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Abstract In this paper, we consider a single-machine
job scheduling problem where the objective is to mini-
mize the weighted sum of earliness and tardiness (E/T)
penalties of jobs. This problem is consistent with the
just-in-time (JIT) production. We propose partitioning
of permutation into subsequences (blocks) and replac-
ing sets of moves with its representatives, significantly
decreasing the size of the searched neighborhood.
Some new properties of the problem and compound
moves make eliminating “bad” elements and speeding
up calculations possible. These properties allow us to
propose a new fast local search algorithm based on a
tabu search method. Computational experiments are
presented and the results show that the algorithm pro-
posed allows us to obtain the best-known results in a
short time.

Keywords Scheduling · Single machine · Tabu search

1 Introduction

The problem considered in this paper deals with a
set on n jobs (enumerated by 1, 2, ..., n) on a single
machine which is capable of processing only one job
at a time without preemption. With each job i is as-
sociated processing time pi. By ei and di we mean
adequately demanded the earliest and the latest moment
of finishing processing of a job i. The earliness of job
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i is defined as Ei = max{0, ei − Ci} and its tardiness as
Ti = max{0, Ci − di}, where Ci is the completion time
of job i. An expression fi(Ci) = ui Ei + wiTi is the cost
of job execution, where ui and wi are nonnegative
coefficients of a goal function. The objective is to find
a sequence of jobs that minimize the following non-
regular function:

n∑

i=1

(ui Ei + wiTi).

This problem became more popular after the intro-
duction of JIT manufacturing philosophy, where jobs
are desired to be completed as close as possible to
their due dates. The assumption of no idle time on the
machine represents the situation where the machine
idleness cost is higher than the earliness cost incurred
by finishing a job before its due date and the machine
have to be kept running. Examples of production sys-
tems where such a situation can be observed have been
given by Korman [16], Landis [17] and Schaller [21]. In
the classical scheduling notation in literature, the prob-
lem is denoted by 1|| ∑ (ui Ei + wiTi) and it belongs
to a strong NP-hard class (if we assume that ui = 0,
i = 1, 2, ... , n, we obtain a strong NP-hard problem
1|| ∑wiTi - Lawler [13] and Lenstra et al. [18]).

Many authors have studied the earliness and tar-
diness (E/T) problem which was first introduced by
Kanett [15]. A useful review of early/tardy schedul-
ing is provided in Baker and Scudder [1] and the
book T’kindt and Billaut [24]. In paper [1] Baker
and Scudder proved that there can be an idle time in
an optimal solution (jobs don’t need to be processed
directly one after another), that is Ci+1 ≥ Ci + pi+1,
i = 1, 2, ... , n − 1. Solving the problem amounts to
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establishing a sequence of jobs and their starting times.
Hoogeven and van de Velde [12] proposed an algo-
rithm based on a branch-and-bound method. Because
of the exponentially growing computation time, this
algorithm can only be used to solve instances where
the number of jobs is no larger than 20. Therefore,
in practice, almost always the approximate algorithms
are used. The best of them are based on artificial
intelligence methods. Calculations are performed in
two stages:

1. determining the sequence of jobs (with no idle
times).

2. establishing jobs’ optimal starting times.

There is an algorithm in the paper of Wan and Yen
[26] based on this scheme. To determine scheduling,
a tabu search algorithm is used. Algorithms for opti-
mal job sequencing are relatively less studied. Szwarc
[23] proposed a branch-and-bound algorithm based on
some adjacent ordering conditions for jobs with distinct
penalty weights. Lee and Choi [14] proposed a ge-
netic algorithm and Yano and Kim [28] studied several
dominance properties for sequencing jobs with penalty
weights proportional to processing times.

The most important results for unrestrictive and
restrictive scheduling E/T problems are presented in
the papers of Bank and Werner [2], Gordon et al. [8],
Valente and Alves [27], Feldmann and Biskup [5], and
Tung-I Tsai [25].

In this paper, we consider TWET problem addition-
ally assuming that the machine begins the execution
of jobs in time zero and it works with no idleness
(TWET-no-idle problem). We present new elements
of the neighborhood search method. Partition of per-
mutation into blocks (subsequences) and replacement
sets of moves with their representatives significantly
decrease size of the neighborhood, eliminating “bad”
moves and speeding up the calculations. Computational
experiments follow that such a neighborhood is not big-
ger (in average) than the size of classical neighborhood
generated only by insert moves.

The rest of the paper is organized as follows: in
Section 1 notations and basic definitions (block in
permutations) are introduced. Section 2 presents new
elements of the neighborhood structure: partitioning of
the permutation into blocks and elimination of unnec-
essary moves. In the Section 3 we propose new methods
of determining representatives of the set of moves. A
conclusion is given in Section 4.

Neighborhood-based metaheuristics are extensions
of iterative improvement algorithms which avoid get-
ting stuck in locally optimal solution by allowing to
move to worse solutions in one’s neighborhood. The

local search (LS) method is designed to find a near-
optimal solution to combinatorial optimization prob-
lems. For any iteration of a local search algorithm, a
subset of moves applicable to it is defined. This subset
of moves generates a subset of solutions—the neighbor-
hood. Every move transforms a permutation (current
solution) into another permutation. The basic version
of LS starts from an initial solution x0. The elementary
step of the method performs, for a given solution xi,
a search through the neighborhood N (xi) of xi. The
neighborhood N (xi) is defined by moves performed
from xi. A move transforms a solution into another
solution. The aim of this elementary search is to find
N (xi) a solution xi+1 with the lowest cost functions.
Then the search is repeated itself from the best solution
as a new starting point and the process is continued.
Simulated annealing and tabu search methods belong
to such a type of metaheuristics.

