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Abstract CNC end milling is a widely used cutting
operation to produce surfaces with various profiles. The
manufactured parts’ quality not only depends on their
geometries but also on their surface texture, such as
roughness. To meet the roughness specification, the
selection of values for cutting conditions, such as feed rate,
spindle speed, and depth of cut, is traditionally conducted
by trial and error, experience, and machining handbooks.
Such empirical processing is time consuming and laborious.
Therefore, a combined approach for determining optimal
cutting conditions for the desired surface roughness in end
milling is clearly needed. The proposed methodology
consists of two parts: roughness modeling and optimal
cutting parameters selection. First, a machine learning
technique called support vector machines (SVMs) is
proposed for the first time to capture characteristics of
roughness and its factors. This is possible due to the
superior properties of well generalization and global
optimum of SVMs. Next, they are incorporated in an
optimization problem so that a relatively new, effective, and
efficient optimization algorithm, particle swarm optimiza-
tion (PSO), can be applied to find optimum process
parameters. The cooperation between both techniques can

achieve the desired surface roughness and also maximize
productivity simultaneously.

Keywords Metrology . Surface roughness . Milling
operation . Support vector machines . Particle swarm
optimization

1 Introduction

Fiercely global competition has forced manufacturers to
find ways to increase productivity as well as to improve
quality. Automated manufacturing systems are widely
employed in machining along with computer numerical
control (CNC) machines to achieve such goals. Among
several CNC machining processes, end milling is one of the
most conventional and commonly used cutting operations
for producing surfaces with various profiles. The quality of
the manufactured parts not only depends on their geome-
tries but also their surfaces textures such as roughness and
waviness. Surface roughness affects friction, wear, fatigue,
corrosion, and electrical and thermal conductivity [1].
Therefore, the desired surface finish is usually specified in
advance and the proper process with various settings is
repeatedly attempted until the required quality is obtained.

Several factors such as feed rate, spindle speed, depth of
cut, tool geometry, tool wear, chip loads and chip
formations, coolant, and material properties of both tool
and workpiece influence surface roughness. Only some of
these factors can be controlled or set up in advance. In
addition, the selection of cutting parameters’ values is
traditionally conducted by trial and error, experience, and
machining handbooks. Subsequently, various sets of cutting
conditions are repeated to achieve a desired roughness. This
results in cutting condition which may compromise quality
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of the obtained products and/or efficiency of the end
milling operation. Moreover, such empirical processing is
very time consuming and laborious. Generally, the forma-
tion of surface roughness is very complicated and process
dependent. Thus, an analytical approach for its modeling is
very difficult due to its nonlinearity. Various theoretical
models that have been proposed so far are not accurate
enough for wide range of cutting conditions. Thus, there is
a need for a tool that can accurately predict the surface
roughness of a product and also select optimum machining
parameters while minimizing cutting time before
performing the actual milling operation. Hence, improve-
ment of parts quality and productivity can be obtained.
Furthermore, this tool should be easy to use, fast, and
highly reliable.

Many researchers have studied various relationships
between surface roughness and its relevant factors, such
as spindle speed, feed rate, depth of cut, tool diameter,
workpiece hardness, deflection and chatter of the work-
piece-tool system for the end milling process. Techniques
such as the closed-form relationship model, multiple
regression, neural network, neural-fuzzy system have been
investigated for determination of cutting conditions with
good predictive outcomes. They can be roughly categorized
into two groups, analytical and numerical methods. The
former consists of closed-form prediction models of several
components of a cutting operation such as cutting force
system, cutter deflection, and workpiece deflection. Such a
study was investigated by Kline et al. [2] with good
prediction results of surface errors. The latter can also be
further classified into two subgroups, traditional statistics-
based approach and computational intelligence-based ap-
proach. The statistically based methods have been shown to
perform very well for roughness prediction. Lou et al. [3]
determined correlation between roughness and relevant
parameters, spindle speed, feed rate, and depth of cut by
using multiple regression. Mansour and Abdalla [4]
developed the correlation model from cutting speed, feed
rate, and depth of cut via design of experiment and
response surface methodology, which is similar to the work
by Arbizu and Perez [5]. In addition, Feng and Wang [6]
discussed a model for turning based on workpiece hardness,
feed rate, tool point angle, depth of cut, spindle speed, and
cutting time. Taylor tool life equation was first transformed
into simpler forms. Then, multiple regression analysis was
used to establish the prediction model. The reasons why
statistically based methods are quite widely used are that
they are relatively simple, robust, objective, and consistent.
However, their major drawbacks are the requirement of
data’s distribution assumption and the use of trial and error
procedure for unknown relationships of data. These limit
the usefulness of this approach. For these reasons,
computational intelligence-based approach has recently

