots of the system at
various points in time. As noted by the authors, the training
examples were driven by simulation experiments; the
appropriateness of a dispatching rule for a given pattern is
therefore determined by its steady-state average perfor-
mance over the length of the simulation run. However, a
dispatching rule may perform well in the long run for a
given set of attributes; it need not to be effective when
applied on a rolling basis on transient patterns. Due to the
randomness and uncertainty of parameter changes in the
manufacturing systems and the frequent disruptions, accu-
rate training examples on dispatching rules are difficult to
acquire, which also exists in the literature [22].

As seen from the above, there is a lack of research
focused on avoiding the difficulty of training-example
acquisition as mentioned above. In this paper, B–Q learning
algorithm is proposed based on reinforcement learning and
knowledgeable manufacturing cell (KMC). Then, an adap-
tive scheduling control policy (BQ_ASCP), adaptable to
manufacturing environment change, is constructed by the
algorithm. For simplicity, mean tardiness is used as the only
criterion for carrying out the algorithm evaluation.

2 Problem formulation

The limited capacity of manufacturing facilities and
uncertain factors, such as failure of raw material supply,
etc., may prevent a company from finishing a product order
on time. Delay on delivery brings not only tremendous
economic loss to downstream enterprises but also the
penalty from customers. Thus, minimizing the job tardiness
is a deep concern of manufacturing enterprises and a major
issue in production line scheduling. In this respect,
Koulamas has given a general review of the single machine
scheduling to minimize total tardiness [25].

KMS is a dynamic system composed of many KMCs,
which include processing agents, transport agents, decision-
scheduling modules, and testing devices like raster, sensors,
and so on. Consequently, KMC has capabilities of real-time
monitor, data acquisition, information processing, and
decision making. Consider a KMC including M processing
agents, each of which has a buffer, and N jobs to be
scheduled to gain the minimized job mean tardiness. Each
job consists of many manufacturing processes. Workpieces
arrive stochastically at KMC, waiting for processing. Jobs
are independent to one another and without priorities. A
machine can only process one workpiece in a period of
time, and the processing job cannot be interrupted or
rearranged. Let dj denote the ideal due date for the jth
workpiece and Cj denote the actual completion time; then,
the objective function of minimized mean tardiness can be
defined as:

J ¼ min
XN
j¼1

8max Cj � dj; 0
� �,

N

" #
ð1Þ

where 8 is the punishment factor for workpiece tardiness.
Our research aims to select dynamically effective

dispatching rules for scheduling the workpieces in process-
ing agent buffer in a rational way, so as to minimize the
mean tardiness of workpieces in KMC.

3 Analysis on B–Q learning algorithm

Reinforcement learning is an important machine learning
method by evaluating the environment feedback and then
improving the mapping of system state to action. It is
different from supervised learning in connection doctrine.
The signal of reward, provided by external surroundings, is
only feedback evaluation on mapping between system state
and action rather than directly tells the reinforcement
learning system how to generate correct actions, as shown
in its learning mechanism illustrated in Fig. 1. Reinforce-
ment learning includes many algorithms, such as TD (l)
(temporal difference method), Q-learning algorithm, adap-
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tive heuristic critic algorithm, etc. The Q-learning algo-
rithm, proposed by Watkins in 1989, is considered as one of
asynchronous dynamic programming.

Currently, reinforcement learning technology has found
wide application in manufacturing processes, including
inventory control, supply chain management, machine
reconfiguration, and preventive maintenances [26, 27].
However, little has been written about the application of
reinforcement learning technology to dynamic scheduling
in the existing literature. This is possibly caused by
structural credit assignment of reinforcement learning, in
which the learning results will be bad and cannot meet
actual production requirements when facing large-scale
state-space problems in dynamic scheduling. To eliminate
the poor effect of a large state space, B–Q learning algorithm
is proposed here to combine the basic sequential algorithmic
scheme (BSAS) [28] with the Q-learning algorithm. The B–
Q learning algorithm causes clustering in the state yielded
by the KMC simulator and learns on the basis of lots of
clustering states. Therefore, only a minor scale state space
needs to be searched, so that its learning efficiency is
improved and generalization capability is enhanced.

