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Abstract From the computational point of view, the job
shop scheduling problem (JSP) is one of the most
notoriously intractable NP-hard optimization problems.
This paper applies an effective hybrid genetic algorithm
for the JSP. We proposed three novel features for this
algorithm to solve the JSP. Firstly, a new full active
schedule (FAS) procedure based on the operation-based
representation is presented to construct a schedule. After a
schedule is obtained, a local search heuristic is applied to
improve the solution. Secondly, a new crossover operator,
called the precedence operation crossover (POX), is
proposed for the operation-based representation, which
can preserve the meaningful characteristics of the previous
generation. Thirdly, in order to reduce the disruptive effects
of genetic operators, the approach of an improved generation
alteration model is introduced. The proposed approaches are
tested on some standard instances and compared with other
approaches. The superior results validate the effectiveness of
the proposed algorithm.
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1 Introduction

The general job shop scheduling problem (JSP) with the
makespan criterion can be described by a set of n jobs that
must be processed on m machines. Each job composes of

several operations, and the operations of a given job have to
be processed in a given order. Each operation uses one of
the m machines for a fixed duration. Each machine can
process at most one operation at a time, and once an
operation initiates processing on a given machine, it must
complete processing on that machine without interruption.
The objective is to find the optimal schedule of the
operations on the machines, taking into account the
precedence constraints, which minimizes the makespan,
i.e., the finish time of the last operation completed in the
schedule.

JSP is one of the most difficult NP-hard combinatorial
optimization problems whose complexity grows very fast
with the problem size. During the last three decades, many
solution methods have been proposed to solve the JSP.
Those approaches can be divided into two categories: exact
methods and approximation algorithms. Exact methods,
such as branch and bound, linear programming and
decomposition methods, guarantee global convergence
and have been successful in solving small instances,
including the notorious 10×10 instance of Fisher and
Thompson proposed in 1963 and only solved 20 years
later. But for the big instances there is a need for
approximation algorithms, which include priority dispatch,
the shifting bottleneck approach, local search, and heuristic
methods. In recent years, modern heuristic methods, such
as genetic algorithm (GA) [1–3], simulated annealing (SA)
[4], tabu search (TS) [5, 6], have captured the interest of
many researchers, because they are able to attain high-
quality solutions within reasonable computational times. A
comprehensive survey of job shop scheduling techniques
can be found in Jain [7] and Blazewicz [8].

Among the heuristic algorithms, the genetic algorithm,
inspired by the process of Darwinian evolution, has been
widely applied in many engineering fields, especially in the
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production scheduling field. The GA is based on the
survival of the fittest and involves some selection,
crossover and mutation operations. GA exhibits parallelism,
contains certain redundancy and historical information of
past solutions, and is suitable for implementation on
massively parallel architecture [9]. However, Due to the
stubborn nature of the JSP, simple GA is difficult to apply
directly and successfully to the difficult problem. Much
effort in the literature has focused on hybrid methods. The
genetic algorithm is very effective at performing global
search but often suffers from premature convergence, while
local search is good at fine-tuning but often falls into local
optima. So the role of local search in the context of the
genetic algorithm has been taken into serious consideration.
The hybrid genetic algorithm can complement the proper-
ties of the genetic algorithm and the local search method
[10]. The genetic algorithm is used to perform global search
to escape from local optima, while the local search is used
to perform fine-turning.

In this paper, an effective hybrid genetic algorithm for
the job shop scheduling problem is presented. The
remainder of the paper is organized as follows. In Section 2,
a new type of schedule named full active schedule is
proposed. In Section 3, we present our approach to solve
the job shop scheduling problem: representation scheme,
schedule generation procedure, local search procedure, new
genetic operators and the framework of hybrid genetic
algorithm. Section 4 reports the computational results. The
conclusions are made in Section 5.

2 Types of schedules

In general, schedules can be classified into three types: semi
active schedule, active schedule and non-delay schedule [11].
An active schedule can be obtained by shifting the operations
to the left of a semi-active schedule without delaying other
jobs, such reassigning is called a permissible left shift, and a
schedule with no more permissible left shifts is called an
active schedule. Therefore the set of active schedules is a
subset of semi active schedules. The optimal schedule is in
the set of all active schedules, so it is safe and efficient to
limit the search space to the set of all active schedules.