gained more acceptance. Several methods from artificial
intelligence, evolutionary computation, and fuzzy systems
have been introduced to model metal cutting processes. A
hybrid method such as a combined neural network and
fuzzy system was applied by Lou and Chen [7] with spindle
speed, feed rate, depth of cut, and vibration as parameters.
The fuzzy rules bank was built by learning from various
cutting conditions. A similar work was also conducted in
Lou and Chen [8]. In addition, Lo [9] investigated the
effectiveness of an adaptive-network based on fuzzy
inference system with common cutting conditions such as
spindle speed, feed rate, and depth of cut. Feedforward
neural networks were also modeled to predict both surface
roughness and tool flank wear for various cutting con-
ditions in finish dry hard turning [10]. El-Mounayri et al.
[11] used swarm intelligence to find proper values of
coefficients in a widely accepted model representing a
relationship between roughness and spindle speed, feed
rate, and depth of cut. In those works, their results confirm
the effectiveness of computational intelligence-based meth-
ods. A major shortcoming of using optimization-based
methods is that models describing relationships between
roughness and cutting parameters must be known before-
hand, which is normally true for merely a few parameters.
In addition, they cannot be easily extended to cover other
cutting parameters for more comprehensive and realistic
models. By the same token, fuzzy logic-based methods are
usually difficult to build the rule set and to choose the
proper membership function and its ranges. With high
competition in the manufactured part market such as
automotive industry and the increasing need for more
accurate and practical evaluation systems, techniques in
artificial intelligence, particularly artificial neural networks
(ANNs), receive more attention in the industry and
academia because they can be used to learn relationships
of roughness and its parameters. However, a number of
parameters such as network topology, learning rate, and
training methods have to be fine tuned before they can be
deployed successfully. Furthermore, drawbacks like local
optima, overfitting, and long learning time tend to occur.

Theoretically, the aforementioned shortcomings of
ANNs have been countered by the development of support
vector machines (SVMs). Unlike ANNs which minimize
empirical risk, SVMs are designed to minimize the
structural risk by minimizing an upper bound of the
generalization error rather than the training error. Therefore,
the overfitting problem in machine learning can be solved
successfully. Another outstanding property of SVMs is that
the task of training SVMs can be mapped to a uniquely
solvable linearly constrained quadratic programming prob-
lem. This produces a solution that is always unique and
globally optimal. They have been extended to solve
regression problems as well.
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In this paper, support vector regression (SVR), which
is based on support vector machines (SVMs), is investi-
gated as an alternative technique for roughness prediction.
It has shown very good results in various fields, such as
optical character recognition in machine vision [12] and
function approximation of quantitative structure-activity
relationships (QSAR) in medicinal chemistry [13]. It was
also modified to estimate minimum zone tolerances in
manufacturing [14]. The SVR retains much of the elegance
of the SVMs such as good generalization and global
optimum properties and no normal distribution assumption
requirement. The linear approximation is a fundamental
concept of SVR. Its extension to nonlinear case can be
achieved by using the mechanism of inner-product kernel
to avoid the curse of dimensionality. To speed up its
regression, the use of proper kernel can be calculated in
advance. Even though this kernel computation requires
large memory space, various relief efforts have already
been proposed [15, 16].

So far, no study has yet to focus on surface roughness
modeling and prediction by using SVR. Moreover, in
practice, efficient operation of CNC end milling requires
various goals simultaneously, including desired roughness
of the machined surface and minimum machining time.
Thus, the effects of process conditions on the resultant
surface quality and the cutting speed of the end milling
operation can be formulated as an optimization problem for
determination of optimum machining parameters. Tanden et
al. [17] presented a similar approach by attempting to
optimize production cost for end milling with the combined
feedforward neural network and the particle swarm optimi-
zation (PSO). The neural network was used to predict
cutting forces which in turn were used in the formulated
optimization model as a constraint. The PSO also showed
good performance and was suitable for use with the found
model where no explicit relation between inputs and
outputs was available. With attractive properties of no
requirement on gradient information, consistent results, and
fast convergence, and successfully machining applications
in [11, 17], the PSO is then selected as an optimizer in this
work.

Therefore, the purpose of this study is to develop a
procedure that can determine optimal cutting condition in
CNC end milling for desired surface roughness and
minimizing machining time simultaneously. There are two
main steps in this procedure. Firstly, a surface roughness
predictive model based on the SVR is developed and
evaluated by using experimental data from published
references. Secondly, optimum process parameters are
determined based on the need of the user on a required
surface roughness and the need to maximize productivity
by integrating the SVR-based roughness model in an
optimization problem to be solved by the PSO.

