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Abstract The resource-constrained project scheduling
problem (RCPSP) has been of a continuing interest and
challenge for researchers and practitioners since its advent.
The formidable computational requirements of the RCPSP
have resulted in numerous attempts to develop heuristic
procedures, leading to the interest in improvement heuristics.
Traditionally, such heuristics constructed a schedule by the
scheme of forward, backward, or bidirectional planning
directions. In this paper, we introduce a hybrid-directional
planning that can make all improvement heuristics (e.g.,
meta-heuristics) more effective in solving the RCPSP. To
validate its effectiveness, the proposed scheme is incorpo-
rated into three popular meta-heuristics, including genetic
algorithm, simulated annealing, and Tabu search. A com-
prehensive numerical investigation shows that the perfor-
mance of such meta-heuristics is significantly increased by
using the hybrid-directional planning, which indicates that
such a hybrid planning direction will hopefully encourage
researchers and practitioners to apply it to different improve-
ment heuristics for solving the RCPSP.

Keywords Scheduling . Project management .

Improvement heuristics .Meta-heuristics

1 Introduction

The use of project management continues to grow rapidly
today. As one of the most challenging problems in project
management, scheduling has been receiving considerable
attention not only from researchers but also from practi-
tioners. In the past few decades, the field of project
management theory and practice has made tremendous
strides forward. However, as projects grow in complexity,
finding realizable schedules that efficiently exploit scarce
resources continues to be a challenging task within project
management.

The resource-constrained project scheduling problem
(RCPSP) has captured the attention of many researchers
and practitioners since it was first proposed by Kelley [1].
Many attempts have been made on the development of
different advanced methods for the RCPSP. However,
scheduling the RCPSP is an unenviable task since it
belongs to the class of ΝP-hard combinatorial optimization
problems [2]. Although optimal solutions of RCPSP can be
obtained via exact procedures, such as linear programming
[3, 4] and branch-and-bound method [5, 6], these methods
may still take a prohibitive amount of computation, even
for a problem with a moderate size. For practical purposes,
it is more appropriate to look for heuristic procedures that
generate a near-optimal solution at a relatively minor
computational expense.

Excellent recent overviews of heuristic procedures for
the RCPSP can be found in the investigation by Hartmann
and Kolisch [7]. Currently available heuristic procedures
for solving this problem in literature can be broadly
classified into two categories, namely constructive heuris-
tics and improvement heuristics. Constructive heuristics
start from an empty schedule and add then activities one by
one until a feasible schedule is achieved. To that purpose,
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the activities are usually ranked by using the priority rule,
which determines the order that the activities are added to
the schedule. Hundreds of constructive heuristics have been
studied in the literature [8]. However, a major drawback of
constructive heuristics is the non-robustness of their
solutions. There exists no constructive heuristic that out-
performs all other constructive heuristics given a variety of
different performance criteria and manufacturing environ-
ments. In addition to priority rules, another major compo-
nent of constructive heuristics is the schedule generation
scheme (SGS), which determines the way in which a
feasible schedule is constructed by assigning starting times
to the different activities. The serial SGS and parallel SGS
constitute the two basic schedule generation schemes. The
serial SGS, which dates back to a paper by Kelley [1],
sequentially adds activities to the schedule until a feasible
complete schedule is obtained. Contrary to the serial SGS,
the parallel SGS [6] iterates over the different decision
points at which activities can be added to the schedule. It is
well known from the literature that the parallel SGS
generates non-delay schedules which do not always contain
a schedule with minimum makespan. Hence, in this study,
we use the serial SGS for mapping an activity list into a
schedule.

