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Abstract To realize the sharing and optimization deploy-
ment of manufacturing resources, a concept of collaborative
manufacturing chain (CMC) is proposed for the manufac-
turing of complex products in a networked manufacturing
environment. To acquire the optimal CMC, a multi-
objective optimization model is developed to minimize
the comprehensive cost and the whole production load with
time-sequence constraints. Non-dominated sorting genetic
algorithm (NSGA-II) is applied to solve optimization
functions. The optimal solution set of Pareto is obtained.
The technique for order preference by similarity to ideal
solution (TOPSIS) approach is then used to identify the
optimal compromise solution from the optimal solution set
of Pareto. Simulation results obtained in this study indicate
that the proposed model and algorithm are able to obtain
satisfactory solutions.

Keywords CMC .Multi-objective optimization .
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1 Introduction

The manufacturing industry today is faced with a rapidly
changing market demands and global competition. More

and more manufacturers recognize that it is difficult to
depend on their own manufacturing resources to grasp the
ever-changing market opportunities. Especially for the task
to fabricate complex products, it is very difficult for single
enterprise to undertake. As manufacturing enterprises
becomes more specialized, they need to communicate and
work with concurrently other geographically dispersed
companies. The collaboration and cooperation between
enterprises is changing from a supply chain to a collabo-
rative product manufacturing chain based on material flow
and task flow, respectively. Altogether, intense competition
frequently makes co-location of manufacturing activities
impossible and thereby drive the need for new types of
collaboration that integrate dispersed enterprises and exter-
nal partners into product manufacturing networks [1, 2]. At
the same time, computer network technologies, especially
the Internet, have injected velocity into product manufac-
turing activities and enabled companies to shift their
traditionally centralized product manufacturing philosophy
to networked product manufacturing philosophy.

The whole value chain from the raw material to the final
product is rarely carried through by a single company. In
reality, the manufacturing of a final product takes place on a
variety of manufacturing levels in several enterprises. The
high technical standard and the high quality of the complex
products nowadays would not be realizable if there were no
division of work among companies. Because of the
increasing cooperation between small and medium sized
enterprises (SMEs), the complete optimization of the value
chain makes it possible to attain a global optimum
concerning processing time, costs, quality, and other
factors. Based on the concept of non-hierarchical regional
production networks, Fischer et al. [3] developed a virtual
enterprise model to improve the competitiveness of SMEs.
The model is based on the very small performance unit—
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the competence cells. Because of the order-specific selec-
tion of those performance units of manufacturing enter-
prises, it becomes possible to quickly and flexibly react in
case of changing market demands. The authors suggested
that the ant colony algorithm was a good tool to find an
optimal manufacturing process, but did not perform a
numerical example to validate the proposed algorithm.
Yao et al. [4] proposed the concepts of logical manufactur-
ing unit and physical manufacturing unit to decompose and
model the networked manufacturing task and the manufac-
turing resources. To obtain the optimal manufacturing
process, the genetic algorithm (GA) is applied to solve the
single objective optimization problem. Ip et al. [5] believed
that dynamic alliance and virtual enterprise are essential
components of global manufacturing. Then a partner
selection problem is described and modeled and the GA is
used to solve the optimization problem. The aforemen-
tioned literatures model the optimization problem as a
comprehensive single objective optimization function, and
the classical processing methods (such as linear weighting
method) transform the multiple objective functions into a
comprehensive single objective function. This method is
generally to assign weights to multiple objectives according
to the subjective preferences of decision makers. At the
same time, the optimization objectives may conflict each
other. It needs to gradually modify and adjust weights to
obtain the satisfying solution.