2 Methodology

Section 2.1 discusses on some selected techniques namely
support vector regression, neural network, and particle
swarm optimization for roughness modeling. Next, Sect. 2.2
describes how cutting conditions for desired surface
roughness can be determined while maximizing productiv-
ity at the same time.

2.1 Prediction of surface roughness

2.1.1 Support vector machine-based roughness model

Support vector machines (SVMs) represent a relatively new
type of learning machine. They are an approximate
implementation of the method of structural risk minimiza-
tion which attempts to minimize the generalization error
occurred when the machines are tested with unseen data.
The generalization error rate is bounded by the sum of a
pair of competing terms, the training error rate and the
confidence interval which depends on the Vapnik–Chervo-
nenkis (VC) dimension. Hence, the VC dimension and the
training error (empirical risk) are both minimized at the
same time. To realize this in SVMs, a structure is imposed
on the set of hyperplanes by trying to obtain the weight
vector w having the minimum Euclidean norm. Coupled
with dual transformations, the optimization model yields a
global optimum. These key properties really separate the
SVMs from other learning machine algorithms. The initial
applications of SVMs are optical character recognition [12],
regression, and time series predictions [18, 19].

In regression problems, the problem of approximating
the following set of data x1; y1ð Þ; . . . ; x1; y1ð Þf g � <n� <
with a linear function f xð Þ ¼ w; xh i þ b, where w 2 <n;

b 2 <, and :; :h i represents dot product, is taken into
consideration. The xi is the set of cutting conditions and
yi is the output which is the roughness value. The e-
insensitive loss function proposed by Vapnik [20] is
commonly incorporated with SVMs (e-SVR) to create
sparseness in the support vectors and to embed robustness
of Huber’s loss function. This means that f(x) is allowed to
vary at most e deviation from the target and is as flat as
possible simultaneously. If the deviations are larger than a
priori e specified, this implies a bad fit and this function is
proportionally penalized with a priori constant C. This
constant C determines the trade off between the training
errors and model complexity. The flattest of f (x) is
accomplished by searching the smallest w. Hence, a
formulation of e-SVR can be described by:

min
1

2
wk k2 þ C

Xl

i¼1

ξi þ ξ*i

� �
ð1Þ
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subject to

yi � w; xih i � b � eþ ξi

w; xh i þ b� yi � eþ ξ*
i

ξi; ξ
*
i
� 0

Everything above ε is captured in slack variables ξi and
everything below -ε is captured in slack variables ξ*i. This
ε-insensitive loss function, xj j", is depicted in Fig. 1 and is
defined as

ξj je ¼
0 ; if f xð Þ � yj j < e

f xð Þ � yj j � e ; otherwise

�
: ð2Þ

Using the Lagrangian multipliers and the Karush–Kuhn–
Tucker (KKT) conditions, one obtains the following dual
problem:

max
a

� 1

2

Xl

i¼1

Xl

j¼1

ai � a*i

� �
aj � a*j

� �
xi; xj
� �

�e
Xl

i¼1

ai þ a*i

� �
þ
Xl

i¼1

yi ai � a*i

� � ð3Þ

subject to

Xl

i¼1

ai � a*i

� �
¼ 0

and

ai;a
*
i 2 0;C½ � ; i ¼ 1; . . . ; l:

Transforming into dual form yields a quadratic program-
ming problem with linear constraints and positive definite
Hessian matrix. This leads to a global optimum. A
nonlinear form is usually required to adequately model
surface roughness data. Hence, a nonlinear mapping, 8, can
be used to map data from input space into a higher
dimensional intermediate (or feature) space where linear
regression can be performed. Consequently, major hurdles
result in the complexity of 8 and the curse of dimension-

ality in Eq. (3). To alleviate these difficulties, the inner-
product kernel is then introduced as follows:

K xi; xj
� � ¼ 8 xið Þ;8 xj

� �� �
:

The dimensionality of the feature space is thus hidden
from the remaining computations. Some of the most widely
used kernels such as linear, polynomial, and Gaussian
radial basis functions were tested in this study. The kernel
function can be employed in the optimization models above
by replacing :; :h i with K :; :ð Þ. This adds the capability to
approximate both linear and nonlinear functions.

In summary, the main advantages of SVR are implicit
mapping by using kernels in handling nonlinear data,
convexity of quadratic optimization, and generalization
properties. In addition, distribution of the data used is not
necessarily assumed in advance, which makes it very
promising for the real-world problems.