3.1 Selection of state features

Definition 1 At dispatching decision-making time, the
sum of the rest processing times of all the
jobs in the buffer of each processing agent
in KMC is calculated, the maximum of

which is called maximum machine work-
load, marked as 5max.

Definition 2 At dispatching decision-making time, the
sum of the rest processing times of all the
jobs in the buffer of each processing agent
in KMC is calculated, the mean value of
which is defined as mean machine work-
load, marked as w.

Definition 3 The ratio of KMC’s maximum machine
workload to the mean machine workload
is defined as relative machine workload,
described as 5 , i.e., w ¼ wmax=w.

Let S represent the state space of KMC; then S=∪si, in
which si consists of system state features and represents the
actual state of KMC operation. At least more than ten of the
state features are needed to describe a certain transient state
of a production system entirely. Under such high-dimen-
sional conditions, yielded state numbers increase exponen-
tially, which causes state numbers to be extremely large if
only several state features change. To reduce such impact,
we select four state features—the mean allowance factor,
system utilization, relative machine workloads, and average
slack time, which mainly affect the dispatching rules
performance. Thus, si is composed of four state features,
that is si ¼ w; f ;m; zð Þ, where feature variable ω is the
relative machine workload. f is the mean allowance factor
of the system and is defined herein as

f ¼
X

fj
.
Nd ð2Þ

where fj is the jth job allowance factor, reflecting whether
the due date of the jth job is tight or loose, and Nd is the
total number of jobs in the system.

Feature variable μ is system utilization rate, i.e., the ratio
of the current non-idle processing agent number to the total
processing agent number in KMC. State feature ζ represents
mean slack time; if ζj is the slack time of the jth job, we
have

z j ¼ dj � t �
Xkj
q¼kd

pjq ð3Þ

where t is the current time, Pjq the required time for
operation q of the jth job (if operation q is under
processing, then Pjq means the remaining processing time
for this operation), kd the operation under processing or
waiting for processing, and kj the total operation number for
the jth job. Thus, the average slack time is defined herein as

z ¼
X

z j
� �.

Nd ð4Þ

Definition 4 In the process of KMC running, if x clusters
are obtained through BSAS clustering the

Fig. 1 Learning mechanism of reinforcement learning
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system state, then the center of all the system
states in the uth cluster is called clustering
state scu, so there are x clustering states,
defined as Sc ¼ [scu, for u ¼ 1; 2; � � � ; x.

The dissimilarity measure adopted in the BSAS is the
Euclidean distance in terms of the feature value magnitude.
To keep feature values within similar ranges, it is necessary
to normalize feature values. Among all normalization
preprocessing methods, the scale factor approach is
relatively simple and useful. It is easy to divide a feature
value that needs preprocessing by a simple scale factor. By
selecting scale factor properly, one can balance the
contribution of the respective feature value and retain
the original semantics of the feature. Thus, in this paper,
the scale factor method is chosen to make normalization
preprocessing on the four state features and to balance each
feature’s function in state clustering as well.

3.2 Proposition of B–Q learning algorithm

At any scheduling decision-making point, KMC will select
the correct action at according to the current system
clustering state sct namely, whose dispatching rule will be
chosen to schedule the process-awaiting job. Action at is
one of the actions in the set A, i.e., at 2 A, and A is a set
composed of many actions, that is, A ¼ a1; a2; � � � ; ab

� �
.

Each action in A corresponds to a dispatching rule. A
following system clustering state sctþ1 is yielded after the
action at acts on the KMC system. The learner thus receives
an immediate reward rt+1. Thus, a series of rewards will be
yielded in the process of KMC running. In order to learn
the optimal control policy according to all subsequent

rewards on the time axis, that is, to select the optimum
action by the detected clustering state, the evaluating
function is defined below.

