
ORIGINAL ARTICLE

A hybridized approach to optimal tolerance synthesis
of clutch assembly

Erwie Zahara & Yi-Tung Kao

Received: 28 February 2007 /Accepted: 23 January 2008 /Published online: 19 February 2008
# Springer-Verlag London Limited 2008

Abstract Specifying proper tolerances for manufactured
goods results in greater savings and improved performance,
which may ultimately determine whether a product suc-
ceeds or fails in the marketplace. In the past, tolerance
specification has been more an art than a science, and is
largely dependent upon experiences. A more scientific and
reliable approach is presented in this paper. A hybrid of
Nelder-Mead simplex method and particle swarm optimi-
zation (NM-PSO) is introduced for the design of tolerance
of the machine elements of an overrunning clutch assembly.
The objective is to obtain tolerances of the individual
components so that the cost of manufacturing and quality
loss is minimized. Experimental results demonstrate that
hybrid NM-PSO is extremely effective and efficient in
locating best-practice optimal solutions compared to geo-
metric programming (GP), genetic algorithm (GA), and
particle swarm optimization (PSO) methods.
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1 Introduction

Tolerance is born out of the need for the parts of a product
to be interchangeable and mass producible. Tolerance
synthesis or tolerance allocation is an action that is used
to determine the amount of clearance a machined part must
have to properly correspond with other machined parts and
perform efficiently. Though tight tolerances favor product
performance, loose tolerances are often preferred over tight
ones because they maximize yield and lower production
costs. How these competing requirements are balanced has
a direct bearing on the manufacturing cycle time, quality,
and cost of a product. Thus, tolerance optimization is of
utmost importance in product production, and it should take
into account all aspects of the matter, which include
limitations of manufacturing processes, functionality, and
assembly constraints and costs.

Tolerance synthesis methods can be categorized into three
classes: methods based on conventional optimization
approaches, methods based on quality engineering, and
methods based on heuristic optimization methods and neural
networks. The first group accounts for the majority of the
publications on tolerance synthesis and mostly uses the cost-
tolerance models (Michael and Siddall [1]). This group of
methods becomes impractical as the complexity of mechan-
ical assemblies increases. The third group of methods
attempts to address the complexity issue by some novel
approaches based on genetic algorithm, simulated annealing,
particle swarm optimization, neural networks, and fuzzy
logic. Kopardekar and Anand [2] applied neural network
techniques to tolerance allocation. Dupinet et al. [3]
exploited fuzzy logic and simulated annealing, while Ji et
al. [4] and Noorul Haq et al. [5] applied the genetic
algorithm. Recently, Noorul Haq et al. [6] applied particle
swarm optimization to tolerance optimization for clutch
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assembly. In this paper, a hybrid Nelder-Mead simplex
search method and particle swarm optimization (NM-PSO) is
applied to solve tolerance optimization for clutch assembly.

2 Tolerance optimization for a clutch assembly

The overrunning clutch model for which the tolerance is to
be optimized was proposed by Feng and Kusiak [7] and is
shown in Fig. 1. The model consists of three components:
hub, roller, and cage, denoted by X1, X2 and X3,
respectively. The contact angle Y is the functional dimen-
sion that must be controlled with the tolerance stack up
limit and is expressed as:

Y ¼ f X1;X2;X3ð Þ ¼ a cos
X1 þ X2

X3 � X2

� �
ð1Þ

where a is constant. The cost tolerance data for the clutch
(tolerance in 10−4 in., cost in dollars) is given in Table 1.

The nominal values of X1, X2, X3 are 2.17706, 0.90000
and 4.00000 in., respectively. The nominal value and the
tolerance of angle Y are 0.122±0.035 rad. The derivatives
of Y in respect to Xi(i=1, 2, 3) are
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Given X=(2.17706, 0.9000, 4.0000) in., then j @f@X1
j ¼

3:750rad=inches, j @f@X2
j ¼ 7:472 rad=inches and j @f@X3

j ¼
3:722rad=inches.

Using regression analysis for the three components, the
manufacturing cost functions have been derived as follows [7]:

Hub M t1ð Þ ¼ �0:731þ 0:0580

t0:6881

ð5Þ

Roll M t2ð Þ ¼ �8:3884þ 5:7807

t0:07842

ð6Þ

Cage M t3ð Þ ¼ 0:978þ 0:0018

t3
ð7Þ

where t1, t2, t3 are the single side tolerance value of the hub,
roller, and cage.

Cost associated with quality loss function is

Q tið Þ ¼
XK
k¼1

A

T2
k

s 2
k ð8Þ

where σ2
k ¼ ti

3

� �2
is the standard deviation of dimensional

chain k, A is the quality loss coefficient, Tk is the single side
functional tolerance stack up limit for dimensional chain
k(Tk=0.035), K is the total number of dimensional chains, k
is the dimensional chain index.