Although repairing a semi-active schedule to the active
one improves the makespan, the set of active schedules is
usually very large and contains many schedules with
relatively large delay times. The simple two-job and two-
machine problem described in Table 1 is taken for example.
Figure 1(a) shows an active solution of this problem which
no more permissible left shifts can improve its makespan.
Figure 1(b) is attained by shifting the operation (J1, 1) to
the right of the operation (J2, 1) on machine2 (M2). It can
be seen from Fig. 1 that there sometimes are obvious
improvements that can be attained by right shifts the
operations of the active schedule.

This paper proposes a new type of schedule: full active
schedule (FAS), which can be defined as a schedule with no
more permissible left shifts and right shifts. A FAS can be
obtained by shifting the permissible operations to right of
an active schedule without delaying other jobs (The
example can be seen from Fig. 1), so the set of full active
schedules is a subset of active schedules. Because the
makespan of a FAS is less than or equal to the makespan of
the corresponding active schedule, we could draw the
conclusion the optimal schedule is in the set of all full
active schedules. Figure 2 illustrates where the set of full
active schedules is. Using the FAS sets, we can further
reduce the solution space and get better solutions. The full
active schedule generator procedure based the operation-
based representation is proposed in Section 3.1.2.

Table 1 A sample 2×2 problem

Operations

Job 1 2 1 2

Machine sequence Processing time
j1 2 1 2 4
j2 2 1 2 3

J1,1 J2,1

J2,2 J1,2M1

M2

4 72 makespan=11

J1,1J2,1

J2,2 J1,2M1

M2

2 5 makespan=9

Active schedule Full active schedule

Shift (J1,1)
to the right

a b

4
Chromosome [1 2 2 1] Chromosome [2 1 2 1] 

Fig. 1 Permissible right shift
for an active schedule
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3 Hybrid genetic algorithm for JSP

3.1 Schedule generator procedure

3.1.1 Representation

The genetic algorithm described in this paper uses an
operation-based representation that uses an unpartitioned
permutation with m-repetitions of job numbers [2, 12, 13].
In this representation, each job number occurs m times in
the chromosome. By scanning the chromosome from left to
right, the k-th occurrence of a job number refers to the k-th
operation in the technological sequence of this job. The
important feature of the operation-based representation is
that any permutation of the chromosome can be decoded to
a feasible schedule.

Consider the three jobs and three machines problem
given in Table 2. Suppose a chromosome is given as [2 1 1
2 2 3 3 1 3], Because each job consists of three operations,
it occurs exactly three times in the chromosome. The fourth
gene of the chromosome in this example is number 2.
Because the number 2 has been repeated twice, the number
2 represents the second operation of job 2. A schedule is
decoded from a chromosome with the following procedure:
the first operation in the list is scheduled firstly, then the
second operation, and so on. Each operation under
treatment is allocated in the best available processing time
for the corresponding machine the operation requires (also
called permissible left shift). The process is repeated until

all operations are scheduled. A schedule generated by the
procedure can be guaranteed to be an active schedule [14,
15]. Then, using the active-decoding process, we can get
the corresponding active solution shown in Table 2 and the
active chromosome [2 3 1 1 2 2 3 1 3]. The active
chromosome and the feasible solution Table 3 can be
converted into each other; however two or more different
chromosomes can be decoded to an identical solution.

3.1.2 Schedule generation procedure

Through selection, crossover operator, and mutation oper-
ator, the genetic algorithm is responsible for evolving the
chromosome in each generation. The schedule generation
procedure combines the FAS generation procedure and the
local search procedure for feedback of the makespan and
the full active chromosome to evolutionary process.

