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Abstract Robust parameter design (RPD) based on the
concept of building quality into a design has received much
attention from researchers and practitioners for years, and a
number of methodologies have been studied in the research
community. There have been many attempts to integrate
RPD principles with well-established statistical techniques,
such as response surface methodology, in order to model
the response directly as a function of control factors. In this
paper, we reinvestigate the dual response approach based
on quadratic models Vinning and Myers (J Qual Technol
22:38–45), which is often referred to in the RPD literature
and demonstrate that higher-order polynomial models may
be more effective in finding better RPD solutions than the
commonly-used quadratic model. We also propose optimi-
zation models for each of the three classes of quality
characteristics (i.e., nominal-the-best, larger-the-better, and
smaller-the-better). The optimal solutions obtained using
the proposed models are compared with the solutions
obtained using the RPD techniques in the current literature.

Keywords Higher-order polynomial models . L-type .

model selection . N-type . Optimal solutions .
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1 Introduction

The robust parameter design (RPD) methodology focuses
on building quality into the design of products and

processes through the determination of the optimum
operating conditions in order to minimize performance
variability and deviation from the target value of interest.
Since it was first introduced by Taguchi [1,2], this ap-
proach has come under serious criticism due to the
statistical analysis methods and optimization approaches
utilized. Taguchi advocates minimizing signal-to-noise
ratios to determine the best overall combination of design
parameter settings and identifying adjustment factors which
are used to tune a mean to a desired target. However, Nair
and Shoemaker [3] argue that by simply collapsing the
experimental data into signal-to-noise ratios, much of the
information concerning the system’s behavior is lost.
Additionally, Taguchi gives no real justification for the
use of these ratios, and the details surrounding the use of
adjustment factors to achieve the desired target value are
sketchy at best. To address these issues, there have been
several attempts in the literature to improve the analysis and
optimization phases of the RPD methodology. These
improvement efforts have focused on the dual response
surface approach, which was first incorporated into the
RPD methodology by Vining and Myers [4]. The dual
response approach is an extension of the work based on
ridge analysis by Myers and Carter [5]. Ridge analysis has
been studied by numerous authors including Hoerl [6],
Draper [7], Myers [8], Box and Draper [9], and also Khuri
and Cornell [10].

The dual response approach utilizes response surfaces in
modeling process relationships by separately estimating the
response functions for the process mean and variance of the
system under investigation. Then, based on the optimiza-
tion strategy chosen, these functions are optimized simul-
taneously over the region of interest to determine the
system’s optimum operating conditions. For nominal-the-
best type (N-Type) quality characteristics, Vining and
Myers [4] proposed minimizing the variance while main-
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taining the mean on the desired target, thus referring to the
variance as the primary response and the mean as the
secondary response. For the larger-the-better type (L-Type)
and smaller-the-better type (S-Type) quality characteristics,
they proposed setting the mean as the primary response to
be optimized, while setting the variance as the secondary
response to be maintained on a target. Umland and Smith
[11] and Myers and Carter [5] used the Lagrange multi-
pliers as a solution method in solving those problems.

Del Castillo and Montgomery [12] observed that the
Vining and Myers model [4] does not always yield global
optimal RPD solutions, and proposed the generalized
reduced gradient method with inequality constraints as an
optimization method. Cho [13] and Lin and Tu [14]
proposed minimizing the mean squared error which allows
some bias in the primary response with substantial
reduction in variability. Lin and Tu [14] demonstrated
superiority in their methodology over the proposals of
Vining and Myers [4], and Del Castillo and Montgomery
[12]. As an extension, Copeland and Nelson [15] proposed
minimizing the standard deviation subject to a constraint
that bounds the bias in the definition of the mean squared
error (i.e., bm� tð Þ2� Δ2, where bm is an estimate of the
target mean τ, and Δ is a desired upper bound for the bias).
Several other approaches to solving the dual response
problem have been proposed. For example, Kim and Lin
[16] proposed a fuzzy optimization methodology, and Del
Castillo et al. [17] and Fan [18] proposed different
computational methods for global optimization.

Kim and Cho [19], and Tang and Xu [20] proposed the
use of goal programming, and Köskoy and Dogamaksoy
[21] suggested treating the secondary response as another
primary response and generating Pareto optimal solutions.
Further, Lam and Tang [22] proposed the use of a graphical
approach, with compromise programming to generate a set
of weakly Pareto optimal solutions to the dual response
problem as an aid to studying trade-offs involved in
selecting optimal design settings.

Numerous authors have considered the subject of designed
experiments in the context of robust parameter design
(RPD). Recent developments include Vining et al. [23], who
considered industrial experiments involving hard-to-change
factors in the context of split-plot design and modified the
standard central composite design to apply to such cases.
Kowalski et al. [24] proposed a further modification of the
proposal by Vining et al. [23] who integrated the dual
response methodology with the split-plot structure. More
recently, Kunert et al. [25] used the experiments with the
product array and combined array and determined that the
product array was better at finding the effect on the variance
than the combined array. They argue that the reason for their
observation may be attributed to the fact that the effect on the
variance could not be attributed to low-order interactions.