The models optimizing the manufacturing cost and
quality loss cost with the worst-case stack up constraint as:

Min COF tið Þ ¼
X3
i¼1

M tið Þ þ Q tið Þ ð9Þ

s: t:
X @f

@Xi

����
����ti

� �
� Tk ð10Þ

Fig. 1 Overrunning clutch

Table 1 Cost-tolerance data for the clutch tolerance (tolerance in 10−4

in., cost in dollars)

Hub
tolerance

Cost Roll
Tolerance

Cost Cage
tolerance

Cost

2 19.38 1 3.513 1 18.637
4 13.22 2 2.48 2 12.025
8 5.99 4 1.24 4 5.732
16 4.505 8 1.24 8 2.686
30 2.065 16 1.20 16 1.984
60 1.24 30 0.413 30 1.447
120 0.825 60 0.413 60 1.200
– – 120 0.372 120 1.033
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Substituting (5)–(7) to (9), the combined objective function
(COF) can be formulated:

Min COF t1; t2; t3ð Þ¼ �33:3066þ 0:058
t0:6881

þ 4� 5:7807
t0:07842

þ 0:0018
t3

þ A
3ð Þ2� 0:035ð Þ2 t21 þ 4t22 þ t23

� �
ð11Þ

s:t: 3:7499t1 þ 14:944t2 þ 3:722t3 � 0:0350
0:0001 � t1 � 0:0120
0:0001 � t2 � 0:0005
0:0001 � t3 � 0:0120

Note that M(t2) has been multiplied by 4 to account for the
four rollers present in the assembly.

3 Hybrid optimization method

The goal of integrating Nelder-Mead (NM) simplex method
and particle swarm optimization (PSO) is to combine their
advantages and avoid disadvantages. For example, NM
simplex method is a very efficient local search procedure
but its convergence is excessively sensitive to the starting
point selected; PSO belongs to the class of global search
procedures but requires much computational effort (Fan et
al. [8]). This section starts by introducing the procedure of
NM and PSO, followed by a description of hybrid Nelder-
Mead and particle swarm optimization methods.

3.1 The procedure of NM

The simplex search method proposed by Nelder and Mead
[9] is a derivative-free line-search method that was
particularly designed for traditional unconstrained minimi-
zation scenarios, such as the problems of nonlinear least
squares, nonlinear simultaneous equations, and other types
of function minimization (see, e.g., Olsson and Nelson
[10]). First, function values at the (N+1) vertices of an
initial simplex are evaluated, which is a polyhedron in the
factor space of N input variables. In the minimization case,
the vertex with the highest function value is replaced by a
newly reflected, better point, which would be approximate-
ly located in the negative gradient direction. Clearly, NM
can be deemed as a direct line-search method of steepest
descent kind. The ingredients of replacement process
consist of four basic operations: reflection, expansion,
contraction, and shrinkage. Through these operations, the
simplex can improve itself and come closer and closer to a
local optimum point sequentially. An example of the
function minimization of two variables will illustrate the
basic procedure of NM. Starting point B together with
initial step sizes will construct an initial simplex design

(shown as A, B, and C), as illustrated in Fig. 2. Suppose
f(A) is the highest of the three function values and is to be
replaced. In this case, a reflection is made through the
centroid of BC (with the midpoint D) to the point E.
Suppose f(C) < f(B) <f(A). At this stage, three situations can
arise.

1. If f(E) < f(C), an extension is made to point J. We then
keep E or J as a replacement for A, depending on which
function value is lower.

2. If f(E) > f(C), a contraction is made to point G or H,
depending on whether f(A) or f(E) is lower.

3. If f(G) or f(H) is larger than f(C), the contraction has
failed and we then perform a shrinkage operation. The
shrinkage operation reduces the size of the simplex by
moving all but the best point C halfway towards the
best point C.

3.2 The procedure of PSO

Particle swarm optimization (PSO) is one of the latest
evolutionary optimization techniques developed by Kennedy
and Eberhart [11]. The PSO concept is based on a metaphor
of social interaction such as bird flocking and fish schooling.
Similar to genetic algorithms, PSO is also population-based
and evolutionary in nature, with one major difference from
genetic algorithms that it does not implement filtering, i.e.,
all members in the population survive through the entire
search process. PSO simulates a commonly observed social

A

B CD

G

H

E

J

Fig. 2 NM operations of a two-dimensional case
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behavior where members of a group tend to follow the lead
of the best of the group. The procedure of PSO is illustrated
as follows.

1. Initialization. Randomly generate a population of the
potential solutions, called “particles”, and each particle
is assigned a randomized velocity.