Definition 5 KMC starts from the system clustering state
sct at t time and selects action at according to
a certain control policy, so that the expected
cumulative discounted reward is obtained by
complying with the policy, which is called
evaluation function on the state-action pair
sct ; at
� �

, marked as Q sct ; at
� �

.

For any state-action pair scu; av
� �

, the expression
Q scu; av
� �

1 � u � x; 1 � v � bð Þ can be obtained by the
definition of evaluation function. Thus, we have

Q scu; av
� � ¼ E

X1
k¼0

gkrtþkþ1 sct ¼ scu; at ¼ av
��( )

ð5Þ

where g 0 � g < 1ð Þ is a discount rate for delayed reward,
reflecting the relative ratio of delayed reward to immediate
reward.

Beginning with KMC state-action pair scu; av
� �

, each step
selects an action a following the optimal control policy, so
that the maximum expected cumulative reward is obtained,
i.e., the optimal evaluation function Q* scu; av

� �
. The essence

for optimal control policy learning is to learn how to get the
optimal evaluation function. However, due to the clustering
state in the evaluation function Q sct ; at

� �
, the value of

evaluation function fluctuates violently, resulting in poor
stability of the learning course. To reduce such fluctuation,
the evaluation function threshold Θ is introduced to acquire
the iteration learning model for B–Q learning algorithm, as
shown in Eq. 6.

Qn sct ; at
� � ¼

Qn�1 sct ; at
� �þ an sct ; at

� �
rtþ1 þ gmax

a
Qn�1 sctþ1; a

� �� Qn�1 sct ; at
� �h i

;

if rtþ1 þ gmax
a

Qn�1 sctþ1; a
� �� Qn�1 sct ; at

� ���� ��� � D

Qn�1 sct ; at
� �þ an sct ; at

� �
rtþ1 þ gmax

a
Qn�1 sctþ1; a

� �� Qn�1 sct ; at
� �� f nð Þ$D1

h i
;

if rtþ1 þ gmax
a

Qn�1 sctþ1; a
� �� Qn�1 sct ; at

� �
> D

Qn�1 sct ; at
� �þ an sct ; at

� �
rtþ1 þ gmax

a
Qn�1 sctþ1; a

� �� Qn�1 sct ; at
� �� f nð Þ$D2

h i
;

if rtþ1 þ gmax
a

Qn�1 sctþ1; a
� �� Qn�1 sct ; at

� �
< �D

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð6Þ

where ΔD1 and ΔD2 are defined herein as

ΔD1 ¼ rtþ1 þ gmax
a

Qn�1 sctþ1; a
� �� Qn�1 sct ; at

� �� D

ð7Þ

ΔD2 ¼ rtþ1 þ gmax
a

Qn�1 sctþ1; a
� �� Qn�1 sct ; at

� �þ D ð8Þ

In Eq. 6, Qn sct ; at
� �

is the evaluation function of the nth
cycle. an, the step parameter, is reduced gradually at a
certain rate in the learning process, meeting the aim of
converging to the optimal evaluation function. It can be
derived by the following expression:

an sct ; at
� � ¼ Ca

�
1þ visitsn sct ; at

� �� � ð9Þ
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where Ca is a weight coefficient variable of the step
parameter, visitsn sct ; at

� �
is the total visit time of state-

action pair sct ; at
� �

in n cycles. In consequence, the step
parameter αn diminishes when the visit time increases. In
the course of learning, when KMC is at state sct , the learner
will select action a from the set A by adopting ε-greedy
method, that is, the action a of the maximum evaluation
function max

at
Q sct ; at
� �

is selected by probability (1−ε);
other actions in the set A are selected randomly by
probability ε. Based on the above, the following provides
brief details of the proposed B–Q learning algorithm:

Algorithm 1: Algorithm 1 is the B–Q learning algorithm.

Step 1 Initialize cluster number x=1 and i=1. Set
maximum cluster number K, dissimilarity thresh-
old Ω in BSAS, and the maximum number of
states κ from KMC simulator.

Step 2 Perform KMC simulator, and B–Q learner acquires
the initial state s1 generated by simulator. Normalize
the feature values in state s1, then the xth cluster
Cx ¼ s1f g.