On the other hand, improvement heuristics start from an
initial feasible schedule and then provide operations for
repeatedly transforming a schedule into an improved one
[9]. These operations are repeated until a locally optimal
solution is obtained. Improvement heuristics usually yield
better solutions than construction heuristics [10]. Recently,
some improvement heuristics, namely meta-heuristics, try
to avoid getting stuck in a locally optimal solution by
allowing an intermediate deterioration of the project
duration. The meta-heuristic algorithmic framework can
be applied to various optimization problems with slight
modifications [11]. Methods of this type include genetic
algorithm (GA) [12–14], simulated annealing (SA) [15–17],
Tabu search (TS) [18], and the artificial immune system
(AIS) [19]. Literature shows that these methods can obtain
very good results for the RCPSP.

Although a number of studies have been done in the
RCPSP to seek for an efficient and effective algorithm,
little attention has been placed on the planning direction.
The majority scheduling algorithms applied the forward
planning to construct a feasible schedule. However,
different scheduling algorithms can benefit form the
backward and bidirectional planning schemes. The purpose
of the present study is to ascertain the effect of incorporat-
ing the hybrid-directional planning (i.e., to construct
schedules by mixing forward, backward, and bidirectional
schemes) as compared to incorporating the sole planning
direction into improvement heuristics for solving the
RCPSP.

For this objective to be achieved, the article is structured
as follows. In the next section, the RCPSPs to be addressed
in this paper are defined. Section 3 describes the proposed
hybrid-directional planning. Section 4 provides a brief
introduction to the combinations of the hybrid-directional
planning and three popular meta-heuristics, namely GA,
SA, and TS. The computational results of the proposed
approaches are provided, and performances are compared
with other planning directions in Sect. 5. Finally, this study
concludes with suggestions for future research.

2 Problem definition

The RCPSPs to be addressed in this paper are defined as
follows: A project consists of a set of activities J={1,…,n}
where each activity j has a given duration dj in a number of
periods. Each activity has to be processed without inter-
ruption to complete the project (i.e., non-preemptive). Due
to technological restrictions, precedence constraints be-
tween the activities may exist. Furthermore, resource
constraints have to be observed. There are K renewable
resource types. The availability of each resource type
k=1,…,K in each time period is Rk unit. Each activity j
requires rjk units of resource k during each period of its
duration where k=1,…,K. Whenever the availability of a
resource type is not sufficient to satisfy the requirements,
those activities must not be executed simultaneously. All
parameters are assumed to be non-negative integer valued.
With these definitions, the objective is to find a non-
preemptive schedule of the activities so that the precedence
and resource constraints are satisfied and the makespan
(i.e., project duration) is minimized.

3 The proposed hybrid-directional planning

Forward planning considers the normal time direction in
scheduling the activities over time. When constructing a
feasible schedule, we start with the dummy start activity
and gradually schedule all activities until the dummy end
activity has been assigned a starting time. In backward
planning [20], the activities of any RCPSP instances could
equally be scheduled in reverse time direction (i.e., starting
with the dummy end activity and gradually scheduling all
activities until the dummy start activity has been assigned a
starting time). This can easily be obtained by reversing all
precedence relations and using the reverse priority list on
the resulting network. The resulting starting times can then
easily be adjusted so that the starting time of the dummy
start activity equals 0. Finally, the application of all possible
left shifts will result in an active schedule for the original
problem instance.
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Bidirectional planning [21] constructs schedules in the
forward and backward directions simultaneously by com-
bining both the forward and backward scheduling schemes.
To that purpose, both forward and backward priority lists
should be used in the bidirectional planning. During each
iteration of the bidirectional parallel scheduling scheme, the
decision point of each direction with the smallest difference
is considered. In the case of a tie, both decision points are
considered. At each decision point, the activities are
scheduled in the order of forward or backward priority list.
The activities are assigned start or completion times that
coincide with the decision point in the corresponding
direction. This is continued until no more activities can be
scheduled to start or finish at these decision points. Then
the decision point(s) is (are) updated and a new iteration
takes place until all activities have been scheduled. Finally,
the bidirectional schedule can be translated into an active
schedule by shifting the backward scheduled activities to
the left in the order of their start times.