Recently many researchers have started to apply multi-
objective optimization algorithms to several fields such as
job shop scheduling, production planning, and enterprise
production networks. Gutjahr et al. [6] proposed a multi-
objective combinatorial optimization formulation for the
location-routing problem and the vector evaluated GA
(VEGA) [7] is used to solve the problem. Li et al. [8]
described a multiobjective optimization problem of product
configuration and a multiobjective genetic algorithm is
designed for finding near Pareto or Pareto optimal set for
the problem. The niched Pareto GA (NPGA) is used for
comparing with the proposed genetic algorithm. Kuriakose
and Shunmugam [9] proposed a multi-objective optimiza-
tion method based on a non-dominated sorting GA (NSGA)
to optimize Wire-electro discharge machining process. Ding
et al. [10] provided an integrated toolbox based on NSGA-II
for a holistic assessment and optimization of enterprise
networks. Altiparmak et al. [11] proposed a new solution
procedure based on genetic algorithms to find the set of
Pareto-optimal solutions for multi-objective supply chain
network design problem. With regard to the multi-objective
optimization algorithms, the final result usually is not a
single solution, but a whole Pareto-optimal set. For the
multiobjective problem, it often involves simultaneous
optimization of several incommensurable and often com-
peting objectives. And the multi-objective optimization

algorithms are suited for the problems. In view of the fact
that none of the solutions in the non-dominated set is
absolutely better then any other, any one of them is an
acceptable solution. According to the obtained Pareto
optimal solution set, the relationship among goals could
be analyzed further, which benefit rational and effective
decision-making.

In this paper, a multi-objective optimization model for
optimizing collaborative manufacturing chain (CMC) is
developed. To solve the optimization problem, our choice
finally turned to a multiobjective GA framework called
NSGA-II [12]. The following are the reasons: (a) its
modular and flexible structure, (b) the possibility of
upgrading a single-objective GA to NSGA-II, and (c) its
successful applications to a wide range of optimization
problems. Therefore, the NSGA-II approach is applied to
obtain the Pareto optimal solutions.

The reminder of the paper is organized as follows. In
Sect. 2, the concept of collaborative manufacturing chain is
proposed and a multi-objective optimization model is de-
veloped. The general framework of the fast non-dominated
sorting genetic algorithm (NSGA-II) is described and a
subtask scheduling procedure is given in Sect. 3. Numerical
experiment is conducted in Sect. 4. Section 5 brings some
concluding remarks.

2 Problem formulation

2.1 Collaborative manufacturing chain

To describe the collaborative manufacturing chain (CMC),
several definitions are firstly given.

Definition 1: Collaborative manufacturing unit (CMU): A
CMU is composed of all physical equip-
ments located at the same place, including
machining equipment, fixture accessories,
and soft resources. A CMU has definite core
manufacturing competences and is highly
specialized and cooperation-independent,
but autonomous in terms of law and eco-
nomics. The CMUs are formed from exist-
ing enterprises according to their core
competences. Therefore, an enterprise might
unite one or more CMUs. A CMU neces-
sarily belongs to an enterprise. All CMUs
form a pool of potential core competences,
out of which CMUs are activated cor-
responding to special requirements of man-
ufacturing order. It is useful for the task of
manufacturing complex products to select
the most capable CMUs.
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Definition 2: Manufacturing task unit (MTU): For the
task of manufacturing complex parts, an
enterprise cannot finish the whole produc-
tion procedure by itself because of the
limitations of manufacturing resources.
The enterprise which received the order
decomposes the whole manufacturing task
into several subtasks based on the manu-
facturing characteristics and process plan-
ning of the complex parts. The subtask is
here defined as an MTU. An MTU can
contain one or more manufacturing proce-
dures, and is the basic unit of collaboration.
Because of the diversity of manufacturing
processes, a MTU can be undertaken by
one of the same or different types of CMUs.
A CMU can finish one or more MTUs.