Let k and l (k �= l) be a pair of positions in a
permutation:

π = (π(1), π(2), ... , π(k − 1), π(k), π(k + 1), ... ,

π(l − 1), π(l), π(l + 1), ... , π(n)).

Among many types of moves considered in litera-
ture, two of them appear prominently:

1. Insert move (i-move) ik
l , consists in removing the

job π(k) from the position k and inserting it on
the position l. Thus the move ik

l generates a new
permutation ik

l (π) = πk
l .

2. Swap move (s-move) s k
l , in which the jobs π(k) and

π(l) are swapped among some positions k and l.
The move s k

l generates permutation s k
l (π) = πk

l .

Execution of the i-move can be realized in time
O(1) (if double linked lists are used), execution of the
s-move – in constant time O(1) in the classic linear
representation of permutation.

1.1 Blocks of jobs in permutation

For the TWET-no-idle problem, each schedule of jobs
can be represented by permutation π =(π(1), π(2), ...,

π(n − 1), π(n)) of the set of jobs J = {1, 2, ... , n}. Let
�(n) denote the set of all such permutations.

The total cost (the goal function) of π ∈ �(n) is
F(π) = ∑n

i=1 fπ(i)(Cπ(i)), where Cπ(i) is the time when
the job π(i) is completed, Cπ(i) = ∑i

j=1 pπ( j ). The job
π(i) is considered as early if it is completed before its
earliest moment of finishing (Cπ(i) < eπ(i)), on time if
eπ(i) ≤ Cπ(i) ≤ dπ(i), and tardy if the job is completed
after its due date (i.e., Cπ(i) > dπ(i)).

For further considerations, we refer to the notions
and notations taken from the papers [4].



Int J Adv Manuf Technol (2009) 40:797–807 799

Table 1 Data of the instance
i 1 2 3 4 5 6 7 8 9 10 11

pi 2 3 1 2 3 2 3 3 2 2 2
ei 1 3 1 5 1 3 7 22 23 11 14
di 12 19 12 6 6 6 9 24 24 15 15
ui 2 1 3 1 4 2 6 6 2 3 2
wi 3 1 2 6 5 4 3 2 4 5 5

Each permutation π ∈ �(n) is decomposed into sub-
sequences of jobs B = [B1, B2, ... , Bv] called blocks.
Each of these blocks contain the jobs and:

1. Bi = (π(ai), π(ai + 1), ... , π(bi − 1), π(bi)),

ai = bi−1 + 1, 1 ≤ i ≤ v, b 0 = 0.

2. All the jobs j ∈ Bi satisfy one of the following
conditions:
ej > Cπ(bi), or (C1)
ej ≤ Cπ(bi−1) + pj and dj ≥ Cπ(bi), or (C2)
dj < Cπ(bi−1) + pj. (C3)

3. Bi are maximal subsequences of π in which all the
jobs satisfy either condition C1 or condition C2 or
condition C3.

By definition, there exist three types of blocks implied
by either C1 or C2 or C3. To distinguish them, we
will use the E-block, O-block and T -block notations,
respectively.

It is easy to prove that if Bi is E-block, then
min{e j : j ∈ Bi} > Clast, where last = π(bi). So in any
permutation of jobs from Bi, every job is executed
early in the permutation π . From this property we
propose an algorithm to determine the first E-block in
the permutation π .

Algorithm AE-block
Input: permutation π = (π(1), π(2), ... , π(n));
Output: subsequence (E-block)

B = (π(l), π(l + 1), ... , π(k − 1), π(k));
Let π(l) be the first job in π such, that Cπ(l) < eπ(l).

B ← π(l); k ← l;

while |B| = k − l + 1 and k < n do
if Cπ(k+1) < eπ(k+1) and

if (∀ π(i) ∈ B, Cπ(k+1) < eπ(i)) then
B ← B ∪ {π(k + 1)};

k ← k + 1
end.

Computational complexity of the algorithm is O(n).
Similarly, one can present an algorithm determining
the first O and T -block. Considering a permutation π ,
starting from π(1) and applying appropriate algorithm
determining E , O or T -block we can partition π into
E , O and T blocks. Complexity of partition procedure
is O(n).

Example 1 Let us consider the problem’s instance of
n=11 jobs, which is specified in Table 1.

Permutation π = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) has
four blocks, v=4, a1 =1, b1 =3, a2 = 4, b 2 =7, a3 =8,

b 3 = 9, a4 =10, b 4 =11 and B1 =(1, 2, 3), B2 =(4, 5,

6, 7), B3 = (8, 9), B4 = (10, 11). Two T -blocks: B2, B4,
O-blocks B1 and E-blocks B3. We can see these blocks
in Fig. 1.

Property 1 For any permutation π ∈ �(n) there are
partitions into to blocks (subsequences) such that every
of them is:

i. E-block, or
ii. O-block, or

iii. T -block.

Fig. 1 Blocks of
permutation π

0 25 time

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

d4=d5=
d6=6

d7=9 d1=d3=12 d10=d11=15 d8=d9=24d2=19

e2=e6=3

e1=e3=
e5=1 e4=5 e7=7 e10=11 e11=14 e8=22

e9=23

B1 B2 B3 B4
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Proof Let us assume that a permutation π is parti-
tioned into blocks. From definition of E , O and T
blocks, if Cπ(1) < eπ(1), then π(1) belongs to the first
E-block else if Cπ(1) > dπ(1), then π(1) belongs to the
first T -block or (on the contrary) to the first O-block.
We sequentially consider jobs π(2), π(3), ..., π(n). For
the job π(i), 2 ≤ i ≤ n, let the previous job π(i − 1)

belong to a block B.