Besides performing the forward, backward and bidirec-
tional planning, the scheduling schemes can be extended to
the hybrid-directional planning (i.e., to construct schedules
by mixing the forward, backward and bidirectional
schemes). This is achieved by adding a planning direction
(PD) code behind the schedule list as follows:

PD ¼
1; forward directional planning
2; backward directional planning
3; bidirectional planning

8
<

:

where PD=1, 2 or 3 is selected by the uniform distribution
with equal probability.

For instance, the forward, backward, and bidirectional
planning sequences of five-job schedules 3-1-5-2-4 can be
simply represented as (3, 1, 5, 2, 4 | 1), (4, 2, 5, 1, 3 | 2),
and (3, 1, 5, | 4, 2 | 3), respectively.

4 Combinations of hybrid-directional planning
and meta-heuristics

This study proposes a hybrid-directional planning to improve
improvement heuristics to solve the RCPSP. This section
elaborates the distinct features of combining the hybrid-
directional planning and three meta-heuristics. Subsection 4.1
explains the GA approach, Subsection 4.2 mentions the SA
approach, and Subsection 4.3 discusses the TS approach.

4.1 Genetic algorithm approach

The genetic algorithm (GA) is based on the mechanisms of
biological evolution and natural genetics. The approach was
first proposed by Holland [22] and tried to implement the
idea of survival of the fittest in the field of combinatorial

optimization. A genetic algorithm starts with a population of
P(g) random schedules. New schedules are created by
combining two existing schedules and by applying a
mutation on a newly created schedule. A mutation typically
consists of a unary neighborhood operator that is applied
with a small probability. After creating a number of new
schedules, the new population consists of the GMax best
schedules out of the newly created and /or existing schedules
and the algorithm continues on the current population. This
process typically continues until a number of populations
have been created and evaluated. Following the termination
of GA, the schedule generated by the algorithm can be
subsequently derived by choosing the best individual found
during the GA process.

For the application of the GA approach to solve the RCPSP
by incorporating into the hybrid-directional planning, the
chromosome presentation, the initial population, the repro-
ductive strategy, the crossover operator, the mutation operator,
and the termination condition are described as follows.

– Chromosome representation and the initial population-
The search space for this chromosome representation is
the permutation of n numbers in the set {1, 2, …, n},
where the ith number in the permutation denotes the
activity is the ith activity to be processed. In addition, we
add a genetic code behind the permutation of n numbers
which represents the planning direction (PD). For exam-
ple, a forward planning sequence of five-job schedules 3-
1-5-2-4 is simply represented as (3, 1, 5, 2, 4, 1). Each
individual in the initial population is generated randomly
with a PD code that is selected from the forward,
backward, or bidirectional planning directions with equal
probability. A collection of Pop_size individuals form a
population. We set Pop_size=6 in the experiments of this
study.

– Reproductive Strategy-The likelihood that an individ-
ual will be selected as parent increases with the
individual’s fitness value. The objective function of
this study is the minimization of the makespan.
Therefore, the smaller the makespan an individual
has, the higher the fitness value of the individual.
Given a population P and an objective function value vj
for each j2P, the fitness value fj for each j2P is defined
as fj=1/(1+vj) and thus the probability of j’s selection is
fj
�P

k2P fk
– Crossover-Two parents have a probability pc of under-

going crossover. The newly generated individual has
chromosomes consisting of genes from either of its
parents. This paper uses the Order Crossover (OX)
proposed by David [23], and set pc=0.8 in the experi-
ments of this study. When crossover occurs, the PD code
is selected from either of its parents with equal
probability.
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– Mutation-New offspring has a probability pm=0.3 of
undergoing mutation. The mutation starts by selecting
one job and comparing swap and insertion options. The
selected job is paired with all other jobs individually to
identify the swap or insertion operation leading to the
largest improvement of the objective function value.
The operation that yields the largest improvement of
the objective function is chosen and then performed.
When mutation occurs, the PD code is changed to the
other two planning directions with equal probability.