Suppose that a dominant CMU wins a manufacturing
task which consists of several MTUs. In view of the special
requirements of manufacturing complex parts, there may be
execution sequence between arbitrary two MTUs. If MTU
k can only begin after the completion of MTU i, i.e., MTU i
precedes MTU k, then we define the connected MTU pair
by (i, k) ∈ H. H is the set of connected MTU pairs. For the
concrete MTU, different CMUs to undertake have different
execution times. Based on the above analysis, it is obvious
that there are time-sequence constraints among MTUs. The
structure of the whole manufacturing task is described as a
directed network. An example of a manufacturing task
consisting of eight MTUs is shown in Fig. 1. The nodes in
the figure denote MTUs, and the arrow lines denote the
sequence between two MTUs. For the convenience of
description, we label these MTUs such that i<k. The final
MTU is labeled as MTU n. If the final MTU cannot be
determined, a virtual final MTU can be created. For ex-
ample, in Fig. 1 without MTU 8, it would be a puzzle to
determine which is the final MTU between MTUs 6 and 7.
Therefore, we have to create a virtual final MTU to follow
MTUs 6 and 7, and label it as MTU 8. MTU S is the first
beginning virtual MTU and MTU E is the last complete
virtual MUT, and they all do not consume resources and the
execution times are zeros. Thus, we can define that the
completion time of final MTU dn is the completion time of
the whole manufacturing task.

Definition 3: Collaborative manufacturing chain (CMC):
For the task of manufacturing complex
parts, it can be decomposed into several
MTUs. Every MTU can select only one
CMU to undertake from a pool of CMUs.
All of the manufacturing service provided
by the corresponding CMU form a manu-
facturing service chain according to time-
sequence constraints between MTUs. We
define the manufacturing service chain as
collaborative manufacturing chain.

For MTU i (i=1, 2,..., n), suppose that there are mi

CMUs responding to the tender invitation. To describe
CMC distinctly, we illustrate the problem as a directed
graph (Fig. 2). Each node denotes a CMU. The pairs of
nodes (i, i+1) attached to an edge are arranged. Thereby, i
is the first node—the initial node—and i+1 is the second
node —final node—of the pairs (i, i+1).Therefore, it is
necessary to insert an initial node, a so-called source, for all
nodes which are in the beginning of the CMC. Starting
from that, all CMUs are integrated in the graph according to
the sequence. After the last processing step, the CMUs meet
in a common final node of the directed graph, called drain.
Thus, each CMC firstly starts from a source and finally
ends in a drain. There are many CMCs from the source to
the drain. The strongly emphasized route in Fig. 2
represents a concrete, realizable CMC.

2.2 Multi-objective optimization model

In order to describe the optimization model of CMC, we
need the notation as follows:

N Number of MTUs
D Due date
β Penalty parameter for tardiness of a period
(i, k) Connected pairs of MTUs
H Set of connected pairs of MTUs
mI Number of candidate CMUs bidding for MTU I
Cij Processing cost of CMU j for MTU i

S 1

2

3 4 6 8 E

5 7

Fig. 1 Directed network of MTUs Fig. 2 Illustration of CMC
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bI Starting time of CMU j for MTU i
dI Completion time of CMU j for MTU i
dn Completion time of MTU n
ρij Production load rate of CMU j for MTU I
pij Processing time of CMU j for MTU i
LCij,

(I+1)q

Linked cost between CMU j for MTU i
and CMU q for MTU i+1

The CMC optimization problem can be described as
follows. Assuming a dominant CMUwin, one can decompose
a bid of manufacturing complex parts and the whole task into
several MTUs. The CMU is not able to complete the whole
task by its own capacity and resources. Therefore, it needs
other CMUs to collaboratively complete the task.

D is the due date of the whole task. If the whole task is
tardy, the dominant CMU will receive a tardiness penalty of
β for per tardy period.

The objective is to find an optimal CMC by minimizing
the total costs and the holistic production load rate.

Define the variables

xij tð Þ ¼ 1 MTU i is contracted to CMU j at period t
0 otherwise

�

Then, the optimization problem can be described as
following models.