Let us assume that Cπ(i) < eπ(i). If

1. B is O or T -block, then π(i) is the first job of the
next E-block.

2. B is E-block and B ∪ {π(i)} is E-block, then job
π(i) ∈ B, and on the contrary π(i) is the first job
of the next E-block.

We can consider the case of Cπ(i) > dπ(i) and eπ(i) ≤
Cπ(i) ≤ dπ(i) similarly. 	


The definition of blocks and Property 1 follows that
after partitioning a permutation:

1) every job belongs to some E or O or T block,
2) blocks are disjoint sets of jobs.

For any block B in a partition B of permutation
π ∈ �(n), let

FB(π) =
∑

i∈B

(ui Ei + wiTi).

Therefore, the value of a goal function takes the
form of

F(π) =
n∑

i=1

(ui Ei + wiTi) =
∑

B∈B
FB(π).

If B is a T -block then every job that belongs to it
is early. Therefore, in the permutation π , an optimal
sequence of jobs within B (which is minimizing FB(π))

can be obtained using the well-known weighted short-
est processing time (WSPT) rule proposed by Smith
[22]. The WSPT rule creates an optimal sequence of
jobs in the non-increasing order of the ratios wj/pj.
Similarly, if B is an E-block, then an optimal sequence
of jobs can be obtained using the weighted longest
processing time (WLPT) rule which creates a sequence
of jobs in non-decreasing order of the ratios uj/pj.

Partition B of the permutation π is ordered if there
are jobs scheduled by the WSPT rule in any T -block
and jobs scheduled by the WLPT rule in any E-block.

Example 2 In permutation π = (1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11) from Example 1 the T -block B2 = (4, 5, 6, 7).
Because w5

p5
= 5

3 < w6
p6

= 4
2 , we swap jobs 5 and 6. Sim-

ilarly, in the E-block B3 = (8, 9), because u8
p8

= 6
3 >

u9
p9

= 2
2 , we swap jobs 8 and 9. We obtain ordered

permutation (1,2,3,4,6,5,7,9,8,10,11).

Lemma 1 If a permutation π ∈ �(n) is ordered, then
changing the order of jobs in any block does not generate
permutation with less cost of the goal function.

Proof Let B=(π(a), π(a + 1), ... , π(b)), 1≤a < b ≤n
be a block in a partition of ordered permutation π ∈
�(n). Let us assume that permutation β was generated
from π by changing the order of jobs in block B.
Therefore,

β(i) = π(i), i=1, 2, ... , a−2, a−1, b +1, b +2, ... , n

and sets of jobs fulfill the equality

{β( j ) : j=a, a +1, ... , b}={π( j ) : j=a, a +1, ... , b}.
We should consider two cases:

1. B is E-block. If jobs from the set {β(a), β(a+1), ... ,

β(b − 1), β(b)} do not fulfill the WLPT rule in
permutation β, then F(β) ≥ F(π).

2. B is O-block. From the definition of O-block, every
job β( j ), j = a, a + 1, ... , b is on time in permuta-
tion β, so F(β) = F(π).

3. B is T -block. If jobs from the set {β(a), β(a+1), ... ,

β(b − 1), β(b)} do not fulfill the WSPT rule in
permutation β, then F(β) ≥ F(π). 	


The next theorem is a base of the neighborhood’s
construction in the local search algorithms.

Theorem 1 For each ordered permutation π ∈ �(n) if
a permutation β ∈ �(n) was obtained from π by any
interchange of its elements and

F(β) < F(π)

then in the permutation β at least one job of some block
of π was moved before the first or after the last job of this
block.

Proof Let [B1, B2, ... , Bv] be a partition of ordered
permutation π ∈ �(n) into blocks. Each block is a sub-
sequence of jobs

Bi = (π(ai), π(ai + 1), ... , π(bi)), i = 1, 2, ... , v,

1 ≤ a1 ≤ b 1 < a2 ≤ b 2 <, ... , < av ≤ b v.

By

Yi(π) = {π(ai), π(ai + 1), ... , π(bi)}
we represent the set of jobs from the block Bi.

Let permutation β ∈ �(n) and F(β) < F(π). Let us
assume on the contrary, that in permutation β any job
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from any block B1, B2, ... , Bv has not been moved
before the first or after the last job of this block.
Therefore

Yi(π) = Yi(β), i = 1, 2, ... , v.

Then for i = 1, 2, . . . , v subsequences (π(ai), π(ai + 1),

... , π(bi − 1), π(bi)) in permutation π and (β(ai),

β(ai + 1), ... , β(bi − 1), β(bi)) in β are permutations
of the same subset of jobs {π(ai), π(ai + 1), ... , π(bi)}.
Lemma 1 follows that F(β) ≥ F(π), which contradicts
assumption on the contrary. 	


Let us notice that Theorem 1 provides the necessary
condition to obtain a permutation β from π such that
F(β) < F(π).

Let B = [B1, B2, ... , Bv] be an ordered partition of
the permutation π ∈ �(n) into blocks. If a job π( j ) ∈
Bi (Bi ∈ B), therefore existing moves, which can im-
prove goal function value, consist in reordering a job
π( j ) before the first or after the last job of this block.
Let Mb f

j and Maf
j be sets of such moves (obviously

Mb f
1 = Maf

v = �). Therefore, the neighborhood of the
permutation π ∈ �(n) has the form of

M(π) =
n⋃

j=1

Mb f
j ∪

n⋃

j=1

Maf
j . (1)

A move m̂ is a representative of moves from the set
M ⊆ M(π), if

∀ m ∈ M, F(m(π)) ≥ F(m̂(π)).

