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Abstract The abrasive water jet machining process, a
material removal process, uses a high velocity jet of water
and an abrasive particle mixture. The estimation of
appropriate values of the process parameters is an essential
step toward an effective process performance. This has led
to the development of numerous mathematical and empir-
ical models. However, the complexity of the process
confines the use of these models for limited operating
conditions; e.g., some of these models are valid for special
material combinations while others are based on the
selection of only the most critical variables such as pump
pressure, traverse rate, abrasive mass flow rate and others
that affect the process. Furthermore, these models may not
be generalized to other operating conditions. In this respect,
a neural network approach has been proposed in this paper.
Two neural network approaches, backpropagation and
radial basis function networks, are proposed. The results
from these two neural network approaches are compared
with that from the linear and non-linear regression models.
The neural networks provide a better estimation of the
parameters for the abrasive water jet machining process.
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1 Introduction

High-pressure water jets have been in continuous develop-
ment since the beginning of the 20th century. Preliminary
applications of this technology included washing out
valuable materials like gold by excavating the soft gold
bearing rocks, industrial machining, and others. Some of
the alternate non-traditional machining techniques such as
laser machining (LM), electric discharge machining
(EDM), electro chemical machining, ultrasonic machining
(USM), abrasive water jet machining (AWJM) and others
were employed to overcome the limitations of water jets
[15]. Amongst all the machining techniques, AWJM has the
advantage of achieving the same quality of cut without any
micro-cracking and thermal weakening when compared to
other processes. The AWJM process can virtually cut
through any material (most suited for hard and brittle
materials) with a relatively lower machining cost. The key
is the abrasive materials that are contained in the jet of
water for the process. The major drawback of this process is
its low material removal rate, tapering effect, unavoidable
flaring of abrasive jets, and embedding of abrasives on the
work-piece. These drawbacks have been the driving factors
for the continual interest in the research and manufacturing
community toward the use of AWJM as an effective
machining process.

1.1 The AWJM process

An abrasive water jet is a jet of water that contains some
abrasive material. Abrasives are particles of special mate-
rials like aluminum oxide, silicon carbide, sodium bicar-
bonate, dolomite and/or glass beads with varying grain
sizes. Usually the water exits a nozzle at a high speed and
the abrasive material is injected into the jet stream. This
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process is sometimes known as entrainment in that the
abrasive particles become part of the moving water much as
passengers become part of a moving train. The added
abrasives drastically increase the range of materials that can
be cut with a water jet. Materials like super alloys, ceramics,
glass, and refractory material are typically machined by this
process. This process aids in achieving higher traverse speeds,
machining of thicker materials, and better edge quality.

The use of the abrasive water jet for machining or
finishing purposes is based on the principle of erosion of
the material upon which the jet hits. Each of the two
components of the jet; i.e., the water and the abrasive
material, have both a primary purpose and a secondary
purpose. It is the primary purpose of the abrasive material
within the jet stream to provide the erosive forces. It is the
primary purpose of the jet to deliver the abrasive material to
the work-piece for the purpose of erosion. However, the jet
also accelerates the abrasive material to a speed such that
the impact and change in momentum of the abrasive
material can aid it in performing its function (secondary
purpose). In addition, it is a secondary purpose of the water
to carry both the abrasive material and the eroded material
clear of the work area so that additional processing can be
performed [2]. In one way or another in any machining
process the spent material must be gotten out of the way
and the water jet provides that mechanism.

The abrasive water jet-cutting process is characterized by
a large number of process parameters that determine the
efficiency, economy and quality of the entire process. In
general, the parameters in the abrasive water-jet cutting
process can be divided into four categories [10]:

1. Hydraulic parameters

– Pump pressure (p)
– Water-orifice diameter (do)
– Water flow rate (mw)

2. Mixing and acceleration parameters

– Focus diameter (df)
– Focus length (lf)

3. Cutting parameters

– Traverse rate (v)
– Number of passes (np)
– Standoff distance (x)
– Impact angle (φ)

4. Abrasive parameters

– Abrasive mass flow-rate (ma)
– Abrasive particle diameter (dp)
– Abrasive particle size distribution (f (dp))
– Abrasive particle shape
– Abrasive particle hardness (Hp)

Figure 1 schematically shows the working of the AWJM
process along with some of the process parameters, where
dc denotes the depth of cut required on the work-piece
material. AWJM has been successful applied to industrial
cleaning, surface preparation, rock fragmentation, demoli-
tion, manufacturing operations, and rock and soil drilling
etc. [10].