Step 3 Set i ¼ iþ 1 and normalize the feature values in
state si 2 � i � kð Þ. By calculating the dissimilarity
measure d(si, Cl) between the state si and the cluster
Cl 1 � l � xð Þ with Euclidean distance, we obtain
the cluster Ch with the following satisfied:

d si;Chð Þ ¼ min
1�l�x

d si;Clð Þ ð10Þ

Step 4 If x < K and d si;Chð Þ > 4, let x ¼ xþ 1 and
Cx ¼ sif g. Otherwise put state si into the cluster
Ch, that is Ch ¼ Ch [ si, and recalculate the
clustering state sch; then, return to step 3. After the
clustering of all κ states is completed, we obtain x
cluster Cl and clustering state scu; l ¼ 1; 2; � � � ; x,
u ¼ 1; 2; � � � ; x.

Step 5 Initialize the evaluation function of all action-
state pair scu; av

� �
, referred as Q0 scu; av

� �
, for

u ¼ 1; 2; � � � ; x, and v ¼ 1; 2; � � � ; b. Set cycle time

n=1. When KMC begins to operate, select action at0
randomly from set A.

Step 6 Set n ¼ nþ 1. B–Q learner detects the state st that
KMC stays at time t and calculates dissimilarity
measure d st;Clð Þ, for l ¼ 1; 2; � � � ; x. Then we have

d st;Cuð Þ ¼ min
1�l�x

d st;Clð Þ; ð11Þ

so the clustering state sct is obtained at time t, i.e.,
state scu. Accordingly, B–Q learner selects the action
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av via ε-greedy method, which is performed by the
processing agent, that is at = av , av 2 A.

Step 7 Detect the state st+1 that KMC stays at time t+1.
The clustering state sctþ1 is obtained by calculating
dissimilarity measure. B–Q learner receives an
immediate reward rt+1, then the evaluation func-
tion Qn scu; av

� �
is calculated through Eq. 6.

Step 8 Substitute the clustering state sct with sctþ1 and
repeat steps 6–8 until all optimum evaluation
functions Q* scu; av

� �
are obtained.

Algorithm 1 can be applied to any dynamic scheduling
problem. Once all optimum evaluation functions are
obtained, the most effective scheduling knowledge are
acquired and used to conduct the processing agents in
KMC.

3.3 Control policy (BQ_ASCP)

Based on Algorithm 1, the physical framework of adaptive
scheduling control policy of KMC is shown in Fig. 2. It
consists of the KMC simulator, B–Q learner, scheduling
decision-making module, and dispatching rule base.

From Fig. 2, the principle of BQ_ASCP (B–Q algo-
rithm-based adaptive scheduling control policy) is as
follows: The KMC simulator operation yields a series of
KMC simulation states on the basis of the scheduling rules
in the dispatching rule base. Then, system clustering states
are obtained by the B–Q learner. When the job reaches
KMC and is processed, the learner will detect the current
system state and start learning by using B–Q learning
algorithm to acquire the dynamic scheduling knowledge of
the system, thus updating the knowledge in the scheduling
knowledge base. When a certain processing agent is idle
and there are unfinished jobs in its buffer, the decision-

maker will read the scheduling knowledge in the scheduling
knowledge base by the detected state and select suitable
scheduling rules to dispatch the jobs to the processing
agent, ensuring the smooth running of KMC. The frame-
work of the BQ_ASCP procedure is schematically illus-
trated in Fig. 3.

Hence, BQ_ASCP acquires the new scheduling knowl-
edge mainly by learning constantly and selects dispatching
rules dynamically according to KMC states. This control
policy has a strong adaptability to frequent disturbance in
the dynamic scheduling. It is important to note that the B–Q
learner can accomplish learning and update the scheduling
knowledge base by offline learning.