Computational experiments show that the neighbor-
hood defined in (1) has a half smaller size than the
neighborhood of all the insert and swap moves.

Example 3 In the ordered permutation (1,2,3,4,6,5,7,9,
8,10,11) from the Example 2 there are blocks: B1 =
(1, 2, 3), B2 = (4, 6, 5, 7), B3 = (8, 9) and B4 = (10, 11).
For element 6 from the block B2 (taking into consider-
ation, that i6

3 = s6
3 and i6

8 = s6
8) there are sets of moves

Mb f
6 = {i6

1, i6
2, i6

3} ∪ {s6
1, s6

2} and Maf
6 = {i6

8, i6
9, i6

10, i6
11} ∪

{s6
9, s6

10, s6
11}.

Similarly, we can determine sets of moves for jobs from

other blocks. Set M(π) has
11∑
j=1

(∣∣∣Mb f
j

∣∣∣ +
∣∣∣Maf

j

∣∣∣
)

= 118

moves. For this example, the number of all the possible
(swap and insert) moves is 10*(10-1)+10(10-1)/2=165.

1.2 Properties of insert moves

In this section we assume that permutation π ∈ �(n)

is ordered and a move of a job consists in making an
i-move.

Theorem 2 If for two jobs π(l), π(k) (1 ≤ l < k ≤ n)

Cπ(l) + pπ(k) < eπ(k) and Cπ(l) + pπ(k) < eπ(l), (2)

then for the pair of moves ik
l , ik

l+1 it occurs that: if uπ(l)/

pπ(l) ≥ uπ(k)/pπ(k) then

F(πk
l+1) ≥ F(πk

l ) else F(πk
l+1) ≤ F(πk

l ).

Proof We consider two moves ik
l and ik

l+1. It occurs:

πk
l ( j ) = πk

l+1( j ) for j = 1, 2, ... , l − 1, l + 2, ... , n and

πk
l (l) =πk

l+1(l + 1) = π(k), πk
l (l + 1) = πk

l+1(l) = π(l),

where permutations πk
l and πk

l+1 are generated (ade-
quately) by moves ik

l and ik
l+1.

From the definition of permutations πk
l , πk

l+1 and
from the formula of the cost function:

F(πk
l+1)−F(πk

l ) =
n∑

j=1

fπk
l+1( j )

(
Cπk

l+1( j )

)−
n∑

j=1

fπk
l ( j )

(
Cπk

l ( j )

)

=
l−1∑

j=1

fπk
l+1( j )

(
Cπk

l+1( j )

) + fπk
l+1(l)

(
Cπk

l+1(l)

)

+ fπk
l+1(l+1)

(
Cπk

l+1(l+1)

)

+
n∑

j=l+2

fπk
l+1( j )

(
Cπk

l+1( j )

)

−
⎛

⎝
l−l∑

j=1

fπk
l ( j )

(
Cπk

l ( j )

)+ fπk
l (l)

(
Cπk

l (l)

)

+ fπk
l (l+1)

(
Cπk

l (l+1)

)

+
n∑

j=l+2

fπk
l ( j )

(
Cπk

l ( j )

)
⎞

⎠ .

Because

Cπk
l ( j ) = Cπk

l+1( j ) = Cπ( j ), j = 1, 2, ... , l − 1,

l + 2, ... , n, and Cπk
l (l+1) = Cπk

l+1(l+1),

Cπk
l (l) = A − pπ(l), Cπk

l+1(l)
= A − pπ(k),
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where A = Cπ(l) + pπ(k), therefore

F
(
πk

l+1

) − F
(
πk

l

) = fπk
l+1(l)

(
Cπk

l+1(l)

) + fπk
l+1(l+1)

(
Cπk

l+1(l+1)

)

− fπk
l (l)

(
Cπk

l (l)

) − fπk
l (l+1)

(
Cπk

l (l+1)

)

= fπ(l)(A − pπ(k)) + fπ(k)(A)

− fπ(k)(A − pπ(l)) − fπ(l)(A).

From the assumption (2) it follows that jobs π(k) and
π(l) are early, so

F
(
πk

l+1

) − F
(
πk

l

) = uπ(l) · (eπ(l) − A + pπ(k))

+ uπ(k) · (eπ(k) − A)

− uπ(k) · (eπ(k) − A + pπ(l))

− uπ(l) · (eπ(l) − A)

= uπ(l) pπ(k) − uπ(k) pπ(l).

If uπ(l) pπ(k) − uπ(k) pπ(l) ≥ 0 then

F
(
πk

l+1

) − F
(
πk

l

) ≥ 0 else F
(
πk

l+1

) − F
(
πk

l

) ≤ 0,

finishing the proof of the theorem. 	


Now we will prove a similar theorem for the moves
executed after the last job of the block.

Theorem 3 If for two jobs π(l), π(k) (1 ≤ k < l ≤ n)

Cπ(l) − pπ(k) > dπ(l) and Cπ(l) − pπ(l) > dπ(k), (3)

then for the pair of moves ik
l−1, ik

l it occurs that: if
wπ(l)/pπ(l) ≥ wπ(k)/pπ(k) then

F
(
πk

l

) ≥ F
(
πk

l−1

)
else F

(
πk

l

) ≤ F
(
πk

l−1

)

Proof Similarly, as in the proof of Theorem 2 from
the definition of permutations πk

l , πk
l−1 and from the

formula of the cost function:

F
(
πk

l

) − F
(
πk

l−1

) = fπ(l)(H − pπ(k)) + fπ(k)(H)

− fπ(k)(H − pπ(l)) − fπ(l)(H),

where H = Cπ(l).