2.1.2 Neural networks-based roughness model

Most of the aforementioned advantages of the SVR are
very similar to those of neural networks. Hence, a feed-
forward backpropagation neural network (NN) was attemp-
ted to predict surface roughness with the same datasets. A
neural network normally has two elementary components,
processing elements (or processing nodes) and connection
weights. A feedforward architecture specifies that the
network has no loops as opposed to feedback architecture.
A classical learning algorithm, backpropagation, was used
to train and update the weights on each link of a neural
network with training examples. These weights capture the
relationship pattern of multivariable function through
learning. In other words, they were used to capture the
relationships between various cutting conditions and sur-
face roughness. Weight adjustment between processing
nodes in backpropagation is carried out according to the
difference between the target value and the output value of
the neural network. The difference of the error is measured
by the mean square error shown below:

E ¼
XP
p¼1

XK
k¼1

dpk � opk
� �2 ð4Þ

where dpk is the kth desired value of the pth data and opk is
the actual output.

The weights (W) are adjusted toward the gradient
direction that produces a smaller approximation error as
follows:

W ¼ Wþ ηδy ð5Þ
where h is a positive constant called learning rate, d is the
gradient of the difference between the desired and actual
neuron’s responses, and y is the input vector.

×
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Fig. 1 The soft margin tube
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2.1.3 Particle swarm optimization-based roughness model

The widely accepted analytical model below was suggested
by [11] to predict surface roughness:

Ra ¼ 10aRbFc

Sd
ð6Þ

where Ra is surface roughness; R is the radial depth of cut;
F is the feed factor; and S is the spindle speed; coefficients
a, b, c, and d are the unknowns to be determined by the
PSO algorithm. The PSO was introduced by Kennedy and
Eberhart [21] to imitate social behavior of animals such as
bird flocking in searching for food. Each particle flies in
hyperspace searching for the best solution by adjusting
position and velocity based on its own flying experience
(pbest) and its companions’ experience (gbest). The inertia
weight w was later introduced to improve the PSO
optimizer. It is very attractive because gradient information
is not needed. Hence, it is unaffected by discontinuities of
the objective function. The equations used consist of
flexible and well-balanced mechanisms to enhance the
global and local exploration abilities. These allow a
thorough search and simultaneously avoid the premature
convergence. In addition, PSO uses probabilistic rules for
particle’s movements. Therefore, it is quite robust to local
optima. The steps of the PSO are well documented in [21,
22]. The regression model for roughness prediction could
be developed by minimizing the sum of the errors between
the actual and the predicted outputs while searching the
optimal values for those unknown coefficients in Eq. (6).
The optimization model can be described as follows:

min Error ¼
X
i

Rai � bRai��� ��� ð7Þ

where Ra is the experimental surface roughness and bRa is
the predicted surface roughness [11].

The PSO-based model was formulated to determine a near-
optimal set of a, b, c, and d. A population of 40 particles was
used to search those unknowns (four dimensions) for 300
iterations [11]. Inertia weight was linearly decreased from
0.9 to 0.4. The acceleration constants represent the weighing
of the stochastic terms that pull each particle toward pbest
and gbest positions. They were set to 2.0 to give it a mean of
1 for the cognition and social parts, so that the particles
would thoroughly search the settled regions [21]. Particles’
velocities on each dimension are normally clamped to a
maximum velocity to control the exploration ability of
particles. This velocity was fixed at 0.1. The particle with
the best performance was then picked as a solution. The PSO
consists of five main components, position of particle on
each dimension, particle’s velocity on each dimension,
particle’s personal best value, position of the particle with

personal best value, and group’s best value (index of the
particle having the best value among all particles). One-
dimensional and two-dimensional arrays were used to handle
the above components.

2.2 Optimization of machining parameters

In practice, efficient operation of CNC end milling requires
various goals simultaneously, including desired roughness
of the machined surface and minimum machining time.
Once a reliable roughness prediction model is obtained, it
can be used not only to evaluate cutting parameters but also
to determine the proper process parameters. An optimal
selection of these parameters can be accomplished by
formulating them as an optimization problem. The objec-
tive function was to minimize machining time by maxi-
mizing feed rate subject to the surface roughness required
and limits of roughness parameters employed by the
prediction model:

max xF ð8Þ
subject to

bRa xð Þ � d
xi � lbi ; for i ¼ F; S;D
xi � ubi ; for i ¼ F; S;D
xi � 0 ; for i ¼ F; S;D

where

xF represents feed rate decision variable in inch
per minute (ipm),

xS represents spindle speed decision variable in
revolution per minute (rpm),

xD represents depth of cut decision variable in
inch,

lbi and ubi represent lower bound and upper bound of
corresponding machining parameter i,

R̂a xð Þ represents predictive roughness function with
decision variable vector x=(xF,xS,xD), and

d is specified roughness in microinch.