Del Castillo et al. [26] proposed a criterion for designs used
in RPD based on the mean square error of fitted models and
the range of noise factors. Although it is not the focus of this
paper, it is worth mentioning that RPD is being studied in the
setting of generalized linear models. Some references of such
studies include Nelder and Lee [27], Lee and Nelder [28,
29], Engel and Huele [30], Myers et al. [31], and Robinson
et al. [32].

In what follows, we present the abbreviations and
notation of this paper and state our research objective.
The proposed model development is presented next
followed by a numerical example. Finally, the paper ends
with concluding remarks.

1.1 Abbreviatiosns and notation

The abbreviations and notations we use in this paper are as
follows:

VM Method of Vining and Myers [4]
LT Method of Lin and Tu [14]
SC Proposed method by Shaibu and Cho shown in

this paper
T Target value for mean response
TS Target value for standard deviation
S-type The smaller-the-better type quality characteristic
L-type The larger-the-better type quality characteristic
N-Type The nominal-the-best type quality characteristic
x Vector of the levels of controllable factors
y Vector of observed responses
y Mean of observed responsesbmSC xð Þ Estimated mean response surface obtained using

the proposed model
mMV xð Þ Estimated mean response surface function using

the Vining and Myers approach [4]bmSC xð Þ Estimated mean response surface function using
the Lin and Tu approach [14]bsSC xð Þ Estimated standard deviation response surface
function using the proposed modelbsMV xð Þ Estimated standard deviation response surface
function using the Vining and Myers approach [4]bsLT xð Þ Estimated standard deviation response surface
function using the Lin and Tu approach [14]

Ω Feasible or experimental region of interest.

2 Research motivation

There are four main steps in RPD methodology:

1. Design an experiment from which a set of data on a
quality characteristic of interest is generated

2. Model the mean and variability responses using the
data in Step (1)
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3. Formulate models to optimize the mean and variability
response functions

4. Obtain solutions to the optimization models

We observe that the second step relies on the first, since a
good experimental design yields reliable data, which is
essential in obtaining reliable models for the mean and
variability response functions. Similarly, obtaining realistic
solutions from the optimization models depends on whether
the constituents of the optimization models (i.e., the mean and
variability response functions) represent the mean and
variability of the quality characteristics as accurately as
possible. In the RPD literature, much work has been done to
ensure sound experimental designs under various conditions,
but not nearly as much has been done with regards to response
surface modeling. However, the importance of response
surface models has been highlighted by LT who reiterated
the suggestion by VM that “The fitness or the prediction
ability of the mean and variability models is an extremely
important consideration when optimizing a dual response
problem.” This suggestion cannot be overemphasized since
different models of the mean and variability of the same
process or product characteristic can be used in solving the
same optimization model, all achieving the objective of the
optimization model (i.e., minimizing or maximizing the ob-
jective function), but with different optimal settings. We
believe that better RPD solutions can be found by obtaining
accurate response surface models in terms of prediction.
Therefore, the second step above deserves a great deal of
attention in order to make sure that the most accurate models
are obtained before proceeding to the optimization step.
Achieving accurate response surface models will serve to
reduce, as much as possible, the disparity between solutions to
optimization models and the results obtained by actually
applying those solutions to the processes or systems of
interest. To this end, in this paper, we select models based
on statistical model selection techniques, and directly compare
the models obtained to previousmodels.Wewill also compare
the models by applying them to various optimization
problems proposed in the context of RPD.

3 Proposed model development

The model development procedure we propose consists of
three steps, namely the experimental phase, the model
selection phase, and the optimization phase. We describe
each of the phases in what follows.

3.1 Experimental phase

In this phase, an experimental design (e.g., full or fractional
factorial designs, central composite designs, etc) is selected

and the response of interest is measured under the selected
design. That is, for n factors, the measurements are taken at
various design points, where each design point consists of a
combination of the levels of the control variables (see
Table 1). We refer to the xi’s as the basic variables.

3.2 Model selection phase

When the response of interest (Y) is influenced by a set of
factors x1; x2; . . . ; xnf g, the functional relationship is often
not known, but can be estimated to a reasonable degree of
accuracy. If the relationship is polynomial in nature, then
besides the linear terms in the basic variables, various
powers as well as products of various forms also contain
information about Y. Most RPD problems are analyzed by
obtaining the second order estimated response surface
functions. In this paper, we propose the use of higher-order
polynomial functions in modeling the response. As we shall
show in the numerical example, the prediction ability of the
response surface models obtained using the proposed model
is higher than that of the second order models.