– Termination condition- Two termination conditions
are applied in this paper. One is that the process is
terminated if the best solution equals the solution
gotten by critical path method without resource con-
straints observed, and the other is that the process may
be executed for a fixed number of maximum number of
total generations (possible schedules) Smax={1,000,
5,000, 50,000}.

Based on the above, a step-by-step procedure of the
proposed GA can be described as follows:

Algorithm GA (GMax, Pop_size, pc, pm)
{

g←0; Fbest←∞;
initialize population P(g);
while (g < GMax) {

recombine (reproductive, crossover and mutation) P(g)
to yield C(g);
evaluate C(g);.
select P(g + 1) from P(g) and C(g);
g←g + 1;
}

}

The GA begins with four parameters, GMax, Pop_size, pc
and pm, where GMax denotes the maximum number of
generations in GA evolution, Pop_size is the population
size, pc represents the probability of crossover, and pm
represents the probability of mutation. The number of
generations already evolved (g) and the objective function
value of the best individual (Fbest) are set to zero and ∞,
respectively. Let P(g) denote the population at generation g.
The population of the initial generation P(0) is produced
randomly. The evolution continues until the number of
generations equals to GMax. In each generation, the
production of the offspring is repeated Pop_size times.
Parents with smaller objective function values have a
higher probability of being chosen to produce the offspring.
Each reproduction with a chosen pair of parents under-
scores the crossover operator with the probability pc, and
underscores the mutation operator with probability pm.
After repeating the reproduction Pop_size times, better

offspring C(g) will replace parents with worse fitness
values to form the population of the next generation.

4.2 Simulated annealing approach

The ideas of simulated annealing (SA) date back to a paper by
Metropolis et al. [24], who described an algorithm to simulate
the annealing process of material. Then the approach was
extended by Kirkpatrick et al. [25] to SA. Annealing is the
process through which slow cooling of metal produces good
and low-energy-state crystallization, whereas fast cooling
produces poor crystallization. The optimization procedure of
simulated annealing reaching a (near) global minimum
mimics the crystallization cooling procedure.

In essence, SA draws an initial random schedule to start
its search. A new schedule is created in the neighborhood
of the current schedule and it is accepted if it is better than
the current schedule. If the new schedule does not improve
upon the current schedule, it is accepted with a probability
that depends on the magnitude of the deterioration and on a
temperature parameter. This temperature typically starts at a
relatively large value and is reduced during the SA
procedure to decrease the probability that non-improving
schedules are accepted. This process is repeated until time
runs out, and a number of schedules have been created or
no new solution is accepted for a certain time.

The proposed SA approach is described as follows. The
solution presentation is the permutation of n numbers in the
set {1, 2, …, n}, where the ith number in the permutation
denotes the job is the ith job to be processed. In addition, we
add a PD code behind the permutation of n numbers. Let S
be the set of feasible schedules and X be the current
schedule, where X2S. The ObjFun(X) denotes the calcula-
tion of the objective function value of X. The set N(X) is the
set of schedules neighboring X. Neighborhood is sampled
either by swap or insertion with equal probability. The swap
is done by randomly selecting the ith and jth number of X
and then swapping the values of these two numbers
directly. The insertion is done by randomly selecting the
ith number of X and inserting it into the position
immediately preceding the jth number of X. A step-by-step
procedure of the proposed SA approach can be described as
follows:

Algorithm SA (Smax, Citer, T0, TF, α)
T ← T0; c ←1;
Select a feasible solution X randomly, X ←[x1, x2, …,
xn];
Xbest ← X; FX ← objFun(X); Fbest ← FX;
While (T ≥ TF or c ≤ Smax) {

Repeat Citer times {

Y ←X;
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Let i and j be random integers between 1 and n (i≠j);
Generate random variable r uniformly distributed in
(0, 1);
If (r<0.5) {