Since SVR was utilized as the model for surface
roughness, gradient-based nonlinear programming methods
were not practical. The PSO was the method of choice for
the above optimization problem due to its direct fitness
information instead of functional derivatives and other
advantages mentioned in Subsect. 2.1.3. The PSO must be
additionally constrained to handle this optimization prob-
lem. Some simple and effective modifications were done in
the PSO by initiating and updating particles in feasible
region [23]. Otherwise, each particle would loop until it
was in the feasible space. The optimum feed rate, spindle
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speed, and depth of cut were determined by using a
population of 40 particles searching for 350 iterations.
The same inertia weight, acceleration constants, and
maximum velocity as above were simply employed.

3 Numerical modeling

Surface roughness is dependent upon various factors, includ-
ing spindle speed, feed rate, depth of cut, tool geometry, tool
wear, and material properties of both tool and workpiece.
Each affects surface finish in varying degree. Only common
factors such as spindle speed, feed rate, and depth of cut were
chosen to construct a roughness model due to their high
impact and ease of acquisition. They were clearly shown to be
appropriate for a successful prediction of surface roughness
[3, 9, 11]. The previously published data from [3, 9, 11] were
used to train and test the proposed method since those work
represent excellent prediction results.

The experiments for these datasets were conducted by
using Fadal CNC vertical machining center with 6061
aluminum [3, 8, 11]. Summary of each data set is illustrated
in Table 1. It is important to note that the depth of cut in
those datasets represented slightly different cutting con-
ditions in their experiments. The radial depth of cut was
employed in [11], whereas the axial depth of cut was
experimented in [3] and [9].

4 Results and discussions

Section 4.1 elaborates on the predictive ability of the
prediction methods. Section 4.2 describes the effectiveness
and efficiency of the combined PSO and the selected
roughness model for optimizing productivity and still
obtaining the desired roughness.

4.1 On prediction of surface roughness

Each selected parameter and roughness output show drastic
differences in magnitude. Hence, preprocessing was done to
avoid numerical interference for both SVR-based and NN-

based roughness models. The inputs and targets were
normalized so that they fell in the interval [−1,1]. The
discussed SVR method and the PSO algorithm were imple-
mented inMATLAB 7 running on a Pentium IV 2.4 GHzwith
Microsoft Windows XP operating system. The quadratic
programming function, quadprog with MATLAB7, was
invoked to solve Eq. (3) for the SVR method. A neural
network toolbox with MATLAB 7 was used for the
prediction of roughness by using the feed-forward back-
propagation network.

The performance of SVR is related to the number of
dependent and independent variables as well as the
combination of parameters used. One of the major
advantages of SVM is its fewer parameter settings. There
are only two primary parameters involved, the capacity C
and the kernel function used. Unavoidably, there is no
systematic way yet to determine these settings. Fortunately,
SVM’s efficient algorithm makes model selection easier as
compared to other methods. In this study, Dataset 1 was
chosen for model selection since it is quite large for both
training and test sets. Subsequently, the parameters obtained
would be used for the other two datasets, Datasets 2 and 3,
as well. Due to a large number of data in Dataset 1, the
holdout method was chosen as a validation technique for
model selection and performance estimation of the con-
structed SVR model. The values of C’s was varied from 0.1
to 100,000 with various kernel functions such as linear,
polynomial, and Gaussian radial basis functions (GRBF).
The degree of polynomial and the width of the GRBF were
set at 2. The graphical results are depicted in Fig. 2. It
shows that the GRBF kernel function performs better than
the polynomial kernel and the default linear functions. The
C’s ≥ 10 give high accuracy of nearly 80% for the unseen
test set and peak at 10,000 with accuracy of 81.37%.
Therefore, this combination of GRBF kernel and C=10,000
was chosen since it provides the best performance for SVR.

The holdout method was again used with Dataset 1 as a
validation technique for NN-based roughness model selec-
tion. Its architecture was chosen based on generalization
performance indicator by using trial and error approach for 10
runs for each varied structure from 2 to 8 hidden nodes. The

Table 1 Summary of modeled data sets

Dataset 1 (from [11]) Dataset 2 (from [3]) Dataset 3 (from [9])

No. of training data 125 60 48
No. of test data 18 24 24
Spindle speed (rpm) 600, 800, 1000, 1200, 1400 750, 1000, 1250, 1500 750, 1000, 1250, 1500
Feed rate (inch per minute or ipm) 3.94, 4.43, 4.91, 5.41, 5.91 6, 9, 12, 15, 18, 21, 24 6, 12, 18, 24
Feed rate (centimeter per minute
or cm/m) *1 inch=2.54 cm

10.0076, 11.2522, 12.4714, 13.7414, 15.0114 15.24, 22.86, 30.48, 38.1,
45.72, 53.34, 60.96