2 Process parameter estimation

Determining the optimal process parameters by testing/
experimentation is a time consuming and cost ineffective
procedure. The knowledge of a mathematical function that
relates the cutting parameters to the cutting results is
necessary for a computer controlled cutting process. An
important aspect is to estimate some of the most crucial
output process parameters using the input parameters. One
of the critical input parameters is the depth of cut (dc),
which reflects the thickness of the work-piece material to
be removed. The important operating variables influencing
the depth of cut are pump pressure (p), traverse rate (v),
abrasive flow-rate (ma), grit type and size, and water jet and
orifice diameter [12].

A number of semi-empirical equations for estimating the
abrasive jet cutting process parameters and its performance
have been developed [1, 10]. Some of these models are
based on theories related to volume-displacement, energy-
conservation, regression and kinetic energy equations.
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Fig. 1 Schematic drawing of abrasive water jet machining process
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Numerical models have also been developed on few
occasions for modeling specific aspects of this process. A
good discussion regarding some of the models developed
for this process is given in [10]. Jain and Jain [5] provide a
comprehensive review of analytical material removal
models and some semi-empirical/empirical material remov-
al models for different mechanical type advanced machin-
ing processes. With a view of developing a knowledge base
on building strategies for adaptive control of the AWJM
process, Jegaraj and Babu [6] employ a full-factorial
experimentation approach. They analyze the effect of
changes in the dimensions of orifice and focusing nozzle
on depth of cut, material removal rate, cutting efficiency,
kerf geometry, and cut surface topography. Based on their
experiments they suggest that maintaining the orifice sizes
in the range of 0.25–0.3 mm and maintaining the focusing
nozzle sizes in the range of 0.76–1.2 mm with the ratio of
focusing nozzle size to orifice size in between 3 and 4.5 is
required to maintain the quality and efficiency of the
machining process. Lemma et al. [8] present a semi-
empirical model for predicting the maximum depth of cut
in both oscillation and normal AWJ cutting processes.
Through an experimental study they show that for ductile
materials processing oscillating the nozzle during cutting at
relatively small angle and high frequencies of oscillation
increases the efficiency of the erosion process.

It should be noted that most of analytical models
proposed in the literature are governed by an approximated
or estimated behavior of system variables during process-
ing. The number of parameters considered has almost
always been restricted to only a manageable few either due
to the lack of knowledge of the behavior or limitations of
the analytical models. Unfortunately, the process is too
complex to neglect the rest of the parameters. These
parameters, under certain conditions, may drastically affect
the machining process and yield unacceptable outputs. For
example, the effect of abrasive particle hardness, particle
shape, standoff distance, and impact angle, have not been
considered by many of the mathematical or empirical
models employed. These parameters may affect the process
significantly. To account for all these parameters and
possibly other parameters is a difficult task for these
models. A comprehensive model, analytical or other types
of models, considers most of the significant parameters and
sufficiently represents the system is desired.

In this respect, Singh [13] developed an expert system
for this process. The expert system takes input variables
like intensifier (or pump) ratings, material to be cut,
material thickness, cut quality and flow constraints and
recommends values for system settings such as pressure,
abrasive flow rate and nozzle and focusing tube bore
diameters. This system too inherently implements the same
analytical models that exhibit the aforesaid inadequacies.

Just recently, some effort has been made to use fuzzy
control for this application. Fuzzy control has been
investigated on two occasions [7, 14] for selecting optimal
process parameters. The earlier approach estimates the
process parameters such as abrasive mass flow rate, traverse
rate and others using an iterative approach based on the
given depth of cut. The latter approach predicts the depth of
cut achievable with a given set of process parameters via a
genetic algorithm and a fuzzy model. The fuzzy rule base
was obtained partly through expert knowledge and partly
through the knowledge gained from the experimental
values of input-output data. Unlike fuzzy control strategies,
neural networks are more flexible in incorporating new
input or output parameters via online training [18]. Instead
of undergoing the rigorous task of devising appropriate
membership functions and generating the rule base, it
would be straightforward to simply use the input-output
data values to formulate a model that represents the
abrasive water jet machining process.