The ith number is swapped with the jth number in Y;
}
Else {

The ith number in Y is selected and inserted into the
position immediately preceding the jth number in Y;
}
Fcur=objFun(Y);
If (Fcur<Fx) {

PAccept=1;
}
Else {

Δ = Fcur−Fx; PAccept=exp(− Δ/T) ;
}
Generate random variable r uniformly distributed in
(0, 1);
If (r<PAccept) {

X←Y; Fx=Fcur;
}
If (Fcur<Fbest) {

Xbest=Y; Fbest=Fcur;
}
}
T←αT; c←c1;

}

The SA in this study begins with five parameters, namely
Smax, Citer, T0, TF and α, where Smax={1,000, 5,000, 50,000}
is the maximum number of total iterations, Citer ¼
10� activities numbersð Þ denotes the number of iterations
the search proceeds with a particular temperature, T0=100
represents the initial temperature, TF=1 represents the final
temperature that stops the SA procedure if current temper-
ature is lower than TF, and α=0.95 is the coefficient
controlling the cooling schedule. First, the current tempera-
ture T is set to be the same as T0=100. Next, an initial
feasible schedule X is randomly generated with a PD code
which is selected from the forward, backward or bidirection-
al planning direction with equal probability. The current best
schedule Xbest is set equal to X, and the best objective
function value obtained so far Fbest is set equal to objective
function value of X (i.e. FX). T is decreased once after
running Citer iterations from the previous decrease according
to a formula T←αT, where 0<α<1 For each iteration, the
next feasible schedule Y is generated from X either by
swapping or by insertion with equal probability. When

generating the next feasible schedule, the PD code is selected
from the forward, backward or bidirectional planning
directions with equal probability.

Let Δ denote the difference between objective function
value of the feasible schedule X and Y; that is Δ=objFun(Y)-
objFun(X). At any stage in the algorithm, the probability of
replacing X with Y, where X is the current solution and Y is
the next solution, given that Δ>0, is e�Δ=T . This is
accomplished by generating a random number r2[0,1] and
replacing the feasible schedule X with Y if r < e�Δ=T .
Meanwhile, if Δ<0, the probability of replacing X with Y is
1. After T is lower than TF or the process has been executed
for a fixed number of maximum number of total iterations
(Smax) the algorithm is terminated. The Xbest records the
best schedule as the algorithm progresses. Following the
termination of SA, the optimal schedule can thus be derived
by Xbest.

4.3 Tabu search approach

Glover [26, 27] extended the steepest descent approach to
the Tabu search (TS), which is an iterative improvement
approach designed for getting global optimum solutions to
combinatorial optimization problems. As in the steepest
descent method, all schedules in the neighborhood of the
current schedule are evaluated and the schedule with the
smallest objective function value is chosen. However, TS is
continuing the search, even though the new schedule does
not improve the previous one. This characteristic of TS
makes it possible that the series of schedules includes
cycles (i.e., a sub-series of schedules is repeated time and
time again). To avoid cycling to some extent, moves which
would bring us back to a recently visited schedule should
be forbidden or declared tabu for a certain number of
iterations. This is accomplished by keeping the attributes of
the forbidden moves in a list, called a tabu list. Any
neighborhood move that belongs to the tabu list is therefore
forbidden, except if the move would lead to a new best
schedule. This phenomenon is called an aspiration criterion.
The size of the tabu list must be large enough to prevent
cycling but small enough not to forbid too many moves.
More refined versions and a large number of successful
applications of TS can be found in Glover [28].

The remaining part of this subsection describes how to apply
the TS approach to solve the RCPSP by incorporating into the
hybrid-directional planning. First, schedule representation and
the initial schedule for the problem under consideration are
discussed. Next, the neighborhood of the current schedule is
defined and then tabu restriction is explained. The last part of
this subsection deals with the aspiration criteria for the TS.