Cost – The summation of processing cost , linked cost and
possible penalty cost should be minimized.

min f1 xð Þ ¼
Xn
i¼1

Xmi

j¼1

Cij

Xdn
t¼0

xij tð Þ

þ
Xn�1

i¼1

Xmi

j¼1

Xmiþ1

q¼1

LCij; iþ1ð Þq
Xdn
t¼0

xij tð Þþβ dn � D½ �þ

ð1Þ
Load – The product of production load rates of selected

CMUs should be minimized.

min f2 xð Þ ¼
Yn
i¼1

Xmi

j¼1

rij
Xdn
t¼0

xij tð Þ ð2Þ

Constraints:

Pmi

j¼1

Pdn
t¼0

xij tð Þ ¼ 1 i ¼ 1; 2; � � � ; n ð3Þ

t þ pij
� �Xmi

j¼1

Xdn
t¼0

xij tð Þ � t
Xmk

j¼1

Xdn
t¼0

xkj tð Þ; 8 i; kð Þ 2 H ð4Þ

Xmn

j¼1

Xdn
t¼0

t þ pnj
� �

xnj tð Þ ¼ dn ð5Þ

where t ¼ 0; 1; � � � ; dn, [v]+ stands for max {0, v}.

Equation (1) is the first optimization function and the

function consists of three parts.
Pn
i¼1

Pmi

j¼1
Cij

Pdn
t¼0

xij tð Þ,
Pn�1

i¼1

Pmi

j¼1

Pmiþ1

q¼1

LCij; iþ1ð Þq
Pdn
t¼0

xij tð Þ, and β [dn − D]+ represent minimizing the

processing cost, minimizing the linked cost between CMUs,
and minimizing the penalty cost for tardiness of a period
respectively.

Equation (2) is the second optimization function and its
objective is to minimize the holistic production load rate of
a CMC.

Constraint (3) indicates that only one CMU is selected
for each MTU.

Constraint (4) shows that the starting time of MTU k is
always less than or equal to the summation of the starting
time and the processing time of MTU i ((i, k) ∈ H ).

Constraint (5) indicates that the completion time of final
MTU n is equal to the summation of its starting time and
the processing time. At the same time, it is the completion
time of the whole manufacturing task as well.

3 Optimization algorithm embedded MTU scheduling

3.1 Pareto optimality

Multi-objective optimization problems consist of simulta-
neously optimizing several objective functions and the
principles of multi-objective optimization are different from
that in a single-objective optimization. The concept of
Pareto dominance and optimality can be expressed as
follows for a multi-objective minimization problem:

Minimize f xð Þ ¼ f1 xð Þ; f2 xð Þ; � � � ; fn xð Þð Þ

subject to g xð Þ ¼ g1 xð Þ; g2 xð Þ; � � � ; gn xð Þð Þ � 0

where f (x) is the vector-valued function, x is the decision
vector, and g(x) is a vector of constraints. Considering two
decision vectors a and b, a is said to dominate b:

iff 8i 2 1; 2; � � � ; nf g : fi að Þ � fi bð Þ and 9i 2 1; 2; � � � ; nf g :

fi að Þ < fi bð Þ

The decision vectors that are non-dominated within the
entire search space are denoted as Pareto-optimal and
constitute the Pareto-optimal set or Pareto-optimal front.

3.2 NSGA-II approach

Evolutionary algorithms (EA) have been recognized to be
particularly suitable to solve multi-objective optimization
problems, because they deal simultaneously with a set of
possible solutions which allows an entire set of Pareto-
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optimal solutions to be evolved in a single run of the
algorithm, instead of having to perform a series of separate
runs as in the case of traditional mathematical programming
techniques. Moreover, EAs are less susceptible to the
shape or continuity of the Pareto front [13]. This has led to
the development of many successful evolutionary multi-
objective optimization algorithms over the past decade.

The notion of NSGA was first suggested by Goldberg
[14] and then implemented by Srinivas and Deb [15]. The
main idea behind the non-dominated sorting procedure is
that a ranking selection method is used to emphasize good
points and a niching method is used to maintain a stable
subpopulation of good points. NSGA differs from a simple
genetic algorithm only in the way to select operator works.
The crossover and mutation operators remain as usual. The
efficiency of NSGA lies in the way of multiple objectives is
reduced to a single fitness measure by the creation of
number of fronts, sorted according to nondomination.