The model selection phase consists of two stages. In the
first stage, we form a set of variables (or factors) made up
of the powers and cross-products of the basic variables and
augment it with the set of basic variables to form a pool to
choose from using statistical model selection techniques.
The composition of the pool depends on the order of the
model desired. For example, if we are interested in a third
order model, we will construct a pool of the form

P ¼ xi; x
3
i ; x

2
i ; xixj; xixjxk ; x

2
i xj; i 6¼ j 6¼ k

� �
: ð1Þ

It is easy to show that for n variables, this set will
consist of n

6 n2 þ 3nþ 14ð Þ elements. For example, if n=3
basic variables, we will have a pool of 16 elements to
choose from. The standard statistical techniques used
include stepwise regression, all possible subset regression,
the coefficient of determination (R2), the adjusted R-square
(R2

a), the predicted R-square (R2
pred), the prediction error

sum of squares (PRESS), the root mean square error
(RMSE), Mallows Cp, and the variance inflation factor
(VIF). Intuitively, it is obvious that models obtained
through this proposed procedure cannot perform any worse
than the second order models being used presently. We
assume that the functional relationship between the varia-
bles in the pool and the response variable of interest (y) is
of the form

y ¼ Xb þ "; ð2Þ

where X is a matrix with first column of ones, and the
elements of the set P (in Eq. (1)) in the rest of its columns.
is a column vector of parameters, and is a vector of random
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errors with constant variance and zero mean. The least
squares estimator of is given bybb ¼ X 0Xð Þ�1X 0y; ð3Þ
and the least square predicted model is of the form

by ¼ Xbb: ð4Þ
For a model with p parameters, R2, R2

a, and RMSE are,
respectively, defined as

R2
a ¼ 1� 1� R2

� � n� 1

n� p

� �
; ð5Þ

R2 ¼
bβ0X 0X � ny

y0y� ny2

2

; ð6Þ

and

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0y� bb0X 0X

n� p

s
ð7Þ

Models with large values of R2, and R2
a, and small values

of RMSE are sought. It is well known that R2 is an

increasing function of the number of predictors in the
model. That is, it increases with additional predictor
variables regardless of how significant or insignificant the
variables are. On the contrary, R2

a may decrease if additional
predictors do not contribute significantly to explaining the
variability in the response. Thus, it is important to observe
both statistics rather than R2 alone.

The PRESS and R2
pred are useful in assessing the pre-

diction ability of models. If ei ¼ yi � byi represents the ith

residual, and, the ith diagonal of the hat matrix (see [33]),
which is defined by, then

PRESS ¼
Xn
i¼1

ei
1� hii

� �2

; ð8Þ

and

R2
pred ¼ 100 1� PRESS

y0y� ny2

	 

%: ð9Þ

Lower values of PRESS and higher values of indicate a
model of high prediction ability.

Since the proposed model of this work recommends
consideration of the possibility of adding more variables in

Table 1 The printing process data [9]

Design point u Control factors Observations Mean Std. dev.

x1 X2 x3 yu1 yu2 yu3
C
yu su

1 −1 −1 −1 34 10 28 24.0 12.49
2 0 −1 −1 115 116 130 120.3 8.39
3 1 −1 −1 192 186 263 213.7 42.83
4 −1 0 −1 82 88 88 86.0 3.46
5 0 0 −1 44 188 188 140.0 83.14
6 1 0 −1 322 350 350 340.7 16.17
7 −1 1 −1 141 110 86 112.3 27.57
8 0 1 −1 259 251 259 256.3 4.62
9 1 1 −1 290 280 245 271.7 23.63
10 −1 −1 0 81 81 81 81.0 0.00
11 0 −1 0 90 122 93 101.7 17.67
12 1 −1 0 319 376 376 357.0 32.91
13 −1 0 0 180 180 154 171.3 15.01
14 0 0 0 372 372 372 372.0 0.00
15 1 0 0 541 568 396 501.7 92.50
16 −1 1 0 288 192 312 264.0 63.50
17 0 1 0 432 336 513 427.0 88.61
18 1 1 0 713 725 754 730.7 21.08
19 −1 −1 1 364 99 199 220.7 133.82
20 0 −1 1 232 221 266 239.7 23.46
21 1 −1 1 408 415 443 422.0 18.52
22 −1 0 1 182 233 182 199.0 29.44
23 0 0 1 507 515 434 485.3 44.64
24 1 0 1 846 535 640 673.7 158.21
25 −1 1 1 236 126 168 176.7 55.51
26 0 1 1 660 440 403 501.0 138.94
27 1 1 1 878 991 1161 1010.0 142.45
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Table 2 ANOVA for the mean response