15.24, 30.48, 45.72, 60.96

Depth of cut (inch) 0.063, 0.109, 0.156, 0.2031, 0.25 0.01, 0.03, 0.05 0.01, 0.03, 0.05
Depth of cut (cm) *1 inch=2.54 cm 0.16002, 0.27686, 0.39624, 0.515874, 0.635 0.0254, 0.0762, 0.127 0.0254, 0.0762, 0.127
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final architecture was 3–5–1 which represented number of
input terminals-number of hidden nodes-number of output
node, respectively. The activation functions selected were the
hyperbolic tangent sigmoid transfer function or “tansig” for
hidden nodes. It is commonly used in backpropagation
network because it is differentiable and covers the bipolar
continuous range (-1,1). The linear transfer function or
“purelin” was selected for the output node in the last layer
since the network outputs could take on any value. The
number of epochs was set at 600. The same topology was also
applied to the other datasets as well. Results shown in Table 2
are the best one from 10 replications of every dataset.

The time to fit an SVR roughness approximationwas on the
order of a few seconds and prediction with a fitted SVRmodel
took less than a second for both types of kernel attempted.
These computational times obviously depended on the number
of data available. The fitting and prediction times of NN and
PSO-based roughness models were comparable to each other
and slightly faster than those of the SVR model. This was due
to the simple mathematical operators employed by the PSO
and the speed-up optimizer, Levenberg–Marquardt backpro-
pagation, utilized by the NN toolbox. Note that in Table 2 the
measures used in the first training and test columns are
average percentage error [3] and those in the last two
columns are percentage total error [11]. They are given by

average percentage error ¼
Pn
i¼1

Rai�Rbaij j�100%

Rai

n
ð9Þ

and percentage total error ¼
Pn
i¼1

Rai � Rbai�� ��
Pn
i¼1

Rai

� 100%: ð10Þ

The resultants of predicted surface roughness by using
SVR model were quite close to actual measured surface
roughness for both training and test sets as illustrated in

Table 2 and Figs. 3 to 5. It could generalize well for unseen
test sets. The comparative accuracy results made against
previously published reference values and those of other
methods are also depicted in Table 2. Clearly, the outcomes
obtained for Datasets 2 and 3 were in close agreement to
those of other methods with accuracy over 90%. These
were benefited by the SVR’s structural risk minimization
which theoretically attempted to balance between training
error and confidence interval. In other words, the SVR
model could learn pattern of complex relationships between
machining conditions and surface roughness and did not
adjust to very specific random features that have no causal
relation to the target function. As a result, the SVR-based
prediction model would be able to avoid overfitting
problem and good generalization performance on unseen
data would be obtained. This means that the SVR can
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Fig. 2 Dependence of accuracy level (%) on C using different kernel functions

Table 2 Comparative accuracy results

Dataset 1 Training a Test a Training b Test b

SVR+GRBF Kernel 68.73% 83.27% 76.42% 81.37%
SVR+Poly Kernel 60.48% 82.70% 70.62% 79.06%
PSO+a closed-
form prediction
model

65.95% 76.70% 71% ([11]) 79% ([11])

NN 70.65% 74.72% 73.46% 78.94%
Dataset 2 Traininga Testa Trainingb Testb

SVR+GRBF Kernel 93.92% 90.48%
SVR+Poly Kernel 90.46% 88.35%
[3] 90.29% 90.03%
NN 91.33% 89.58%
Dataset 3 Traininga Testa Trainingb Testb

SVR+GRBF Kernel 95.86% 95.45%
SVR+Poly Kernel 90.00% 93.91%
[9] N/A 95.35%
NN 91.19% 91.54%

a average percentage error,
b percentage total error
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accurately predict such surface finish, especially with
GRBF kernel.

The accuracy results of every predictive model for
Dataset 1 were in the range of 70% due partly to noise
in the data [11]. This noise should be removed from the
data set or more experimental data should be used in the
training to allow for a reliable and accurate prediction
model. It is important to note that data used for any method
must be properly collected. Otherwise, the predictive model
developed will not be as reliable as desired. This shows
drastic difference as opposed to the results from Datasets 2
and 3.

Normally, quite a number of cutting parameters impact
the manufactured part’s surface texture, including all of
them in the prediction model, require numerous experi-
ments and extensive time for data collection. That is why

only major factors are taken into account in literature. This
implies that the identification process of major factors is
very critical as well. The chosen major factors significantly
affect the reliability of the prediction model. In this work,
the noted difference between those considered datasets was
the use of radial depth of cut in Dataset 1 and axial depth of
cut in Datasets 2 and 3. This might in part contribute to
varying degrees of success of the prediction model. To
obtain more comprehensive and realistic prediction model,
both types of depth of cut should then be taken into
consideration.