From the assumption (3) if follows that jobs π(k) and
π(l) are tardy, so

F
(
πk

l

) − F
(
πk

l−1

) = wπ(l) · (dπ(l) − H + pπ(k))

+ wπ(k) · (dπ(k) − H) − wπ(k)

· (dπ(k) − H + pπ(l))

− wπ(l) · (dπ(l) − H)

= wπ(l) pπ(k) − wπ(k) pπ(l).

If wπ(l) pπ(k) − wπ(k) pπ(l) ≥ 0 then

F
(
πk

l

) − F
(
πk

l−1

) ≥ 0 else F
(
πk

l

) − F
(
πk

l−1

) ≤ 0,

finishing the proof of the theorem. 	


Property 2 Let Bi = (π(ai), π(ai + 1), ... , π(bi − 1),

π(bi)), be an E-block of partition of the ordered per-
mutation π and let the job π(k) /∈ Bi (bi < k ≤ n). If

Cπ(bi) − pπ(bi) + pπ(k) < eπ(k) and

∀ π( j ) ∈ Bi, Cπ( j ) + pπ(k) < eπ( j ), then

F
(
πk

l

)≥ F
(
πk

h

)
, l = ai, ai+1, . . . , h−1, h+1, . . . , bi,

where

h = min
{

x : uπ(x)

pπ(x)

≥ uπ(k)

pπ(k)

, ai ≤ x ≤ bi
}

.

This property follows from Theorem 2 and from
the fact that jobs in the E-block are scheduled by the
WLPT rule.

From the Property 2 follows that ik
h is a represen-

tative of moves from the set {ik
ai , ik

ai+1, . . . , ik
bi}. Moves

ik
ai , ik

ai+1, . . . , ik
h−1, ik

h+1, . . . , ik
bi can be omitted while

determining an optimal move (permutation with the
minimal value of the goal function) from the neighbor-
hood (1), so

M(π) ← M(π)\{ik
ai , ik

ai+1, . . . , ik
h−1, ik

h+1, . . . , ik
bi

}
. (4)

Property 3 Let Bi = (π(ai), π(ai + 1), ... , π(bi − 1),

π(bi)) be a T -block of partition of the ordered permu-
tation π and let the job π(k) �= Bi (1 ≤ k < ai). If

Cπ(ai) > dπ(k) and ∀ π( j ) ∈ Bi, Cπ( j ) − pπ(k) > dπ( j ),

then

F
(
πk

l

) ≥ F
(
πk

t

)
, l = ai, ai + 1, . . . , t − 1, t + 1, . . . , bi,

where

t = max
{

x : wπ(x)

pπ(x)

≥ wπ(k)

pπ(k)

, ai ≤ x ≤ bi
}

.
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The following property follows from Theorem 3 and
from the fact that jobs in the T -block are scheduled by
the WSPT rule.
The move ik

t is a representative of moves from the set
{ik

ai , ik
ai+1, . . . , ik

bi}. Moves ik
ai , ik

ai+1, . . . , ik
t−1, ik

t+1, . . . , ik
bi

can be omitted during determining an optimal move
(permutation with the minimal value of the goal func-
tion) from the neighborhood (1), therefore

M(π) ← M(π)\ {
ik
ai , ik

ai+1, . . . , ik
t−1, ik

t+1, . . . , ik
bi

}
. (5)

Property 4 Let Bi = (π(ai), π(ai + 1), ... , π(bi − 1),

π(bi)) be an O-block of a partition of the permutation
π and let the job π(k) �= Bi . If

A. bi < k ≤ n and Cπ(bi) − pπ(bi) + pπ(k) ≤ dπ(k) then

F
(
πk

j

) ≥ F
(
πk

bi

)
, j = ai, ai + 1, . . . , , bi − 1,

and

M(π) ← M(π)\ {
ik
ai , ik

ai+1, . . . , ik
bi−2, ik

bi−1

}
. (6)

B. 1 ≤ k < ai and Cπ(ai) − pπ(ai) + pπ(k) ≥ eπ(k) then

F
(
πk

j

) ≥ F
(
πk

ai

)
, j = ai + 1, ai + 2, . . . , , bi,

and

M(π) ← M(π)\ {
ik
ai+1, ik

ai+2, . . . , ik
bi−1, ik

bi

}
. (7)

This property can be easily proved using definition
of blocks and goal function.

We have also proved other properties of moves;
therefore they allow us to eliminate only a few elements
from the neighborhood.

Application of block elimination properties (Theo-
rem 1) and Properties 2, 3, and 4 allow us to remove
from each neighborhood generated by insert moves
over 50 % of its elements.

Similar theorems and properties, as presented in this
section, can be proved for the swap moves, too.

2 Tabu search algorithm

The tabu search method (TS - proposed by Glover [6]
and [7]) is one of the most effective methods using
local search techniques to find near-optimal solutions to
many combinatorial intractable optimization problems.
The elementary step of the method performs, for a
given solution xi, a search through the neighborhood
N (xi) of xi. The neighborhood is defined by move.
A move transforms a solution into another solution.
The aim of the elementary search is to find in N (xi)

a solution xi+1 with the lowest cost functions. Then the
search is repeated from the best found, as a new starting

solution, and the process is continued. In order to avoid
cycling, becoming trapped to a local optimum, and
more general to conduct the search in “good regions”
of the solution space, a memory of the search history
is introduced. Among many classes of the memory
introduced for tabu search, the most frequently used
is the short-term memory called the tabu list. This
list recorded, for a chosen span of time, solutions or
selected attributes of these solutions (or moves). The
search is stopped when a given number of iterations or
current neighborhood is empty.