The selection of the input and output parameters for this
research (see Table 1) was largely based on the studies
carried out by Momber & Kovacevic [10], Sitarama &
Ramesh Babu [14], and Singh [13]. These studies show that
the orifice diameter, the depth of cut, the workpiece-
abrasive material, and the combination factor are the critical
parameters that govern the material removals in the
abrasive water jetting machining process. Unlike the
models in Momber & Kovacevic [10], this research uses
two additional input parameters; i.e., the workpiece-
abrasive material combination factor (F) and the orifice
diameter. The workpiece-abrasive material combination
factor is defined as the ratio of workpiece machinability
number to the abrasive material hardness number (Mohr’s
scale). The orifice diameter, fixed for a particular nozzle
design, is a surrogate variable for the different nozzle heads
that the AWJM process employs. The fuzzy models in
Sitarama & Ramesh Babu [14] were presented only for a
particular workpiece-abrasive combination. A comprehen-
sive strategy that considers all workpiece-abrasive combi-
nations is desired (see Fig. 2).

Table 1 Input and output parameters for AWJM process

Input parameters Output parameters

Orifice diameter (do) in mm Abrasive mass flow-rate
(ma) in g/s

Depth of cut (dc) in mm Focus diameter (df) in mm
Workpiece-abrasive material
combination factor (F)

Traverse rate (v) in mm

Pump Pressure (p) in Mpa
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3 Neural network approaches

Neural networks (NNs) are empirical machine learning
strategies. It is appealing to a wide range of applications,
which include functional approximation, pattern recogni-
tion, time series forecasting and others [3]. As a universal
approximator [4, 11] it can model any nonlinear input-
output relationship to any degree of precision, given
appropriate network architecture, parameter selection, and
sufficient amount of data. This research considers the back
propagation network (BPN) and the radial basis function
network (RBFN) for estimating the process parameters for
the AWJM process. These paradigms were selected because
of their successes in function approximation problems in
the literature and their universal approximation properties.

The BPN is a supervised learning algorithm. It uses the
input-output data to train the internal weights via an
iterative process. The weights are adjusted using gradient
descent to minimize the error on the network outputs. Some
of the design parameters in a BPN include the number of
hidden layers, number of hidden neurons in each hidden
layer, activation function for each neuron, learning rate,
momentum rate, etc. The sigmoid function, fsig xð Þ ¼ 1

1þe�x,
is typically used as an activation function for the neurons in
a BPN.

The training process of a RBFN begins with an
unsupervised clustering phase followed by a supervised
learning phase using a gradient descent approach [16]. The
RBFN performs curve fitting to the input-output data in a
high dimensional space [3]. The RBFN is a two-layer
network; i.e., a network that has two layers of weights. The
RBFN typically employs the Gaussian kernel function,

fGauss xð Þ ¼ e�
� x�mk k2

s2 , at the hidden layer.

4 Neural network development and result discussions

Seventy-eight input-output data values for three inputs and
four outputs, based on an empirical analysis conducted by
Momber & Kovacevic [10] on an abrasive water jet

machine, were employed in this research. The dataset had
five different levels of workpiece-abrasive material combi-
nation factor, two different orifice diameters, and various
depths of cut. Experiments were conducted to fine-tune the
network parameters for the BPN and the RBFN. The final
BPN is a 3-4-4 network that has 3 input units, one hidden
layer with 4 hidden units, and 4 output units. The BPN used
a constant learning rate of 0.1, a momentum term of 0.4,
and was trained for 500 epochs. The RBFN is a 3-100-4
network that has 3 input units, 100 radial basis function
units in the hidden layer, and 4 output units. The RBFN
used a constant learning rate of 0.3, a momentum term of
0.7, and was trained for 300 epochs.

The BPN and the RBFN were validated using a six fold
cross validation (SFCV) technique [17]. The SFCV is a
computationally expensive validation approach compared to
the traditional train-and-test approach. The SFCV allows the
construction of the final network using all the available data
and validates the final network via multiple validation
networks. In this research, the entire dataset of 78 data
values was divided into six disjoint sets of 13 data values
each. Each validation network was trained on five sets of the
data (i.e., 65 data values in total) and tested on the left-out set
(13 data values). This procedure was repeated six times such
that each of these six sets was left out once. The final
network, trained on the entire set of 78 data values, is
referred to as the application network. The application
network is the network that would be ultimately applied to
the AWJM process. Table 2 summarizes the validation
results of the BPN and the RBFN.