The objective of the schedule generation procedure is to
improve the chromosome and obtain their makespan. The
algorithm described in Section 3.1.1 can generate an active
schedule. Using the same algorithm to the active schedule,
we can get a full active schedule with only small
modifications. By reversing the chromosome based on the
operation-based representation and all of the technological
sequences, a given schedule can be converted to another
schedule. The new schedule is equivalent to the original
one with the same makespan (the same critical path) and
the reversed chromosome (i.e., reversed job processing
sequences on same machine). Through left shifting the new
schedule, we can obtain the makespan and chromosome of
the full active schedule. For example, consider the simple
2×2 problem described in Table 1. The chromosome of the
schedule shown in Fig. 1(a) is [1 2 2 1]. By reversing the
chromosome (obtained the reversed chromosome [1 2 2 1])
and the technical sequence (shown in Table 4), the given
schedule shown in Fig. 1(a) is converted into the new
schedule shown in Fig. 3(a). The new schedule is equivalent
to the original one with the same makespan and the reversed
job processing sequences on same machine. Therefore we
could be seen that the makespan and chromosome of a full
active schedule shown in Fig. 3(b) can be obtained by using
the algorithms (in Section 3.1) to the reversed chromosome
and the reversed technological sequences of a given active
schedule shown in Fig. 1(a). Compared Fig. 3(b) with
Fig. 1(b), we must note that the sequence of the chromosome

Full Active Schedule

  Active 
Schedule

Non Delay
 Schedule

Semi-Active
   Schedule

Fig. 2 Full active schedules

Table 2 Example of 3×3 problem

Job Operations routing (Processing time)

j1 1(3) 2(1) 3(2)
j2 3(1) 1(5) 2(3)
j3 2(3) 3(2) 1(3)

Table 3 A 3×3 feasible solution

Machine Job sequence

m1 1 2 3
m2 3 1 2
m3 2 3 1
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and job sequences shown in Fig. 3(b) is reversed with the
given result.

Figure 4 illustrates the steps of the schedule generation
procedure applied to each chromosome generated by the
genetic algorithm. The schedule generation procedure
firstly generates the active schedule and the corresponding
full active schedule, and then applies the local search to
each of them to improve them. If the local search improves
the makespan, the schedule generation procedure continu-
ously generates the full active schedule and applies the
local search to improve it; otherwise, improvement of the
chromosome (or schedule) ends, and the full active
chromosome and the corresponding makespan is obtained
for the evolutionary process. The local search procedure is
introduced in the next section.

3.1.3 Local search procedure

For the JSP, a key component of a solution is the critical
path, which is the longest route from source to sink in the
disjunctive graph. It is possible to decompose the critical
path into a number of blocks where a block is a maximal
sequence of adjacent critical operations that require the
same machine. Because the permutation of non-critical
adjacent operation cannot improve the objective function
and even may create an infeasible solution, an efficient
method can be obtained by introducing a transition operator
that exchanges a pair of consecutive operations only on the
critical path and forms a neighborhood.

In this paper, we focus particularly on the approach of
Nowicki and Smutnicki (1996), which is noted for proposing
and implementing the most restrictive neighborhood in the
literature. Unlike the approach that generates only a single

arbitrary critical path, our approach generates all critical paths.
The critical path thus gives rise to the following neighborhood
of moves. Given b blocks, if 1<g<b, then swap only the first
two and the last two block operations. Otherwise, if g=1 (b),
swap only the last (first) two block operations (see Fig. 5). In
the case where the first and/or the last block contain only two
operations, these operations are swapped. If a block contains
only one operation no swap is made [16].

The local search used in this paper is the standard ascent
method. If the swap improves the makespan, it is accepted.
Otherwise, the swap is undone. Once a swap is accepted,
the critical path is changed and a new critical path must be
identified. If no swap of the first or the last operations in
any block of critical path improves the makespan, the local
search ends [17].

3.2 Crossover operation

Crossover can be regarded as the backbone of the genetic
algorithm. It intends to inherit the properties of two parent
solutions to two offspring solutions. To apply crossover
operation successfully to the JSP, we must satisfy the
following criteria: completeness, feasibility, non-redundancy
and characteristics preservation [18]. We think that the
characteristics preservation and the feasibility are the most
important criteria to design crossover operation in JSPs. In
this paper, a new crossover operator named precedence
operation crossover (POX) is proposed for the operation-
based representation, which can satisfy the characteristics
preservation and the feasibility between parents and their
children better.