Predictor Coef. SE coef. T P VIF

Constant 339.47 25.90 13.11 0.000
x1 177.000 8.936 19.81 0.000 1.0
x2 147.00 15.48 9.50 0.000 3.0
x3 115.53 11.99 9.64 0.000 1.8
x11 −3.72 26.81 −0.14 0.892 3.0
x22 −58.11 26.81 −2.17 0.055 3.0
x33 −10.53 20.77 −0.51 0.623 1.8
x12 47.67 18.96 2.51 0.031 3.0
x13 55.00 18.96 2.90 0.016 3.0
x23 43.58 10.94 3.98 0.003 1.0
x233 −56.36 18.96 −2.97 0.014 3.0
x123 82.79 13.40 6.18 0.000 1.0
x1122 80.53 38.85 2.07 0.065 7.0
x1223 30.71 23.22 1.32 0.215 3.0
x1233 27.54 23.22 1.19 0.263 3.0
x11223 35.43 17.98 1.97 0.077 1.8
x112233 −41.26 31.15 −1.32 0.215 3.8
S=37.9142 R-Sq=98.9% R-Sq(adj)=97.2% PRESS=78791.4 R-Sq(pred)=94.14%
Source DF SS MS F P
Regression 16 1331166 83198 57.88 0.000
Residual error 10 14375 1437
Total 26 1345541

Table 3 ANOVA for the standard deviation

Predictor Coef. SE Coef. T P VIF

Constant 34.208 8.770 3.90 0.005
X1 36.493 8.320 4.39 0.002 3.0
X2 35.55 10.74 3.31 0.011 5.0
X3 −19.25 14.41 −1.34 0.218 9.0
X11 3.900 8.320 0.47 0.652 1.0
X33 16.930 8.320 2.03 0.076 1.0
X12 −18.83 10.19 −1.85 0.102 3.0
X13 29.02 10.19 2.85 0.022 3.0
X23 29.81 10.19 2.93 0.019 3.0
X112 −22.68 10.19 −2.23 0.057 3.0
X113 61.26 17.65 3.47 0.008 9.0
X122 −37.45 10.19 −3.68 0.006 3.0
X223 56.60 17.65 3.21 0.012 9.0
X233 −7.67 10.19 −0.75 0.473 3.0
X123 29.566 7.205 4.10 0.003 1.0
X1123 −23.59 12.48 −1.89 0.095 3.0
X1223 −35.86 12.48 −2.87 0.021 3.0
X1233 39.83 12.48 3.19 0.013 3.0
X11223 −68.13 21.62 −3.15 0.014 9.0
S=20.3790 R-Sq=94.5% R-Sq(adj)=82.0% PRESS=21219.9 R-Sq(pred)=64.64%
Source DF SS MS F P
Regression 18 56682.3 3149.0 7.58 0.003
Residual error 8 3322.4 415.3
Total 26 60004.7
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modeling the response surfaces, we emphasize the inclusion
of VIF and Mallows Cp in the selection criteria. This is
because the VIF is an important diagnostic for multi-
collinearity, while the Cp criterion is used to diagnose bias
or over-fit models, i.e., situations where more variables than
necessary are added to the model. The VIF corresponding
to the ith variable is defined as

VIFi ¼ 1

1� R2
i

; ð10Þ

where is the coefficient of determination obtained by
regressing the ith variable against the rest of the variables
in the model. In practice, VIF values not exceeding ten are
tolerated. The Mallows Cp statistic [34] is defined as

Cp ¼ SSEp

σ̂2
� nþ 2p; ð11Þ

where SSEp is the residual sum of squares of the full model,
and is an unbiased estimate of the error variance. Models
with values of the Cp statistic that are close to p are
considered as the least bias models. Detailed discussions on
the use of all these selection criteria are available in
Montgomery and Peck [33].

3.3 Optimization phase

In this phase, optimization models are formulated and
solved for optimum values of the mean and standard

deviation of the response of interest in terms of the control
variables. We will briefly summarize the models by VM
and LT, followed by our proposed models.

3.4 Models by VM and LT

As mentioned earlier, VM proposed optimization models
for the N-Type, L-Type, and S-Type quality characteristics.
These models are given in Eqs. (12) through (14), where Tm
is the target mean response and Ts is the target standard
deviation. The VM models for the three types of quality
characteristics are

max μ̂ xð Þ
s:t: σ̂ xð Þ ¼ T5

ð12Þ

min μ̂ xð Þ
s:t: σ̂ xð Þ ¼ T5

ð13Þ

min σ̂ xð Þ
s:t: μ̂ xð Þ ¼ Tm

ð14Þ

LT observed that and “are only approximations of the
‘true’ responses (subject to certain random errors)”, and that
“restricting the optimization to equality constraints will
inevitably exclude globally preferred values.” Hence, they
proposed minimizing the mean square error (MSE) instead

Table 4 Comparison of the mean response models

Model PRESS RMSE R2 R2
a R2

pred

μ̂SC xð Þ 78791 37.9142 98.9 97.2 94.14
μ̂VM xð Þ 337545 76.0429 92.7 88.8 74.91
μ̂LT xð Þ 127072 55.0496 95.7 94.1 90.56

Fig. 1 Comparing models for the mean response Fig. 2 Comparing models for the standard deviation

Table 5 Comparing the standard deviation models

Model PRESS RMSE R2 R2
a R2

pred

σ̂SC xð Þ 21219.9 20.3790 94.5 82.0 64.64
σ̂VM xð Þ 93691.4 44.0414 45.0 16.0 0.00
σ̂LT xð Þ 46809.5 37.6679 48.0 38.5 21.99
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(see Eq. (15)), arguing that allowing some bias in the mean
response results in greater reduction in variability.

min f xð Þ ¼ μ̂ xð Þ � Tð Þ2þ σ̂2 xð Þ ð15Þ
All the optimization models are constrained to the

experimental region.