2. Velocity Update. The particles then “fly” through
hyperspace while updating their own velocity, which
is accomplished by considering its own past flight and
those of its companions. The particle’s velocity and
position are dynamically updated by the following
equations:

VNew
id ¼ w� Vold

id þ c1 � rand � pid � xoldid

� �
þ c2 � rand � pgd � xoldid

� �
; ð12Þ

xNewid ¼ xoldid þ VNew
id ; ð13Þ

where c1 and c2 are two positive constants; w is an inertia
weigh,t and rand is a uniformly generated random number

from the range [0, 1] that is produced every time for each
iteration. Eberhart and Shi [12] and Hu and Eberhart [13]
suggested c1 = c2 = 2 and w ¼ 0:5þ rand=2:0Þ½ �. Equation
(12) shows that in calculating the new velocity for a
particle, the previous velocity of the particle (Vid), their own
best location that the particles have discovered previously
(pid) and the global best location (pgd) all contribute some
influence on the outcome of velocity update. The global
best location (pgd) is identified, based on its fitness, as the
best particle in a population. All particles are then
accelerated towards the global best particle as well as in
the directions of their own best solutions that have been
discovered previously. While approaching the current best
particle from different directions in the search space, all
particles may encounter by chance even better particles en
route, and the global best solution will eventually emerge.
The particles’ velocities on each dimension are clamped to
a maximum velocity Vmax, which is confined to the range of
the search space in each dimension. Equation (13) shows
how each particle’s position (xid) is updated in the search of
solution space.

Table 2 The results of NM-PSO for solving objective function (14)

A t1 t2 t3 COFNM-PSO Iteration N_eval Constraint

0 0.00494536 0.00050000 0.00241359 11.6375188 100 1004 0.0350000
1 0.00494417 0.00050000 0.00241479 11.6403559 90 907 0.0350000
52 0.00488258 0.00050000 0.00247685 11.7843228 187 1883 0.0350000
100 0.00482796 0.00050000 0.00253187 11.9186119 141 1415 0.0350000
300 0.00463631 0.00050000 0.00272496 12.4680642 110 1080 0.0350000
520 0.00425429 0.00049999 0.00267209 13.0471199 115 1164 0.0337070

Note: N_eval is the number of function evaluations

1.  Initialization. Generate a population of size 13 +N . 

Repeat 

2. Evaluation & Ranking. Evaluate the fitness of each particle. 

  Rank them based on the fitness. 

  3. Simplex Method. Apply the NM operator to the top 1+N  particles and replace

the th)1( +N  particle with the update. 

  4. PSO Method. Apply PSO operator for updating N2  particles with worst fitness.

Selection. From the population, select the global best particle and the 

neighborhood best particles. 

    Velocity Update. Apply velocity update to the 2N particles with worst fitness

according equations (12) and (13). 

Until a termination condition is met. 

Fig. 3 The hybrid NM-PSO
algorithm
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3.3 Hybrid NM-PSO

The population size of this hybrid NM-PSO approach is set
at 3N+1 when solving an N-dimensional problem. The

initial population is created in two steps: using a prede-
termined starting point, N particles are spawned with a
positive step size of 1.0 in each coordinate direction, and
the other 2N particles are randomly generated. A total of

Fig. 4 Solution history of NM-PSO
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3N+1 particles are sorted by the fitness, and the top N+1
particles are then fed into the simplex search method to
improve the (N+1)th particle. The other 2N particles are
adjusted by the PSO method by taking into account the
positions of the N+1 best particles. This procedure for
adjusting the 2N particles involves selection of the global
best particle, selection of the neighborhood best particles,
and finally velocity updates. The global best particle of the
population is determined according to the sorted fitness
values. The neighborhood best particles are selected by first
evenly dividing 2N particles into N neighborhoods and
denoting the particle with the better fitness value in each
neighborhood as the neighborhood best particle. With Eqs.
(12) and (13), a velocity update for each of the 2N particles is
then carried out. The 3N+1 particles are sorted in preparation
for repeating the entire run. The process terminates when a
certain convergence criterion is satisfied. In this case, the
hybrid NM-PSO method is not an exhaustive search and we
cannot determine its computational complexity. Figure 3
summarizes the algorithm of NM-PSO. For further details of
the hybrid NM-PSO, see Fan et al. [8].

In Sect. 2, we have described the overrunning clutch
model and the objective function (11) with one constraint,
which is optimized by NM-PSO by solving for the best
combination of the values of three variables hub, roll and
cage t1, t2, t3. As NM-PSO is an algorithm intended for
solving unconstrained optimization problems, it is neces-
sary to recast the objective function (11) into an uncon-
strained form by adding penalty term, as shown in (14).