4 Case study

In this section, different scheduling methods of job shop,
namely, BQ_ASCP, earliest due date (EDD), shortest
processing time (SPT), and minimum slack time (MST),
are compared under the performance criterion, i.e., mean
tardiness. Simulation experiment is designed for a KMC
consisting of M processing agents, and there are N jobs to
be processed. The processing agent can only deal with one
job at a time. Job arrivals are generated through a negative
exponential distribution, and the average arrival rate of jobs
is l. Arriving jobs have from one to six operations, and the
total number kj of operations for jth job is equally
distributed among the integers from 1 to 6. The routing
for each job is generated randomly, with every processing
agent having an equal probability of being chosen.
Similarly, the first operation of an arriving job is equally
likely to require any one of the processing agents. No
successive pair of operations requires the same processing
agent.

In the dispatching rule base, three popular dispatching
rules are chosen, i.e., EDD, SPT, and MST. In the light of
the existing literature, one can find that the performance of
dispatching rules EDD, SPT, and MST varies with the state
features, namely, mean allowance factor, system utilization,
relative machine workload, and mean slack time. Therefore,

Table 1 Main parameters for Example 1

M N l up1 up2 uf 1 uf 2 ε g

6 2,400 1/5.5 2 13 1 6 0.15 0.7

Table 2 Mean tardiness from different approaches in Example 1

Approach Mean tardiness of 50 episodes Average value
(500 episodes)

1 2 3 4 5 6 7 8 9 10

EDD 10.271 9.863 10.458 10.447 10.576 10.335 10.299 11.459 9.673 9.618 10.300
MST 10.047 10.642 11.171 9.687 9.658 9.989 10.813 10.910 11.308 10.550 10.478
SPT 16.096 15.593 17.148 15.592 14.872 16.595 14.591 16.408 16.480 16.268 15.964
BQ_ASCP 9.628 8.785 7.925 9.527 9.405 9.429 9.134 8.858 9.018 9.060 9.045
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the four state features are employed to describe the KMC
state in the paper. In the experiment, we set the due dates dj
for the jth job as follows:

dj ¼ rtj þ fj
Xkj
q¼1

pjq ð12Þ

where pjq denotes the time required for operation q on job j and
rtj is the time when the job reaches KMC. Allowance factor fj is
subject to uniform distribution, i.e., fj � U uf 1; uf 2

� �
.

The objective function is aimed at minimizing the mean
tardiness of jobs. However, the B–Q learning algorithm
converges at the maximum value. Thus, it is multiplied by a
minus for the maximum problem conversion, and the
immediate reward r is set as follows:

r ¼ � Cj � dj
� �

tardines for job j
1 no tardines for job j

:

	
ð13Þ

where Cj is the actual completion time for the job j.

Example 1. It is assumed that each job processing time
follows uniform distribution U up1; up2

� �
. The

main parameters for the experiment are listed
in Table 1.

When KMC finishes processing 2,400 jobs, an episode
is completed. The simulation experiment is executed by
Matlab 6.5 language and is run on a Pentium IV 2.4 GHz
personal computer running Windows 2000. The results of
500 episodes are obtained following the rules like EDD,
SPT, MST rules, and BQ_ASCP. Considering the impact of
many stochastic factors accordingly, mean tardiness (MT)
of jobs in 50 episodes are compared with one another, as
shown in Table 2, where the average value is the mean
tardiness of jobs in 500 episodes. The variation of mean

tardiness per 50 episodes from different approaches is
presented in Fig. 4.

To illustrate the due date impact on mean tardiness from
BQ_ASCP, sets uf1=1 and uf2=5.5, 6, …, 7.5, respectively,
the simulation experiments with 200 episodes are imple-
mented. Considering the influence of stochastic factor as
well, we make comparisons among mean tardiness from
different approaches, and the results are shown in Fig. 5.

From Fig. 4, it can be seen that BQ_ASCP method
performs better on the mean tardiness than others. From the
mean tardiness of 500 episodes in Table 2, it can be
concluded that the mean tardiness for BQ_ASCP is 12.18%
lower than that for the best EDD rule and 43.34%
improvement over the worst SPT rule. Likewise, Fig. 5
shows that the BQ_ASCP approach outperforms the other
three dispatching rules on mean tardiness performance
when allowance factors with different urgency are taken
into account, and it can reduce the mean tardiness
significantly for a different due date of a job.