3.5 Proposed optimization models

The L-type optimization model of Eq. (13) (proposed by
VM) is equivalent to the model

min�μ̂ xð Þ
s:t: σ̂ xð Þ � Ts

� �2¼ 0
ð16Þ

We observe that σ̂ xð Þ � Ts
� �2

is positive for values of TS
not equal to bσ xð Þ, thus the equality constraint forces σ̂ xð Þ to
equal TS. Also, assuming that the mean response is positive,
the smallest value of f xð Þ ¼ �μ̂ xð Þ þ σ̂ xð Þ � Ts

� �2
is

achieved when �μ̂ xð Þ is minimized and σ̂ xð Þ � Ts
� �2

is
as small as possible (i.e., zero at best). In other words, μ̂ xð Þ
is maximized and σ̂ xð Þ is as close to S as possible. Hence
we propose the optimization model

min f xð Þ ¼ μ̂ xð Þ þ σ̂ xð Þ � Ts
� �2

s:t: x 2 Ω
ð17Þ

where Ω denotes the experimental region of interest. This
model relaxes the equality constraint in Eq. (16) in the same
way that the MSE optimization model in Eq. (15) relaxes
the equality constraint in Eq. (14). Since the smallest
variability is always desired, we can consider the target S as
an upper bound and seek the solution to the problem

min f xð Þ ¼ � μ̂ xð Þ þ σ̂ xð Þ � Ts
� �2h i

s:t: σ̂ xð Þ � S x 2 Ω
ð18Þ

This model clearly seeks to maximize μ̂ xð Þ and
simultaneously find the σ̂ xð Þ that is at most equal to TS.

Now we consider an S-type problem, where the objective
is to minimize the mean response. In this case, the standard
deviation is still the secondary response, and since smaller
values are desired, we assume that an upper bound (Ts′) is
set for the standard deviation. Thus, an analogous optimi-
zation model to model (14) is

min f xð Þ ¼μ̂ xð Þ � σ̂ xð Þ � Ts
� �2

s:t: σ̂ xð Þ � Ts x 2 Ω
ð19Þ

However, if we only consider a target standard deviation
(Ts) and not an upper bound, we will have the less
restrictive model

min f xð Þ ¼ μ̂ xð Þ þ σ̂ xð Þ � Ts
� �2

s:t: x 2 Ω
ð20Þ

Finally, we propose an N-Type optimization model,
assuming target values T and TS for the mean and standard
deviation respectively. An appropriate optimization model
to solve in this case is

min f xð Þ ¼ μ̂ xð Þ � T
� �2þ σ̂ xð Þ � Ts

� �2
s:t: x 2 Ω

ð21Þ

4 Numerical example

Box and Draper [9] describe an experiment that was
conducted to determine the effect on the quality of a printing
process of three control variables, namely speed (x1), pressure
(x2), and distance (x3). VM used the data of this experiment
to illustrate their proposed dual response methodology. In

Table 6 Comparing solutions to the MSE optimization problem (15) with T=500

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

f(x*) (MSE)

μ̂LT xð Þ and σ̂LT xð Þ (1.000, 1.000, -0.525) 492.231 44.136 2008.309
μ̂VM xð Þ and σ̂VM xð Þ (1.000, 0.0599, -0.242) 494.651 44.599 2017.668
μ̂SC xð Þ and σ̂SC xð Þ (1.000, 1.000, -0.561) 499.884 12.106 146.557

Table 7 Comparing solutions to optimization problem (12) (VM) with T=500

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

f(x*) (MSE)

μ̂LT xð Þ and σ̂LT xð Þ (1.000, 1.000, -0.502) 500 45.503 2070.529
μ̂VM xð Þ and σ̂VM xð Þ (1.000, 0.104, -0.250) 500 45.241 2046.718
μ̂SC xð Þ and σ̂SC xð Þ (1.000, 0.105, -0.561) 500 12.107 146.570
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order to have a fair basis for comparison with the results in
VM, LT used the same data to illustrate their proposition of
alternative optimization models and improved models of the
mean and standard deviation. Similarly, for the purpose of
fair comparison, we will use the same data here, which is
given in Table 1. We will first use our proposed methodology
and find response surface models for the mean and standard
deviation, and then compare the models obtained with the
models of VM and LT. Next, we will consider solving the
optimization models in VM and LT using their response
surface models and the models obtained in this work. Finally,
we will apply the three sets of response surface models (i.e.,
ours, VM’s, and LT’s) to each of our proposed optimization
models and compare the optimal solutions we obtain.