Min f tð Þ ¼ COF tð Þ þ u tð Þ � const tð Þ2�1020 ð14Þ

where COF t1; t2; t3ð Þ ¼ �33:3066þ 0:058
t0:6881

þ 4� 5:7807
t0:07842

þ
0:0018
t3

þ A 90:7029t21 þ 362:811t22 þ 90:7029t23
� �

const t1; t2; t3ð Þ ¼ 3:7499t1 þ 14:944t2 þ 3:722t3 � 0:0350

u t1; t2; t3ð Þ ¼ 0 if const t1; t2; t3ð Þ � 0

1 if const t1; t2; t3ð Þ > 0

�
0:0001 � t1 � 0:0120

0:0001 � t2 � 0:0005

0:0001 � t3 � 0:0120

4 Experimental results

Matlab 7.0 was used to code the NM-PSO method. The
initial population was randomly chosen from a uniform
distribution of the tolerance values for each component of
the over running clutch. The stopping criterion used here is

based on the standard deviation of the objective function
values over N+1 best solutions of the current population, as
expressed by

Sf ¼
XNþ1

i¼1

f xið Þ � f
� �2.

N þ 1ð Þ
" #1=2

< e and e ¼ 1� 10�7

ð15Þ
where f ¼ PNþ1

i¼1
f xið Þ= N þ 1ð Þ denotes the mean value of the

objective function values over N+1 best solutions in the
current population.

The results of hybrid NM-PSO for solving objective
function (14) are shown in Table 2, and Fig. 4 shows a
solution history of the results. Table 2 shows us that hybrid
NM-PSO locates the global optimum effectively without
violating the constraint. NM-PSO is not only effective but
also efficient. Figure 4 illustrates NM-PSO converges to the
global optimum efficiently in about 50 iterations, and for
the algorithm to reach the stopping criterion it takes about
200 iterations or 1,900 number of function evaluations for
the various values of A, as shown in Table 2.

Table 3 summarizes the results of applying particle
swarm optimization (PSO) [6], genetic algorithm (GA) [5],
and geometric programming (GP) [7] to find the optimum

Table 3 The results of PSO, GA, and GP

GP results [7]
A t1 t2 t3 COFGP Constraint
0 0.00507 0.00050 0.00228 11.640 0.0350000
1 0.00477 0.00050 0.00259 11.646 0.0349990
52 0.00509 0.00050 0.00256 11.709* 0.0360873*
100 0.00480 0.00050 0.00256 11.919 0.0349984
300 0.00457 0.00050 0.00279 12.469 0.0349934
520 0.00427 0.00050 0.00261 13.047 0.0331985
GA results [5]
A t1 t2 t3 COFGA Constraint
0 0.00495 0.00050 0.00239 11.640 0.0349296
1 0.00486 0.00050 0.00248 11.647 0.0349271
52 0.00444 0.00050 0.00225 11.789 0.0333252
100 0.00481 0.00050 0.00210 11.923 0.0333252
300 0.00467 0.00050 0.00267 12.470 0.0349218
520 0.00425 0.00050 0.00267 13.047 0.0333468

PSO results [6]
A t1 t2 t3 COFPSO Constraint
0 0.00499 0.00050 0.00237 11.638 0.0349973
1 0.00500 0.00050 0.00245 11.613* 0.0353327*
52 0.00484 0.00050 0.00252 11.785 0.0349976
100 0.00476 0.00050 0.00259 11.920 0.0349831
300 0.00466 0.00050 0.00270 12.468 0.0349974
520 0.00424 0.00050 0.00268 13.047 0.0333496

Note: * the results violate the constraints
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of the same problem, and it can be seen that some of the
results, “marked with an *”, violate the constraints. The
comparison of Table 2 and Table 3 clearly indicates that
NM-PSO is superior to the other three methods in yielding
the optimal machining tolerance allocation of the overrun-
ning clutch assembly. NM-PSO outperforms GP for A=0,
1, 52, 300, surpasses GA for A=0, 1, 52, 100, 300. Finally,
the results are compared with PSO and an improvement for
A=0, 1, 52, 100 is observed. Note that these results are all
within the bounds of the constraints. For the remaining
values of A, NM-PSO is as good as the other methods.
From the above observations, we conclude that NM-PSO
finds the global optimum more effectively and efficiently
than the other methods while keeping the constraints.

5 Conclusions

A Matlab program developed by the authors implementing
NM-PSO computes the optimal design tolerance for the
components of an assembly. Computational efforts and
manufacturing costs are both reduced by NM-PSO in
comparison to GP, GA, and PSO. These observations lead
us to conclude that the proposed hybrid NM-PSO is indeed
effective, efficient, and robust at locating best-practice
optimum solutions for the clutch assembly problem. In the
future, how to apply NM-PSO to solve general optimization
problems with multiple constraints would be worth further
study.
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