Although the NSGA approach has been successfully
applied on a number of multi-objective optimization prob-
lems, the main criticism of the NSGA approach has been
(i) its high computational complexity of non-dominated
sorting, O(MN3) where M is the number of objectives and

N is the population size, (ii) the lack of elitism, and (iii)
the need for specifying the tunable sharing parameter.
Recently, Deb et al. [12] reported an improved version of
NSGA called NSGA-II to address all of these issues.
Specifically, NSGA-II alleviates all the above difficulties by
introducing a fast non-dominated sorting procedure with O
(MN2) computational complexity, an elitist-preserving
approach, and a parameterless niching operator for diversity
preservation.

The general structure of NSGA-II is given in Table 1. An
initial population pop of ns random solutions is built by the
first_pop procedure and sorted by non-domination. The
procedure get_margins computes for each solution pop(i)
its crowding distance margin(i). Then, each iteration of the
main loop starts by calling add_children, to create ns
children which are added at the end of pop. Finally, the
resulting population with 2·ns solutions is reduced to a new
population newpop by keeping the ns best solutions. To do
this, fronts and margins must be updated using non_
dominated_sort and get_margins. Starting from the front
of level 1, complete fronts are then transferred to newpop as
long as possible. The first front front(i) which could not be

Table 1 Procedure of NSGA_2

Table 2 Parameters of CMUs

MTU CMU Cij ρij pij

1 A1 50 0.86 5
A2 55 0.75 6
A3 56 0.53 8

2 B1 18 0.56 6
B2 21 0.80 8
B3 32 0.45 5
B4 27 0.35 4
B5 34 0.68 6

3 C1 65 0.78 8
C2 45 0.86 9
C3 25 0.48 10

4 D1 54 0.57 12
D2 48 0.69 10

5 E1 76 0.69 8
E2 113 0.75 9
E3 97 0.56 7
E4 86 0.83 10

6 F1 23 0.75 6
F2 35 0.86 8
F3 31 0.91 10
F4 20 0.53 9
F5 18 0.43 7

7 G1 45 0.34 9
G2 40 0.56 10
G3 51 0.86 8
G4 36 0.64 7

8 H1 37 0.53 8
H2 42 0.76 7
H3 40 0.68 9
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accommodated fully is truncated by keeping its most
widely spread solutions. This is achieved by arranging its
solutions in descending order of the crowding distance
values, thanks to the margin_sort procedure, and by
copying the best solutions until newpop contains exactly
ns solutions. Finally, pop receives the contents of newpop
for the next iteration of the GA.

3.3 NSGA-II approach for the CMC optimization

Our choice for the CMC optimization problem finally turns
to NSGA-II approach because (i) its modular and flexible
structure, (ii) the possibility of updating a single objective
GA to multi-objective GA, and (iii) its successful applica-
tions to a wide range of problems.

The natural number encoding-based is adopted in the
NSGA-II. A chromosome is an ordered list of CMUs, i.e., A
chromosome is a CMC. Let w=[w1, w2, ..., wi, ..., wn ] (i=1,
2,..., n), wi is a gene of the chromosome, its value is between
1 and mi (for MTU i, there are mi CMUs to response).

Once a selection w fixes the CMUs for all MTUs, MTU
scheduling can be done by the following procedure. The
basic idea is to schedule all MTUs as late as possible,
subject to time-sequence constraints. The steps are de-
scribed as follows:

MTU scheduling procedure:

Step1: From MTU k=1 to n, calculate the initial starting
time bk and the completion time dk:

bk ¼ max di; 8 i; kð Þ 2 Hf g; if i; kð Þ 2 H
0 others

�

and dk=bk+pk; where pk is the processing time of MTU k.
For example, there are two MTU pairs (6, 8) and (7, 8) ZH
(See Fig. 1, Tables 2 and 5). The completion times of
MTUs 6 and 7 all are 34, i.e., d6=d7=34. Since max{d6,
d7} = d6 = d7 = b8, d8=b8+p8=34+7=41.

Step2: Calculate the tardy penalty cost from period t=0 to
dn by P(t)=β[dn − D]+, then return to NSGA-II
algorithm.