4.1 Model selection

For the model selection, we will first create a pool of
variables. Because of the coding system chosen for the
factor levels (i.e., -1, 0, and 1),

x3i ¼ xi and x
4
i ¼ x2i ; i ¼ 1; 2; 3: ð22Þ

Therefore, we exclude all x3i and all x4i from the pool of
variables in the selection of predictor variables. Thus, the
pool of variables is given by the set

xi; x2i ; xixj; x
2
i xj; x

2
i x

2
j ; x

2
i xjxk ; x

2
i x

2
j xk ;

x21x
2
2x

2
3; i 6¼ j 6¼ k; i; j; k ¼ 1; 2; 3


 �
:

This gives a total of 31variables to consider in the model
selection. Using the methods mentioned in the previous
section, we obtain the response surfaces in Eqs. (23) and
(24) for the mean and the standard deviation respectively.

In Tables 2 and 3, we show the analysis of variance
(ANOVA) results for the models as obtained using Minitab.

μ̂sc xð Þ ¼ 339:47þ 177:0xi þ 147:0x2 þ 115:53x3 � 3:72x21
� 58:11x22 � 10:53x23 þ 47:67x1x2þ55:00x1x3
þ 43:58x2x3 � 56:36x2x23 þ 82:79x1x2x3 þ 80:53x21x

2
2

þ 30:71x1x22x3 þ 24:54x1x22x
2
3 þ 35:43x21x

2
2x3

� 41:26x21x
2
2x

2
3

ð23Þ

σ̂sc xð Þ ¼ 34:208þ 36:49x1 þ 35:55x2 � 19:25x3 þ 3:9x21
þ 16:93x23 � 18:83x1x2 þ 29:02x1x3þ29:81x2x3
� 22:68x21x2 þ 61:26x21x3 � 37:45x1x

2
2 þ 56:60x22x3

� 7:67x2x
2
3þ 29:57x1x2x3 � 23:59x21x2x3

� 35:86x1x
2
2x3 þ 39:83x1x2x

2
3 � 68:13x21x

2
2x3

ð24Þ

4.2 Comparison with previous models

In modeling the mean response for the data of Table 1, VM
and LT reported the models in Eqs. (22) and (26)
respectively. Model (26) is an improvement upon (24),
and was found using model selection criteria on the terms
of the full third order model.

μ̂VM xð Þ ¼ 327:6þ 177:0x1 þ 109:4x2 þ 131:5x3 þ 32:0x21
� 22:4x22 �29:1x23 þ 66:0x1x2 þ 75:5x1x3 þ 43:6x2x3

ð25Þ

μ̂LT xð Þ ¼ 314:67þ 117:0x1 þ 109:426x2 þ 131:463x3
þ 66:028x1x2þ75:472x1x3 þ 43:583x2x3 þ 82:792x1x2x3

ð26Þ

Table 8 Comparing solutions to the VM’s L-Type optimization problem (13) with S=60

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

μ̂LT xð Þ and σ̂LT xð Þ (1.000, 1.000, -0.254) 582.355 60
μ̂VM xð Þ and σ̂VM xð Þ (1.000, 1.000, -0.278) 616.994 60
μ̂SC xð Þ and σ̂SC xð Þ (1.000, 1.000, 0.384) 856.962 60

Table 9 Comparing solutions to VM’s S-type optimization problem (14) with S=60

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

μ̂LT xð Þ and σ̂LT xð Þ (−1.0000, -1.0000, 0.6604) 157.5408 60
μ̂VM xð Þ and σ̂VM xð Þ (−1.0000, -0.3810, 1.0000) 172.8955 60
μ̂SC xð Þ and σ̂SC xð Þ (−1.0000, −1.0000, 0.5582) 149.9620 60
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In Table 4, we compare these two models with the model
we obtained in Eq. (23) based on PRESS, RMSE, R2, R2

a,
and R2

pred . We observe in terms of all these criteria that the
model μ̂SC xð Þ of Eq. (23) is superior to the models of
Eqs. (25) and (26). Thus, Eq. (23) better describes the mean
response and also has a greater ability to predict the mean
response than the other previous models.

We also note that the decrease in the RMSE achieved by
μ̂SC xð Þ is about 50% relative to μ̂VM xð Þ and about 31%
relative to μ̂LT xð Þ. The reductions achieved in the PRESS
values are 77% and 38% relative to μ̂VM xð Þ and μ̂LT xð Þ,
respectively. In Fig. 1, we present a graph of the observed
mean values (μ) and the values obtained from the response
surfaces μ̂SC xð Þ, μ̂VM xð Þ, and μ̂LT xð Þ. The closeness of the
values obtained from μ̂SC xð Þ to the observed mean values
as compared to values obtained from μ̂VM xð Þ and μ̂LT xð Þ is
evident from the graph, which indicates that the perfor-
mance of is indeed an improvement upon the performance
of μ̂VM xð Þ, and μ̂LT xð Þ.