The NN-based prediction model also shows good results,
especially for the training sets. This is NN’s main strength
as a universal approximator. However, to obtain good
performance on unseen data, a validation technique like the
holdout method was used with a series of experiments on
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Fig. 3 Comparison of actual Ra (x) and predicted Ra (o) in μ inch on
training (top) and test (bottom) sets of Dataset 1
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number of hidden nodes. Thus, a longer development time
for determination of an acceptable prediction model is
normally resulted.

The main characteristic of the PSO-based model is the
use of the available closed form model representing
relationship between some specific cutting conditions and
surface roughness. Its strength is the ease of use and simple
in concept by applying the optimization technique with a
proper formulation. Its main drawback, however, can easily
be overlooked; that is, the availability of the closed-form
relationship. Such a closed form model is quite difficult to
be extended to cover more machining conditions for more
complex nonlinearities and interactions model. In other
words, a similar model covering relationships of more

machining conditions is very expensive to develop in terms
of difficulty, time, and accuracy.

Generally, the accuracy of test results is slightly lower
than that of the training results. However, this was not the
case for every technique on Dataset 1. The following
factors can cause such results: poor quality of data and the
relatively small size of the test set compared to the size of
the training set. The quality of data is very critical for
modeling. The proposed method in [11], which was
repeated here, also exhibited the smaller error on the test
set than that on the training set. As already pointed out in
[11], when noise was filtered out, the training accuracy was
increased to 82% and testing increased to 80.76%. Hence, a
data collection process played an important role in
modeling. Moreover, even though Dataset 1 contains a
rather large training set (125 data points or 87.41%) but its
test set of 18 data points is very small, only 12.59%. This
can produce a relatively high predictive accuracy on the test
set due to the chance effect of small sample size. If the
differences between the predicted Ra and the actual Ra are
not too much, the small sample size will likely attenuate
these differences no matter what measure, Eqs. (9) or (10),
is used. The numerical measures are a bit deceptive here
with very small sample size. Figure 3 does not illustrate a
well-captured pattern by the prediction model. Similar
graphical results were also obtained in [11]. Even though
these techniques were different, they processed on the same
dataset. They heavily relied on characteristics of the data
such as quality and sample size.

If a huge database storing a wide range and high
precision of each cutting parameter and their corresponding
roughness values can be had, the roughness prediction
model is not necessarily needed. A search in this database
to obtain a proper set of cutting conditions for a desired
roughness can simply be done. To maximize productivity,
an optimization procedure with qualified search results of a
desired roughness can also be accomplished rather easily.
However, this scenario is never the case in practice because
of the very large cost involved for time, labor, tools,
material, and energy. The affordably collected data are
normally in tens or hundreds. This warrants the investiga-
tion of the dependably prediction roughness model to
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Fig. 5 Comparison of actual Ra (x) and predicted Ra (o) in μ inch on
training (top) and test (bottom) sets of Dataset 3

Table 3 Results of the optimization model using Dataset 1

d
(μ inch)

Ra
(μ inch)

F
(ipm)

S (rpm) D (inch) Convergence

30 26.94881 5.91 998.9379 0.101337 18 iterations
30 26.31474 5.91 1043.7017 0.097798 24 iterations
30 29.72597 5.91 1080.1118 0.111489 20 iterations
30 27.33841 5.91 1003.3268 0.078254 32 iterations
30 27.25179 5.91 1084.5201 0.101141 33 iterations
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regress for nonexisting data. Therefore, the SVR-based
method with GRBF kernel was selected since it appeared to
be the most reliable and could effectively and efficiently
find a complex roughness model leading to a very good
generalization result. It can be easily expanded to cover
more cutting parameters reflecting more comprehensive
relationships.

4.2 On optimization of machining parameters

The benefit of the prediction model would not be fully
utilized if it is merely used to evaluate cutting parameters.
More practical application would be the determination of
proper cutting condition while satisfying required rough-
ness. This led to the optimization of machining parameters
by including the predictive roughness model (SVR with
GRBF kernel) obtained as a constraint. The PSO was then
used to find those optimum parameters. Since the predictive
roughness model used was very reliable, the optimum
cutting parameters obtained by a very good optimizer like
the PSO should be very trustworthy as well. The con-
strained PSO was implemented in the same software and
hardware set as the SVR roughness model. Five experi-
ments for each data set were conducted and their results are
tabulated in Tables 3, 4, 5.