In this section we present a tabu search algorithm
to solve TWET-no-idle problem. In the algorithm’s
construction there are properties of moves and multi-
moves.

2.1 Neighborhood

For the permutation π ∈ �(n) using the definition of
the set of insert moves (1) and Property 1-3, we define
sets of representatives of moves M(π).

The neighborhood of the π is a set of permutations

N (π) = {m(π) : m ∈ M(π)}.

2.2 Tabu list

To prevent from arising cycle too quickly (returning
to the same permutation after some small number of
iterations of the algorithm), some attributes of each
move are saved on a so-called tabu list (list of the pro-
hibited moves). This list is served as a FIFO queue, see
[9; 10]. Making a move irj ∈ M(π), (that means gener-
ating permutation π r

j from π ∈ �(n)) we save attributes
of this move, triple (π(r), j, F(π r

j )), on the tabu list. Let
us assume that we consider a move ik

l ∈ M(β) that gen-
erates permutation βk

l . If there is a triple (r, j, �) such
that β(k) = r, l = j on the tabu list, and F(βk

l ) ≥ �,

then such a move is eliminated (removed) from the set
M(β).

The dynamic length lTS of tabu list TSL is a cyclic
function defined by the expression:

lTS(iter) =
{

low i f S(k) < iter ≤ S(k) + h,

low + α i f S(k) + h < iter ≤ S(k + 1),

where: iter is the number of iteration of the algorithm,
k = 1, 2, ... is the number of the cycle. Integer number
α > 0, S(k) = (k − 1)(h + H), here S(0) = 0. Low is the
standard length of the TSL list (by h iterations of the
algorithm) and H is the width of the pick equal low + α.

If lTS decreases, then a suitable number of the oldest
elements of tabu list TSL is deleted and the search
process is continued. All parameters of length of the
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tabu list are empirical, based on preliminary experi-
ments. Changing the tabu list’s length causes diversifi-
cation of the search process.

2.3 Multimoves

Any move irj ∈ M(π) (1 ≤ r, j ≤ n) generates permu-
tation irj(π) ∈ �(n) from π ∈ �(n). We consider two
moves ik

l , irj ∈ M(π). Let δ be a permutation created
by executing a move ik

l on the permutation irj(π),
that is δ = ik

l (i
r
j(π)). Permutation δ is generated by

a composition of two moves irj and ik
l . Of course,

δ ∈ �(n). We call multimove superposition of the
sequence s of moves ir1

j1 , ir2
j2 , ... , irs

js ∈ M(π) and we
represent it by R(ir1

j1 , ir2
j2 , ... , irs

js). It generates permu-
tation R(ir1

j1 , ir2
j2 , ... , irs

js)(π) = ir1
j1(i

r2
j2( ... (irs

js(π)) ... )).
For each move irj ∈ M(π) (π ∈ �(n)), let

�
(
irj
) = F(π) − F

(
irj(π)

)
.

If �(irj) > 0, then move irj is improves.
Moves irj, ik

l ∈ M(π) we call independent, if

max{r, j} < min{l, k} or min{r, j} > max{l, k}.
Theorem 4 Let δ = R(mr1

j1 , mr2
j2 , ... , mrh

jh)(π) be a per-
mutation generated by multimove R(mr1

j1, mr2
j2, ... , mrh

jh),
h≥1. If moves from the set {mr1

j1 , mr2
j2, ... , mrh

jh} are pair-
independent (independent for each pair of them), then

F(δ) − F(π) =
h∑

v=1

�
(
mrv

jv

)
.

Proof Let mr
j be one of moves of the multimove

R(mr1
j1 , mr2

j2, ... , mrh
jh). Let us assume that j ≥ r. By

the σ(mr
j) = (π(r), π(r + 1), ... , π( j )) we represent

some subpermutation of permutation π . Move mr
j

changes sequence of elements only in subpermuta-
tion σ(mr

j). If moves mr
j, mk

l are independent then
subpermutations σ(mr

j) and σ(mk
l ) are disjoint and

π r
j (t) = πk

l (t) (t = 1, 2, ... , n, t /∈ σ(mr
j) ∪ σ(ml

k)). So
for the sequence of moves (mr1

j1 , mr2
j2, ... , mrh

jh), which
are pair-independent, permutation π is in form
π = (... , σ (mr1

j1), ... , σ (mr2
j2), ... , σ (mrh

jh), ...). Because
�(mrs

js) = F(π) − F(mrs
js(π)) (1 ≤ s ≤ h), therefore

F
(
R

(
mr1

j1, mr2
j2, ... mrh

jh

)
(π)

) − F(π) =
h∑

v=1

�
(

mrv

jv

)
.

If we assume that j < r, for move mr
j then the proof

is similar. 	


Intensification of calculations.
To achieve local minimum quickly, we make im-

proving multimove, which is a composition of pair-
independent improving moves from the set M(π).

Algorithm of determining the improving multi-
move R.