– Initial schedule-The initial feasible schedule X is
randomly generated with a PD code, which is selected
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from the forward, backward, or bidirectional planning
directions with equal probability.

– Neighborhood-The TS approach assumes that all
schedules that can be reached from any current
schedule can be classified as the neighborhood. If one
alters the current schedule by swapping the sequence of
two jobs or inserting a job into another position, the
result is a member of the current solution’s neighbor-
hood. In this paper, we randomly choose ith number of
the current solution X, where the neighborhood of X is
the set of all possible swaps and insertions of the ith

number with the other numbers. When generating the
neighborhood of the current solution X, the PD code is
selected from the forward, backward, or bidirectional
planning directions with equal probability.

– Tabu restrictions: The most distinctive feature of the
Tabu search is that recent moves are not allowed to be
reversed; recent moves are forbidden (tabu). The search
remembers by forming a list called the tabu list,
consisting of all of these tabu moves. The tabu list is
implemented as a FIFO (first in, first out) list of fixed
length L in this paper.

– Aspiration criterion: In our implementation, the
following commonly used aspiration criterion is
employed to cancel the effect of a tabu status on a
move: if a certain move is forbidden by tabu restrictions
and the aspiration criterion is satisfied, this move is
allowed to override the tabu restriction (i.e., if a tabu
move is better than the best solution obtained so far by
the search, then one can take this move even though it is
tabu).

Based on the above, a step-by-step procedure of the
proposed TS approach can be described as follows:

Algorithm TS (Smax, L)
{

c←1;
Select a feasible solution X randomly, X←[x1, x2, …, xn];
While c ≤ Smax {

Select ith number in X randomly, and find the
neighborhood of X.
Choose the best improving and non-tabu solution Y in
N(X) (if none exist, choose the least worsening
solution) or a tabu solution Y in N(X) which is better
than the best solution obtained so far (Aspiration
criterion);
Update the tabu list based on Y;
X ←Y;
c ←c1;
}

}

The TS begins with two parameters, Smax and L, where
Smax={1,000, 5,000, 50,000} denotes the maximum number
of total iterations (possible schedules) and L=12 is the
length of tabu list. After the initial schedule X is produced,
the TS continues until the maximum number of iterations
already run (i.e., c=Smax). In each iteration, the ith number
of X is chosen randomly. Then all possible swaps and
insertions with other numbers of X are the neighborhood of
X. At the same time, the PD code is selected from the
forward, backward, or bidirectional planning directions with
equal probability. The set N(X), the non-tabu neighborhood
of X, is the best set of schedules obtained so far. Choose a
best improving schedule Y in N(X), update the tabu list based
on Y, and set the current schedule X equal to Y. Before the
end of each iteration, the variable c is increased by 1.
Following the termination of TS, the schedule generated by
the algorithm can be subsequently derived by choosing the
best solution found during the TS process.

5 Computational results and discussion

In the following, we report on results of comprehensive
computational experiments. They have been performed on a
computer with Xeon 3.40 GHz clock pulse and 4GB RAM.
All procedures have been coded by means of Microsoft
Visual C++ 6.0.

5.1 Test problem

The effectiveness of applying the proposed hybrid-directional
planning to meta-heuristics for solving the RCPSP was
verified by performing computational experiments on a well-
known benchmark problem set, namely single-mode re-
source-constrained project scheduling problems (SRCPSP),
established by Kolisch and Sprecher [29]. Each of the
activities of the SRCPSP has to be performed in one
prescribed way (mode) using specified amounts of the
resources provided.

The SRCPSP contains four subsets, namely J30, J60,
J90, and J120, in which the numbers after J represent the
amounts of activities of these subsets’ problems. The J30,
J60, J90, and J120 subsets have 480, 480, 480, and 600
numbers of instances, respectively. These instances were
systematically generated by the standard project generator
(ProGen). The entire benchmark set including its detailed
characterization is available on a public ftp-site, namely,
PSPLIB at http://129.187.106.231/psplib/.