For the same data, VM modeled the standard deviation
by the full quadratic model

σ̂VM ¼ 34:9þ 11:5x1 þ 15:3x2 þ 29:2x3 þ 4:2x21 � 1:3x22
þ 16:8x23 þ 7:7x1x2 þ 5:1x1x3 þ 14:1x2x3

ð27Þ
In an attempt to improve upon this model, LT

considered the full third order model and obtained the
model in Eq. (28) via model selection techniques.

σ̂LT ¼ 47:994þ 11:527x1 þ 15:323x2 þ 29:190x3

þ 29:566x1x2x3 ð28Þ

Table 5 compares the standard deviation models of
Eqs. (27) and (28) with the model σ̂SC xð Þ in Eq. (24) that
we proposed in this paper. Again, we observe that our
proposed model, σ̂SC xð Þ, gives the least values of PRESS
and RMSE, and also the highest values of R2, R2

a, and R2
pred .

A graphical comparison of the three models is shown in
Fig. 2, and just as in the case of the means, we observe that
the values obtained from σ̂SC xð Þ are more likely to be closer
to the observed standard deviation values than the values
obtained from μ̂LT xð Þ and μ̂VM xð Þ.

4.3 Optimization

In this part of the example, we will solve the various
optimization models presented above, based on the response
surface models obtained through our proposed methodology
and those of VM and LT. We solve the optimization models
of Eqs. (12), (13) and (15) using the fmincon routine in
MATLAB, and compare the optimum solutions.

Table 6 shows the solutions to the MSE optimization
model (i.e., Eq. (15)) with a target value of 500 for the
mean response. We observe that the smallest MSE value is
obtained from using the higher order models of this paper
(i.e., μ̂SC xð Þ and σ̂SC xð Þ). Also, μ̂SC xð Þ and σ̂SC xð Þgive the
smallest value of standard deviation and the closest mean
value to the target mean. The observations here support the
observations made in the previous section when the various
response surface models were compared.

In Table 7, we display the solutions to the optimization
problem in Eq. (12) for the various response surface
Models of mean and standard deviation. Again, the results
based on μ̂SC xð Þ and σ̂SC xð Þ give the least values of MSE
and standard deviation. By examining Tables 6 and 7
together, we observe that μ̂SC xð Þ and σ̂SC xð Þ are relatively
more robust in the sense that the MSE value at optimality is
about the same for both optimization methods.

VM used the method of Lagrange multipliers and solved
the L-type optimization problem in Eq. (13) for the data of
Table 1, assuming target standard deviation values (TS) of
60, 75, and 90. For TS=60, we solve the same problem for
the three sets of response surface models. Table 8 compares
the solutions obtained. The solution based on μ̂SC xð Þ and

Table 10 Comparing solutions to the proposed L-type optimization model (17) with TS=60

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

f(x*) (MSE)

μ̂LT xð Þ and σ̂LT xð Þ (1.000, 1.000, -0.206) 598.491 62.840 −590.423
μ̂VM xð Þ and σ̂VM xð Þ (1.000, 1.000, -0.200) 637.747 63.156 −627.790
μ̂SC xð Þ and σ̂SC xð Þ (1.000, 1.000, 0.399) 861.624 61.518 −859.320

Table 11 Comparing solutions to the proposed S-type optimization model (20) with TS=60

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

f(x*)

μ̂LT xð Þ and σ̂LT xð Þ (−1.0000, −1.0000, 0.6466) 156.8879 59.1920 156.8879
μ̂VM xð Þ and σ̂VM xð Þ (−1.0000, −0.4822, 1.0000) 162.1393 59.4685 167.5959
μ̂SC xð Þ and σ̂SC xð Þ (−1.0000, −1.0000, 0.5542) 149.3975 57.6641 149.6801

Int J Adv Manuf Technol (2009) 41:631–641 639



σ̂SC xð Þ gives a larger mean response value (at the target
standard deviation) than the solutions based on the response
surface models of MV and LT.

In Table 9, we show the solutions to VM’s S-type
optimization problem in (14). Again, the solution based on
μ̂SC xð Þ and σ̂SC xð Þ yields the most desired result, i.e., the
smallest mean response value.

It is worth noting from Tables 7, 8, 9 and 13 that all the
response surfaces considered gave optimal solutions that
achieved the desired target in each case. However, the
optimal settings in each case are not exactly the same. This
accentuates the need for obtaining more effective response
surface models in terms of prediction ability.