The outcomes obtained show excellent performance by
the PSO in terms of quality of solution and consistency,
especially for Datasets 2 and 3. Even though Datasets 2 and
3 were not identical, they were originated by the same
group of researchers [3, 8] and could be captured with a
similar pattern of cutting conditions by the SVR-based
roughness model as evident in Tables 4 and 5. Rather
quickly, the PSO found similar near-optimal results for the

feed rate by almost binding the found roughness, Ra, to the
limit of the given roughness, d. The outcomes for every
parameter were very consistent in every trial of both data
sets. This implies that the proposed approach, the prediction
by the SVR with well-controlled data collection process
and the optimization by the PSO with practical formulation,
can be combined to find the optimum cutting parameters when
the specification of roughness is given. Even though the
results obtained from Dataset 1 might not be as good as those
from the other two datasets, similar outcomes could also be
obtained. The PSO found the optimal result, which was the
upper limit of feed rate, F, used in the training of the SVR-
based roughness model and could converge very quickly
with the given roughness value, d. Other parameters obtained
do not show high consistency across experiments. They
depicted a bit of variations for every parameter but feed rate.
This was a consequence of noisy pattern contained in this
dataset, which led to less reliable prediction performance of
every method attempted as illustrated in Table 2. This in turn
dampens the results of the optimization model. However, the
PSO could still find cutting parameters for every experiment
that were not discernibly far from one another. This in fact
verified that the PSO could still perform well in terms of
quality of solution and consistency.

Besides the advantages mentioned earlier, the original
PSO was also built for speed since only primitive
mathematical operators were computed [21]. To handle
constraints, some simple and effective mechanisms were
additionally included [23]. Consequently, its computational
time increased. Moreover, the chosen roughness, d, played
an essential role for the time taken as well. Nevertheless,
the constrained PSO could converge somewhat quickly for
every dataset attempted and took about 4.5 to 5.5 seconds

Table 4 Results of the opti-
mization model using Dataset 2 d (μ inch) Ra (μ inch) F (ipm) S (rpm) D (inch) Convergence

90 89.99992 17.59797 1325.257 0.039283 161 iterations
90 90 17.59809 1325.7 0.03926 171 iterations
90 89.99995 17.59782 1326.119 0.039349 215 iterations
90 90 17.59333 1325.834 0.038804 220 iterations
90 90 17.59808 1325.778 0.039239 123 iterations

Table 5 Results of the opti-
mization model using Dataset 3 d (μ inch) Ra (μ inch) F (ipm) S (rpm) D (inch) Convergence

90 89.99192 20.13713 1464.296 0.033641 260 iterations
90 90 20.19891 1472.983 0.033638 249 iterations
90 89.99999 20.10071 1457.551 0.033944 160 iterations
90 89.99999 20.07185 1456.013 0.034588 225 iterations
90 89.99969 20.17385 1469.362 0.033952 171 iterations
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with the above parameter settings and constraints to reach
the preset maximum iteration of 350.

Based on simplicity of its concept, primitive mathemat-
ical operators, consistent and near-optimal results, and short
computer codes, the PSO was shown to be a very effective
and very efficient optimizer.

5 Conclusions

This work demonstrated that the combined SVM and
PSO could be applied to effectively and efficiently
predict surface roughness and determine optimal cutting
condition for the roughness specification, thus responding
to the needs of users on the subjects of surface texture
and productivity. The SVM showed excellent perfor-
mance in predicting surface roughness by considering
common cutting conditions of spindle speed, feed rate,
and depth of cut. High accuracy for both training and test
sets were obtained, which also experimentally verified
good generalization in theory of the SVM for unseen
data. In addition, no prior assumptions were made on a
statistical model for the data used. Comparative results
with other works also validated the potential of the
proposed method. Even though the SVM may be quite
complex in concept, its implementation and use were
quite simple and fast. Moreover, its parameters could be
set rather easily. The PSO was then combined with the
predictive roughness model obtained to provide practical
solutions for the user by giving an optimal set of
machining parameters for required surface roughness
and minimum machining time. The PSO was shown to
be an effective and efficient algorithm by robustly finding
near-optimal and consistent results with short computer
code and simple mathematical operator while converging
rather quickly depending on the specified roughness. It is
also suitable for use with SVR-based model where no
explicit relation between inputs and outputs is available.
Therefore, the combination of both techniques, SVM and
PSO, looks very promising for process modeling and its
optimal parameters selection.

More input factors such as material types of workpiece
and cutting tools, tool geometry and wear can additionally
and simply be taken into consideration to comprehensively
capture their relationships with roughness and consequently
obtain greater predictive accuracy. Just like the black-box
nature of ANNs, the SVR-based model still lacks the clear
interpretability in expressing and explaining relationships
between input (cutting conditions) and output (roughness).
This issue should also be dealt with in the future.
Systematic parameters selection of the PSO will certainly
enhance the ease of use of the presented algorithm.
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