Step 1: Sort elements of the set M(π) so that
�(mr1

j1) ≥ �(mr2
j2) ≥, ... , ≥ �(mrt

jt),

where |M(π)| = t;
if �(mr1

j1) ≤ 0 then h ← 0 and EXIT;
Step 2 : R ← mr1

j1; h ← 1;
for each k = 2, 3, ... , t do
if move mrk

jk improves (�(mrk
jk) > 0) and

if independent with each move of the
sequence R then
h ← h + 1 and R ← R ∪ mrk

jk;

The foregoing algorithm is based on greedy method
and has computational complexity O(tlnt), where t
is O(n2). Executing the improving multimove R(mi1

j1 ,

mi2
j2, ..., mih

jh) which intensifies the calculations we save

attributes of all moves mi1
j1, mi2

j2, ... , mih
jh on the tabu

list.

Strong diversification of calculations.
The aim of strong diversification is to move the area

of search process from the neighborhood of local mini-
mum to other area of the set of problem’s solutions. It
consists of executing a dispersing multimove, which is
a composition of worsening moves from the set M(π).
We call a move worsening if it makes the cost function
worse.

Let Length� be a parameter, the number of moves
in the dispersing multimove.

Algorithm of determining the dispersing multi-
move �.

Step 0: Let t = ∣∣{mk
l ∈ M(π) : �(mk

l ) < 0}∣∣;
if t = 0 then h ← 0 and EXIT;

Step 1: Sort elements from the set M(π) such that
�(mr1

j1) ≤ �(mr2
j2) ≤, ... , ≤ �(mrt

jt);
Step 2 : � ← mr1

j1; h ← 1;
for each l = 2, 3, ... , t do

h ← h + 1 and � ← � ∪ mil
jl ;

if h = min{t, Length�} then EXIT.

Computational complexity of this algorithm is
O(tlnt). Executing the dispersing multimove �(mr1

j1 ,

mr2
j2, ... , mrh

jh) we remove all elements from the tabu list
and next we save attributes of moves mr1

j1, mr2
j2, ... , mrh

jh
on the tabu list.
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In the tabu search algorithm specification TSL rep-
resents tabu list, the variable Maxiter – number of
iterations of the algorithm (stop criterion) and Maxbp –
number of iterations without improving solutions, after
which diversification is executed (Length� - number of
moves in dispersing multimove), π* – the best known
solution.

Algorithm TSE/Tni (Tabu Search Algorithm)
Input: initial solution (permutation) π0;
Output: job’s permutation π∗;

Step 0:{Initialization}
Set π∗ := π0; π := π0; F∗ := F(π∗);
LTS := ∅; iter:=0; itbp:=0;

Step 1:{Searching}
Partition permutation π into blocks and
ordered elements in E and T blocks.
Create a set moves M(π) using definition (1)
and Property 1-3.
if M(π) = ∅ then EXIT;

Step 2:{Selection}
if M(π) �= ∅ then {intensification of
calculations}

execute improving multimove
R(mr1

j1, mr2
j2, ... , mrh

jh) and
[π ← R(mr1

j1, mr2
j2, ... , mrh

jh)(π); itbp:=0]
else

if itb p = Maxb p then { diversification
of calculations }

execute dispersing multimove
�(mr1

j1 , mr2
j2, ... , mrh

jh) and
[π ← �(mr1

j1 , mr2
j2, ... , mrh

jh)(π); itbp:=0]
else {non-improving move}

select a move ml
k with

�(mk
l ) = max{�(mr

j) : mr
j ∈ M(π)}

and
[π ← mk

l (π); itbp:=itbp+1];
Save attributes of executed moves
on the tabu list TSL;
if F∗ > F(π) then π∗ := π and F∗ := F(π);
iter:=iter+1;

Step 3:{Stop criteria}
if iter > Maxiter then EXIT
else goto Step 1;

Computational complexity of the algorithm is
O(n2 ln n · Maxiter).

We use multimoves for intensification and diversifi-
cation of calculations in the TSE/Tni algorithm. Each
of these multimoves is a superposition of a single swap
and insert moves (are no more than 1.5n(n − 1)). Algo-
rithms of determining a single multimove have compu-
tational complexity O(n2 ln n).

3 Computational experiments

The algorithms have been tested on several commonly
used instances of various size and level of difficulty:

a) 375 benchmark instances of three different sizes
with 40, 50, and 100 jobs from the OR-Library [20].

b) test problems were generated as follows: for each
job i, an integer processing time pi was generated
from the uniform distribution [1, 100] and integer
weights ui and wi were generated from the uniform
distribution [1, 10]. Let P = ∑n

i=1 pi. Distributions
of earliness ei and deadline di depend on P and
two additional parameters L and R which take
on values from 0.2 to 1.0 in increments of 0.2. An
integer deadline di was generated from the uniform
distribution [P(L − R/2), P(L + R/2)]. Earliness
ei was generated as an integer from the uniform
distribution [0, di]. Five problems were generated
for each of the 25 pairs of values of R and L,
yielding 125 problems for each value of n=200, 300,
400, 500.

These problems are solved by a PC with a Pentium IV
1.2GHz processor.
Initial permutation The quality of solutions calculated
by TS algorithm depends also on the starting point.
Below we present the constructive heuristic algorithm
which calculates these solutions. It is based on the
idea of NEH algorithm [19] and creates n elements’
permutation π ∈ �(n).

For the job i ∈ J and the number x ≥ 0, let fi(x) =
max{0, ei−x}+max{0, x−di}. By P = ∑n

i=1 pi we define
the time of all performed jobs.