4 Case study

In order to validate the proposed multi-objective optimiza-
tion model and the NSGA-II approach for CMC, a task of
manufacturing a complex part of plastic injector is
introduced. The task consists of 8 MTUs, and the time-
sequence relationship is shown in Fig. 1. After the
dominant CMU won the task, it calls tenders for eight

Table 3 Linked cost between CMUs

A1 A2 A3 C1 C2 C3 E1 E2 E3 E4 G1 G2 G3 G4

B1 34 73 45 25 54 76
B2 56 87 102 34 67 89
B3 23 97 46 97 45 23
B4 23 28 101 34 55 30
B5 56 47 89 46 45 65
D1 26 31 35 67 78 70 32
D2 45 56 37 56 34 27 34
F1 50 45 39 60 70 34 25 66
F2 35 32 27 64 46 77 85 50
F3 78 68 32 67 56 78 45 43
F4 45 42 35 30 56 36 29 59
F5 35 64 23 64 60 76 35 61
H1 27 31 15 9
H2 67 104 12 46
H3 64 25 34 65

Fig. 3 Pareto solutions
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MTUs. The numbers of qualified CMUs for all MTUs with
the processing cost, production load rate, and processing
time are shown in Table 2, and the linked cost among
CMUs is shown in Table 3, its due date is 49. The tardiness
penalty parameter is 0.85. In Table 2, the capital letters
stand for the serial numbers of the MTU and each number
means the serial number of the candidates responded to the
MTU. For example, “E3” means the third candidate CMU
bidding for MTU 5.

The algorithm was coded by MATLAB 7.0 and run at a
Pentium 4, 2.99 GHz clock pulse with 512 MB memory.
Appropriate parameter values were determined on the base
of preliminary computational experiments. The final pa-
rameter settings were determined: population size=30;
crossover rate=0.8, mutation rate=0.2, and number of
generation=500. The multi-objective EA was executed 30
times for the problem with the same initial population. The
results of each execution were stored in an auxiliary vector
and at the end resulting Pareto optimal set that was taken as
outcome illustrated in Fig. 3. The obtained solution is
formed in Pareto frontier. The corresponding results are
shown in Table 4. Figure 4 illustrated the comparisons of

the normalized values of two objective functions and the
final completion time of Pareto solutions.

The performance of the algorithm applied in this paper is
compared with that of VEGA, NSGA, and NPGA. Each of the
four algorithms was executed 30 times for the problemwith the
same initial population and the average is reported. In
consideration of the size of data (there are tens of result set),

Table 4 Corresponding results of Pareto optimal solutions

Pareto Solutions Gene value of a chromosome Objective functions Completion time of d8

w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 Obj_1 Obj_2

1 1 4 2 1 4 4 3 1 585 0.02958
ST 0 5 5 14 14 26 24 35
CT 5 9 14 26 24 35 32 43 43
2 1 4 3 2 1 4 3 2 591 0.02382
ST 0 5 5 15 15 25 23 34
CT 5 9 15 25 23 34 31 41 41
3 3 1 1 2 3 5 3 1 605 0.01753
ST 0 8 8 16 16 26 23 41
CT 8 14 16 26 23 33 41 49 49
4 2 4 3 1 1 1 2 3 609 0.01415
ST 0 6 6 16 16 28 24 34
CT 6 10 16 28 24 34 34 43 43
5 1 3 3 1 4 5 1 2 656 0.00976
ST 0 5 5 15 15 27 25 34
CT 5 10 15 27 25 34 34 41 41
6 2 3 3 1 4 4 1 3 694 0.00939
ST 0 6 6 16 16 28 26 37
CT 6 11 16 28 26 37 35 46 46
7 2 4 3 1 3 3 1 2 694 0.00945
ST 0 6 6 16 15 28 23 38
CT 6 10 16 28 23 38 32 45 45
8 2 3 3 1 4 5 1 3 730 0.00762
ST 0 6 6 16 16 28 26 35
CT 6 11 16 28 26 35 35 44 44
9 2 3 3 1 2 4 1 3 779 0.00848
ST 0 6 6 16 16 28 25 37
CT 6 11 16 28 25 37 34 46 46

Note: ST: starting time; CT: completion time

Fig. 4 Comparisons of Pareto solutions
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only the final statistical results are listed here. Table 5 illustrates
the number of Pareto optimal solutions that each algorithm
obtains. The numbers in parentheses are the percentages of
Pareto optimal solutions that the corresponding algorithm has
obtained. To summarize, the genetic algorithm applied in this
paper, provides the best outcome.