The performance of the two application networks was
compared using the percent mean absolute error (PMAE).
The PMAE was calculated as the mean absolute error
divided by the average of the target values for each of the
output parameters. The results indicated that the BPN
performed marginally better than the RBFN except for
pump pressure. Overall, the average PMAE (averaged error
across all four output variables) for the two networks was
comparable at 30% approximately. The relatively high
PMAE for the networks are perhaps attributed to a few
outlier cases in the original dataset. Neural networks often
train to the dominant portion of the training data and
generally have degraded performance on the outlier cases.
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Fig. 2 The neural network strategy

Table 2 The PMAE for validating the BPN and the RBFN

ma df v p Average

BPN 17.18 7.73 59.90 30.53 28.84
RBFN 20.39 9.02 66.90 23.49 29.95
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4.1 Focused training on outlier cases

The outlier cases in the original dataset were artificially
duplicated to increase their share in the training set. Thirty
duplicated input-output data values, which consists of
outlier cases and data values that the networks failed to
provide reasonable outputs, were added to the original 78
input-output data values for the three input and four output
variables. Additional network experiments were conducted
on this “new” dataset. The network parameters for the BPN
and the RBFN remained the same as the two final network
architectures that are discussed previously. A SFCV
approach (each fold has 18 data values) was used to
validate the two networks and the results are provided in
Table 3.

Comparing the validation results of the two networks,
the RBFN clearly performs better than the BPN with an
improvement of a PMAE of 6% across all four outputs.
With focused training performed on the RBFN, the PMAE
for the four variable estimates (ma, df, v, and p) are 16.69%,
6.98%, 50.06% and 15.08%, respectively. As for the BPN,
its performance was not improved with focused training.
Further experimentation on the BPN with an increased
network complexity (i.e., an increase in the number of
hidden neurons and/or the number of hidden layers) hardly
made any significant improvement.

5 Statistical regression modeling for AWJM

Two types of regression models were developed to contrast
with the neural network approaches. A system of linear
regression models and a system of a second order
regression models were constructed using the same 108
data values (with focused training in the neural network
section). Both systems of regression models were validated
using a SFCV approach for the four output variables.

For the linear regression models, each of the four outputs
(i.e., abrasive mass flow-rate, focus diameter, traverse rate,
and pump pressure) was estimated via a stepwise approach
using a linear combination of the input variables (i.e.,
orifice diameter, depth of cut, and workpiece-abrasive
material combination factor). In the case of the second

order regression models, six additional non-linear terms;
i.e., the squared terms (F2; d2o ; and d

2
c ) and the cross

product terms (F � d2o ;F � d2c ; and d2o � d2c ) were included
for the stepwise approach. All the stepwise regression
models were conducted using a significance level of 0.05
for the entering and leaving variables. Table 4 summarizes
the performance of the two systems of regression models.

The results indicate that the linear regression models
were not able to model the AWJM process well. This
clearly reveals the non-linearity in the function that relates
the given set of inputs to the outputs. This non-linearity was
to some extent captured by the second order regression
models. Though the second order regression models
marginally perform better than the linear regression models,
its performance is inferior to the RBFN trained with
focused training.

6 Conclusions and future work

An approach towards estimating the abrasive water jet
machining process parameters using neural networks has
been proposed. This approach is an outcome of some
inadequacies in the existing analytical models and of the
simplicity involved compared to the fuzzy control models.
Moving one step further from the existing models, the
current approach considers the effect of two additional
parameters; i.e., the workpiece-abrasive material combina-
tion and the orifice diameter as inputs to the system. Two
neural networks, BPN and RBFN, were implemented
through a series of experiments. The results of both networks
were compared with two systems of regression models. The
results show that the RBFN trained with focused training can
model the AWJM relationship more accurately than the BPN
and the regression models. This research demonstrates the
potential of this approach for the estimation of the process
parameters for the AWJM. The estimation errors could
further be improved using a larger set of input-output data
values collected by performing a set of controlled experi-
ments during the AWJM process. Furthermore, a separate
neural network can be constructed for each of the output
parameters. This approach, despite its computational ex-
pense, may provide better network performance.

Table 3 The PMAE for validating the BPN and the RBFN with
focused training

ma df v p Average

BPN 19.50 8.23 57.85 28.50 28.52
RBFN 16.69 6.98 50.06 15.08 22.20

Table 4 The PMAE for validating the linear and 2nd order regression
models with focused training

ma df v p Average

Linear regression 28.21 8.69 58.00 30.77 31.42
2nd order regression 18.96 9.86 57.12 29.49 28.86
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