5.2 Computational results

For each case of instance and each combination of planning
directions with meta-heuristics, ten times (trials) of inde-
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pendent simulations were run. Then, the following four
performance indexes were calculated:

– Av. # Opt.: The average number of optimal
solutions for each benchmark problem subset, i.e.,
# of optimal solutions of all trails

10 .
– Max. # Opt.: The maximum number of optimal

solutions achieved from each instance’s best trail for
each benchmark problem subset.

– Av. Dev.: The average relative deviation from optimal
solutions for each benchmark problem subset, i.e.,P

deviations from optimal solutions of each trials

# of instances of the subset�10 � 100%.
– Av. Max. Dev.: The average relative maximum devia-

tion of each instance’s worst trail solution from optimal
solution for each benchmark problem subset, i.e.,
P

deviations of each instance0s worst trail solution from optimal solution

# of instances of the subset � 100%.

In the above performance indexes, except benchmark
problem subset J30, the optimal solutions of instances are
not provided by the PSPLIB. Hence, we set the critical path
value which is solved by the critical path method (CPM)
without resource constraints observed as an estimated
optimal solution of each instance for J60, J90, and J120.

The final results are listed in Tables 1, 2, and 3. On the
whole, the proposed hybrid-directional planning can dra-
matically improve the performance of various meta-
heuristics for each combination of problem sizes and
maximum numbers of total iterations. As Tables 1 and 2
show, the GA and SA yield solutions, by planning in
hybrid-directional, are all better than by planning in the
forward, backward, and bidirectional on the performance
indexes of Av. # Opt., Max. # Opt., and Av. Dev.;
Meanwhile, by planning in the hybrid-directional, the GA
and SA obtain lower Av. Max. Dev. in 11 out of 12 and 10
out of 12 combination problems, respectively.

As revealed in Table 3, the TS yield solutions by
planning in hybrid-directional are all better than by
planning in the other three directions on the performance
indexes of Av. # Opt. and Max. # Opt.; Moreover, by
planning in the hybrid-directional, the TS gets lower Av.
Dev. and Av. Max. Dev. in 11 out of 12 and 8 out of 12
combination problems, respectively.

6 Conclusions

The purpose of this study is to make a step towards
establishing an effective direction planning to solve the
RCPSP by improvement heuristics. In this study, we have
proposed a hybrid–directional planning scheme that can be
applied in any improvement heuristics to solve the RCPSP.
In order to evaluate the effectiveness of the proposed
scheme, different planning directions are incorporated into T
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some meta-heuristics, including GA, SA, and TS. The
results show a striking effect of scheduling direction on the
performance of improvement heuristics to solve the RCPSP.

First of all, the experiments indicate that the planning
direction has a considerable influence on the performance
of meta-heuristics to solve the RCPSP. For most instances,
the proposed hybrid–directional planning scheme can
outperform the other planning directions. These analytical
results strongly reveal that the hybrid-directional planning
should also be included in other improvement heuristics
such as the descent approach, the neighborhood search and
other meta-heuristic-based approaches.

Furthermore, there has been no such planning direction
of the forward, backward, and bidirectional that works well
for all RCPSPs. This clearly suggests that such a hybrid-
directional planning is worth exploring in the context of
solving the RCPSP. It is worth pointing out that the
proposed hybrid-directional planning is a general scheme
for different improvement heuristics. The results obtained
by this study will hopefully encourage practitioners to
apply it to the real-world RCPSP.

Future research can extend this study in several possible
ways. First, the developed hybrid-directional planning can
be extended to multi-mode RCPSP. Second, research into
this problem may be continued by applying the proposed
hybrid-directional planning to other state-of-the-art im-
provement heuristics. Finally, using the hybrid-directional
planning to the RCPSP with different performance criteria
are worth examining further.
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