Here the TOPSIS method proposed by Yoon and Hwang
[16] is used in order to determine the best compromise
solution among Pareto solutions. TOPSIS stands for
technique for order preference by similarity to ideal
solution, which is based upon the concept that the chosen
alternative should have the shortest distance from the
positive ideal solution (PIS) and the farthest from the
negative ideal solution (NIS).

The decision matrix is A, and the normalized decision
matrix is B. Then the PIS, NIS and the closeness coefficient
C are obtained. Thus, the fifth solution is the best com-
promise solution among Pareto solutions (See Table 4). The
chromosome of the best compromise solution is [1, 3, 3, 1,
4, 5, 1, 2] with 656 comprehensive cost and 0.00976 load
rate. The corresponding starting and completion time are
listed in Table 6. The completion time of the whole
manufacturing task is 41. Figure 5 is the Gantt chart of
the best compromise solution for completing the whole
manufacturing task.

A ¼

585 0:02958 43

591 0:02382 41

605 0:01753 49

609 0:01415 43

656 0:00976 41

694 0:00939 46

694 0:00945 45

730 0:00762 44

779 0:00848 46

2
66666666666666664

3
77777777777777775

Normalized decision matrix B ¼

0:0984 0:2279 0:1080

0:0994 0:1835 0:1030

0:1018 0:1350 0:1231

0:1025 0:1090 0:1080

0:1104 0:0752 0:1030

0:1167 0:0723 0:1156

0:1167 0:0728 0:1130

0:1228 0:0587 0:1106

0:1310 0:0653 0:1156

2
66666666666666664

3
77777777777777775

PIS ¼ 0:0984; 0:0587; 0:1030ð Þ; NIS ¼ 0:1310; 0:2279; 0:1231ð Þ;
C ¼ 0:2150; 0:4331; 0:5223; 0:7323; 0:8716; 0:7995; 0:8089; 0:8558; 0:7666ð Þ:

5 Conclusions

The application of multi-objective optimization, which is
based on non-dominated sorting genetic algorithm,
increases the flexibility to select the optimal CMC for
manufacturing complex parts in an networked manufactur-
ing environment. Simultaneously considering the compre-
hensive cost and the whole production load, as optimization
objectives, decision makers can choose the most adequate

Table 5 Number of Pareto optimal solutions that GA obtained
(30 times)

Algorithms Number of Pareto
optimal solutions

Applied NSGA_II 210(87.5)
NSGA 197(82.1)
VEGA 153(63.75)
NPGA 189(78.8)

Fig. 5 Gantt chart of the best compromise solution

Table 6 Best compromise solution

MTU i CMU ρij pij bi di

1 A1 0.86 5 0 5
2 B3 0.45 5 5 10
3 C3 0.48 10 5 15
4 D1 0.57 12 15 27
5 E4 0.83 10 15 25
6 F5 0.43 7 27 34
7 G1 0.34 9 25 34
8 H2 0.76 7 34 41
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solution under the condition that the weights of multi-
objectives are unknown.

The NSGA-II approach used was able to obtain a set of
the Pareto optimal solutions. And TOPSIS approach is
applied to identify the best compromise solution from the
Pareto optimal solutions set. Performance of the NSGA-II
approach is compared with that of three other genetic
algorithms, and the results reveal that the genetic algorithm
outperforms the others in this problem.

The results of this research are helpful for the manu-
facturers to quickly realize the manufacturing of complex
parts by finding an appropriate CMC.
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