In what follows, we will solve the proposed optimization
models of this work for all the response surface models we
have been considering, and compare the results in a similar
manner. We solved our proposed L-Type model in Eq. (17)
for the data shown in Table 1 and obtained exactly the same
solution set in Table 8. However, we recommend that the
model in Eq. (18) be considered, since it has the flexibility
of considering smaller values of the standard deviation in
the optimization process. Table 10 compares the solutions
to Eq. (17) obtained by using the various response surface
models. Clearly, by allowing a little bias in the standard
deviation, larger mean response values are obtained as
compared to the solution of VM’s model in Eq. (13), which
allows no bias in the standard deviation. We again observe
that μ̂SC xð Þ and σ̂SC xð Þ give the smallest optimum objective
function value, the smallest optimum standard deviation,
and the largest optimum mean response value.

For our proposed S-type model in (19), we use the target
standard deviation TS=60 and solve it obtaining exactly the
same solutions for VM’s S-Type model in Eq. (14) shown
in Table 9. Table 11 shows the optimal solutions to model
(20) (i.e the alternative S-type model to (19)) for the same
data when TS=60. We observed here that by relaxing the
equality constraint, the standard deviation actually dropped

slightly and the mean response is further decreased. Also in
the case also, the solutions based on and σ̂SC xð Þ are more
desirable in terms of the objectives, i.e., smaller standard
deviation and smaller mean.

Finally, we solve our proposed N-Type problem in
Eq. (21) for the data of Table 1 using the sets of target
values (T=500, TS=60) and (T=600, TS=20). Table 12
shows the optimum solutions of this model for the first set
of target values, where all the response surfaces used
achieved the desired targets.

In Table 13, we display the optimum solutions for the
second set of target values. We observe in this case that
only the solutions based on μ̂SC xð Þ and σ̂SC xð Þ achieved the
desired targets, and therefore give the smallest possible
objective function value (to three decimals). The solutions
based on the response surfaces of VM and LT give much
larger standard deviation values and smaller means than T.

5 Concluding remarks

In the context of robust parameter design optimization
problems, we have addressed the need to consider higher
order polynomial response surface models for the mean and
standard deviation of quality characteristics as a way of
increasing the predictive ability of the response surface
models. A numerical example was used to illustrate the
increased accuracy of the response surface models obtained
in this work relative to existing response surface models for
the same example. Significant increases in R-square,
adjusted R-square, and predicted R-square were achieved
by the models of this work, as well as significant decreases
in root mean square error, and predicted error sum of
squares. For example, relative to the best of the existing
response surface models for the example considered, the
mean response model obtained in this paper is shown to be
higher by 3.95% in predicted R-square, while the standard

Table 12 Comparing Solutions to the Proposed N-Type Optimization Model (21) with T=500 and TS=60

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

μ̂LT xð Þ and σ̂LT xð Þ (0.575, 0.900, -0.192) 500.000 60.000
μ̂VM xð Þ and σ̂VM xð Þ (0.344, 0.504, 0.274) 500.000 60.000
μ̂SC xð Þ and σ̂SC xð Þ (0.477, 0.545, -0.017) 500.000 60.000

Table 13 Comparing solutions to the proposed N-type optimization model (16) with T=600 and TS=20

Models of mean and standard deviation Optimal settings x* μ̂ x*
� �

σ̂ x*
� �

f(x*)

μ̂LT xð Þ and σ̂LT xð Þ (1.000, 1.000, -0.223) 592.640 61.811 1802.29
μ̂VM xð Þ and σ̂VM xð Þ (0.344, 0.504, 0.274) 595.085 56.947 1389.24
μ̂SC xð Þ and σ̂SC xð Þ (0.943, 0.997, -0.289) 600.000 20.000 0.00

640 Int J Adv Manuf Technol (2009) 41:631–641



deviation model is higher by 193.95%. The improvement in
the modeling of the standard deviation is particularly
important since modeling variability has generally been
problematic, as observed in the literature. Optimization
models were proposed and solved for the larger-the-better
type, the smaller-the-better type, and the nominal-the-best
type quality characteristics assuming in each case that there
is a target value for the standard deviation.

We believe that considering higher order response surface
models and using the well-known statistical model selection
techniques properly will enhance the quality of solutions to
robust parameter design problems. In fact, where the most
powerful models are of lower order, such models will be
sought out by the model selection procedure. Therefore, the
proposed procedure of this paper is very likely to yield
response surface models that are at least as powerful as the
existing lower order models in the literature.

A natural extension of this work would be in the
consideration of multiple quality characteristics, and mod-
eling involving both controllable and noise factors. Finally,
we recommend a great deal of caution when using the kinds
of response surface models proposed in this paper and in VM
and LT, as it is possible for such models to give results of no
practical meaning or significance. For example, LT’s standard
deviation model, σ̂LT xð Þ in Eq. (7), gives a negative standard
deviation ((−37.3) when x=[−1, −1, −1]. Therefore, even
with very powerful response surfaces, we recommend
including constraints in optimization models that will serve
to prevent such results from occurring (e.g., 0 � s xð Þ � T

0
S ,

where T
0
S is the upper bound value for the standard

deviation). Another option is to consider functional forms
such as exponential and logistic functions, which do not
allow negative output values.
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