Algorithm CAE/T {Constructive Algorithm}
Let αi = max{pi/ui, pi/wi};
Enumerate jobs such as α1 ≥ α2 ≥, ... , ≥ αn;
l := 1; k := n
if α1 = p1/u1 then π(1) := 1 and l:=2
else π(n) := 1 and k := k − 1;
for i := 2 to n do

if αi = pi/ui then
begin

Insert a job i on one of positions 1, 2, ... , l
so that the sum∑l

j=1 fπ( j )(Cπ( j )) was minimal,

where Cπ( j ) = ∑ j
s=1 pπ(s);

l := l + 1
end {if }
else
begin



806 Int J Adv Manuf Technol (2009) 40:797–807

Insert a job i on one of positions k, k + 1, ..., n
so that the sum∑n

j=k fπ( j )(Cπ( j )) was minimal,
where Cπ( j ) = P − ∑n

s= j+1 pπ(s);
k := k − 1

end {else}

The CAE/T algorithm requires O(n2) time.

3.1 Parameter selection

To fix values of parameters of the algorithm we have
conducted experiments on randomly chosen instances
(five per each number of jobs n=40, 50, 100). After
analysis of the received results we have assumed:

1. dynamic length of tabu list (lT S(iter)):
h = �n/4�, H = �n/10�, low=�√n�, α=�√n/4�

2. number of moves in the dispersing multimove
Length� = �√n/2�.

3. number of iterations without improvement of the
best founded solution after which there is executed
a dispersing multimove, Maxbp = 3.

3.2 Comparative results

In Table 2 we present the results obtained for the test
problems of class (a). We compare the results of the
algorithms CAE/T and TSE/Tni with the results of the
parallel genetic algorithm described in the study [3]
(placed on the OR-Library page [20]). For each test
instance we compute the values F A—the makespan
found by the algorithm A ∈ {CAE/T, TSE/Tni}, and
100 · (F A − U B)/U B—the relative percentage differ-
ence between makespan F A and the best upper bound
UB (from OR Library [20]).

For each n (group of test instances), we collected the
following values:

δaprd – the value (the average for 125 instances) of the
relative percentage difference between the
cost function F A (found by algorithm A) and
the best-known upper bound,

Table 2 The comparison of the results of the constructive algo-
rithm (CAE/T) and tabu search (TSE/Tni, Maxiter =2n2) with the
results placed on the OR- Library page [20]

n Algorithm CAE/T Algorithm TSE/Tni

δaprd δmrpd δaprd δmrpd

40 3.21 9.23 −4.37 1.36
50 3.99 26.57 −7.16 2.13
100 8.64 35.14 −12.82 −2.81
all 5.28 24.16 −8.12 0.23

Table 3 The comparison of the results of the tabu search algo-
rithm TSE/Tni (Maxiter =2n2) with the results of the algorithm
(CAE/T)

Number of jobs n

200 300 400 500

δmrpd −16.27 −21.35 −23.64 −39.51

δmrpd – the maximum relative percentage deviation
from the upper bound value.

On the basis of the results placed in Table 2 we can
state that the average relative error for the constructive
algorithm CAE/T amounts to 5.28%, whereas the max-
imum error amounts to 24.16%. In spite of such large
errors, the constructive algorithm can be used success-
fully to determine the starting solutions for the local
search algorithms. The algorithm presented in Chap.
3 TSE/Tni is much better than the parallel genetic
algorithm described in study [3]. The average relative
error (the reference results’ improvement) amounts to
−8.12%. Especially the improvement is considerable
for data with the highest size (n = 100) and amounts
to −12.82%.

In Table 3 we compare the results of the construc-
tive algorithm CAE/T with the results of the algo-
rithm TSE/Tni, based on the TS method for data from
class (b).

The relative average (δmrpd) improvement of the re-
sults of the constructive algorithm is very considerable
and amounts to 25.2%.

In Table 4, the results of the algorithm TSE/Tni are
placed, for several numbers of iterations. The results
presented in Table 4 show very fast convergence of the
TSE/Tni algorithm.

The average (taprd) and maximum (tmrpd) running
time of the proposed algorithm is listed in the Table 5.
The average running time is relatively short, particulary
when the number of jobs is n ≤ 500.

As we can see, the method proposed here increases
the quality of the solutions, particulary after the appli-
cation of the block properties proposed in Section 1.1
and it significantly shortens the time of computations.

Table 4 The comparison of the computational results of TSE/Tni
algorithm with n, 2n and n2 iterations

n Maxiter =n Maxiter =2n Maxiter =n2

δaprd δmrpd δaprd δmrpd δaprd δmrpd

40 −1.18 9.84 −1.26 9.84 −4.12 1.36
50 −2.03 13.98 −2.39 10.42 −6.85 2.04
100 −4.28 18.72 −6.12 16.87 −12.32 0.21
all −2.50 14.18 −3.26 12.38 −7.76 1.20
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Table 5 Running time (seconds) of algorithm TSE/Tni for 2n2

iterations

Number of jobs n

40 50 100 200 300 400 500

taprd 0.007 0.01 0.04 0.10 0.57 2.05 5.36
tmrpd 0.009 0.02 0.06 0.13 0.63 2.86 6.24

4 Conclusions

We have discussed a new approach to neighborhood
search for the single-machine earliness-tardiness sched-
uling problem based on new elimination criteria—
block properties. These properties allow us to propose
a new, very fast algorithm based on the tabu search
approach. Moreover, we propose a tabu list with dy-
namic length that is changed cyclically, as the current
iteration number of TS increases, using the “pick” in
order to carry the search to another area of the solu-
tion space. Finally, some perturbations associated with
block properties are periodically applied. Computa-
tional experiments are presented. The results show that
the algorithm proposed provides much better results
than in recent modern approaches. The results obtained
encourage us to extend the ideas proposed to other
hard problems of sequencing, for example, to the E/T
problem.
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