Example 2. To verify the validity of the proposed
BQ_ASCP approach in different manufac-
turing environments, each job processing
time is supposed to be subject to an
exponential distribution with a mean of l1.
The main experiment parameters are shown
in Table 3, and a total of 500 episodes are
executed. Similar to Example 1, considering
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Fig. 4 Variation of mean tardiness from different approaches in
Example 1
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Fig. 5 Mean tardiness from different approaches with variant
allowance factor

Table 3 Main parameters for Example 2

M N l l1 uf 1 uf 2 ε g

6 2,400 1/5.5 6.5 1 6 0.15 0.7
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the influence of stochastic factors during
processing, a mean tardiness (MT) per 50
episodes is compared respectively between
the BQ_ASCP method and the other three
dispatching rules as shown in Table 4 and
Fig. 6.

From the average values in Table 4, we can conclude
that the BQ_ASCP approach improves the mean tardiness
by 10.61% and 22.26%, respectively, in comparison with
the best SPT or worst MST rules constantly. As shown in
Fig. 6, the proposed BQ_ASCP performs much better than
the other three rules when job processing time follows an
exponential distribution.

5 Conclusions

Methods reported in literature acquire effective scheduling
knowledge in an unstable and time-varying environment on
the basis of precise training examples for selecting a proper
dispatch rule to schedule jobs. However, in real production,

it is difficult to obtain this type of precise field-expert
knowledge. Focusing on the difficulty of scheduling
knowledge acquisition in dynamic scheduling, this paper
brings forward an adaptive B–Q learning algorithm that has
the characteristic of adaptation to dynamic environment.
The proposed algorithm needs no prior knowledge other
than the interaction with KMC to acquire scheduling
knowledge. Based on B–Q learning algorithm, BQ_ASCP
is derived for selecting dispatching rules and arranges the
processing sequences of the jobs in KMC according to the
operating state for KMC. It can overcome frequent
disturbance in dynamic scheduling system and accomplish
learning and updating the scheduling knowledge by offline
learning.

KMC is a typical discrete event dynamic system, which
can comprise several hundreds or even thousands of states.
As is known, traditional reinforcement learning is of
structural credit assignment; i.e., when facing an environ-
ment system with large state space, it is difficult to fully
explore state space for reinforcement learning. To cope with
the structural credit assignment influence, basic sequential
algorithmic scheme (BSAS) is employed to obtain the
cluster state of KMC for successful reduction of KMC state
space complexity. As a consequence of adoption of the
cluster state, the value of evaluation function Q sct ; at

� �
may

change drastically, which can lead to the deterioration of
learning efficiency in B–Q learning algorithm, so evalua-
tion function threshold Θ is introduced to minimize the
value fluctuations of evaluation function in learning
process.

The performance of several scheduling methods has
been experimentally evaluated and compared. The results
show that for cases of allowance factors with different
urgency, the given scheduling control policy presented
herein is more feasible and effective than the single
dispatching rule. To simplify and clarify the problem, we
selected only four state features to describe the KMC state
in the paper. In fact, an accurate system state is composed
of many state features, their valid selection being key to the
description of the former. That is what needs further
exploring in the near future.

Table 4 Mean tardiness from different approaches in Example 2

Approach Mean tardiness of 50 episodes Average value
(500 episodes)

1 2 3 4 5 6 7 8 9 10

EDD 6.340 6.647 6.505 7.209 7.141 6.541 6.789 7.137 6.794 7.074 6.818
MST 7.075 7.215 7.387 7.563 6.908 7.264 7.574 6.977 7.402 7.869 7.323
SPT 6.425 6.455 6.330 6.398 6.439 6.532 6.286 6.309 6.045 6.471 6.369
BQ_ASCP 5.759 5.571 5.784 5.720 5.398 5.610 5.882 5.797 5.679 5.725 5.693
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Fig. 6 Variation of mean tardiness from different approaches in
Example 2
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