The effective crossover operator proposed in this paper
is described as follows. Given chromosome, parent1 and
parent2, crossover applied POX generates the children,
child1 and child2, by the following procedure:

1. Randomly choose the set of job numbers, {1, 2... n}
into one nonempty exclusive subset J1.

2. Copy those numbers in J1 from parent1 to child1 and
from parent2 to child2, preserving their locus.

3. Copy those numbers in J1, which are not copied at step
2, from parent2 to child1 and from parent1 to child2,
preserving their order.

makespan=11

No active schedule Full active schedule
a b

Reversal of the chromosome [1 2 2 1] the chromosome [1 2 1 2] 
4              7         9 4     5        7

J1,2 J1,2

J1,1 J2,1

J2,2J2,2

J2,1 J1,1

Fig. 3 The chromosome and
makespan of the full active
schedule generate

Table 4 Reversal of the technical sequence

Operations

Job 1 2 1 2

Machine sequence Processing time
j1 1 2 4 2
j2 1 2 3 2
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Figure 6 shows an example of the three-job and three-
machine problem; chromosome of parent1 and parent2 is
{3 2 2 2 3 1 1 1 3} and {1 1 3 2 2 1 2 3 3}. The locus of job
{2} is preserved. The crossover generates two children
chromosomes, child1 {1 2 2 2 1 3 1 3 3} and child2 {3 3 1
2 2 1 2 1 3}. It can be seen that child1 preserves the locus
and order of job {2} in parent1 and the order of job {1, 3}
in parent2, respectively, and child2 preserves the locus and
order of job {2} in parent2 and the order of job {1, 3} in
parent1, respectively. Therefore POX is excellent in the
characteristics preservation.

3.3 Mutation operation

Mutation is just used to produce perturbations on chromo-
somes in order to maintain the diversity of population. In
this paper, two types of mutation operators named inversion
mutation and insertion mutation are used. Inversion
mutation serves to maintain the diversity in population.
Insertion mutation is used not only to produce small
perturbations but also to perform intensive search in order
to find an improved offspring. Inversion mutation and

insertion mutation act on half of the population, respec-
tively. Two mutations are described as follows:

1. Inversion mutation inverts the substring between two
different random positions.

2. Insertion mutation selects two elements randomly and
insert the back one before the front one. Implements the
insertion procedure n times and chooses the best one.

3.4 Designing a hybrid genetic algorithm for JSP

GA exhibits parallelism, contains certain redundancy and
historical information of past solutions. Critical components
of past good solutions can be captured, which can be
combined together via crossover to form high quality
solutions. Unfortunately, GA is also prone to loss of
solutions and theirs substructures due to the disruptive
effects of genetic operators. This is because new solutions
produced by the genetic operators are always accepted,
even if they are significantly inferior to older solutions.
This characteristic can lead to disruption, where good
solutions are lost or damaged. Therefore a simple GA often
produces premature convergence and poor results in the
difficult combinational problems. In this paper, we intro-
duce an improved generation alternation model that
employed in the hybrid GA for JSP, which could better
preserve the meaningful characteristics of the previous
generation and reduce the disruptive effects of genetic
operators. The framework of the hybrid GA is shown in
Fig. 7.

In contrast to a simple genetic algorithm, the hybrid GA
in this paper has superior features. Firstly, an improved
generation alternation model is introduced. The conception
of generation alternation model is that crossover is applied
to the two parent n times and 2n offspring are generated;
the two unequal best individuals in those offspring are
selected to the next generation. By comparative experi-
ments about the optimization of traveling salesman prob-
lem, a generation alternation model gives better results than
a model that does not employ it, especially in dealing with
the difficult problems [19]. In this paper, we improved the
generation alternation model as following: if the better
individual of two children outperforms the better individual

Fig. 4 The schedule generation procedure

1,1

4,1 3,2 2,1 1,2

3,1 1,3 2,34,2

4,3 3,3 2,2M1

M2

M3
First block

Internal block

Critical
  path

Fig. 5 Permutation of opera-
tions on a critical path
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of two parents in each crossover process, then the better
individual of two parents is replaced by the better
individual of two children, otherwise two parents don’t
change and crossover continues. Our experimental results
show this improved approach could reduce the search times
and obtain better results. Secondly, the crossover rate is
replaced by a novel method. Consider two individuals P1,
P2 which select from the Pold. If the fitness fP1, fP2 of two
individuals P1, P2 is not equal, then implements the
crossover operator. Otherwise, implements the mutation
operator. This new method of crossover rate can vary
dynamically, adaptively in response to the state of conver-
gence. For example, at the beginning of the evolution
period, the crossover rate is big; whereas at the end of the
convergence period, the crossover rate decreases and the
mutation rate becomes big; this characteristic of the new
crossover rate can avoid premature convergence better and
relax the parameters dependence. This novel method
proposed in this paper could also be used for the simple
genetic algorithm. The outline of the proposed hybrid genetic
algorithm procedure for JSP is illustrated as follows:

4 Computational results

To illustrate the effectiveness and performance of the algorithm
described above, we consider some instances from the standard
JSP test problems as follows: Fischer and Thompson (1963)
instances FT06, FT10, FT20, Lawrence (1984) instances
LA01 to LA40, Adams et al (1988) instances ABZ5 to
ABZ9, Applegate and Cook (1991) instances ORB01
to ORB10 and Yamada and Nakano (1992) instances YN1 to
YN4. All test instances were downloaded from Beasley’s OR-
Library, http://mscmga.ms.ic.ac.uk.

In our experiments, population size is 200. The number
of crossover times is equal to the number of jobs, and the
mutation rate (Pm in Fig. 8) is 0.8. The top 10% elite
individuals from the previous population chromosome are
copies for the next generation. The algorithm was termi-
nated when an optimal solution was found or after 50–80
generations of the algorithm, and each instance is randomly
run 20 times. The algorithm was implemented in Visual
C++ and the tests were run on a computer with Pentium
IV1.6G and 256MB RAM.

The hybrid genetic algorithm finds the optimal solutions
for the ft10 problem almost every time in less than
20 seconds on average. Here, we regard FT06, LA01,
LA06, LA11, ABZ5 and so on as easy problems, because
they can be easily solved by many methods. Therefore we
don’t present those results in detail. Table 5 shows the
makespan performance statistics of the hybrid genetic
algorithm for the 15 difficult problems selected from FT,

Child1

POX

Parent1 Parent2

Child2

Preserved jobs 
      J1={2}

1    2    2    2    1    3    1    3    3

3    2    2    2    3    1    1    1    3 1    1    3    2    2    1    2    3    3

3    3    1    2    2    1    2    1    3

Fig. 6 POX crossover

Begin 

  Generate randomly an initial population with Psize individual; 

Evaluate the initial population with the schedule generation procedure; 

Do{ 

Reproduce the 10% elite individuals from Pold to Pnew; 

Select a pair of individuals P1, P2 from the Pold, and their fitness is fP1, fP2 respectively. 

If (fP1 != fP2){ 

  Apply the improved generation alternation model and POX operator. Implement crossover n times and 

generate 2n offspring, select two unequal best individuals in the 2n offspring to the next generation. 

} 

else {    

Mutate the chosen pair of individuals by the probability of Pm .  

 } 

} Until (stop criterion has been satisfied) 

End 

The outline of the hybrid genetic algorithm 

970 Int J Adv Manuf Technol (2008) 39:965–974

http://mscmga.ms.ic.ac.uk


LA and ABZ benchmarks. The algorithm was terminated
when an optimal solution was found or after 50–80
generations of the algorithm. In the table, the column
named LB lists the best known solution or best lower
bound indicated in Jain [7], and the next columns named
best, average, worst and S.D. list the best, average, worst
and standard deviation makespan values obtained, over 20
runs, respectively, and the last two columns named n-opt
and t-opt show the number of the optimal schedules
obtained and the average cpu time of the optimal schedules
obtained. Optimal solutions were found for nine out of the
15 problems. The small standard deviation indicates the
stability of the hybrid genetic algorithm.

Table 6 summarizes the computational results of the
fifteen tough problems by comparing with the following
algorithms:

It lists problem name, problem dimension, the best-known
lower bound (LB), and the solution obtained by our hybrid
genetic algorithm and by each of the other algorithms. The
last line shows the mean relative error (MRE), which is used
to analyze the effectiveness of the proposed algorithm. The
MRE is calculated from the best known lower bound (LB),

and the upper bound (UB) that is given by the makespan of
the best solution found by our algorithm. The “relative
deviation” formula is 100×(UB – LB) / LB and was
calculated for each instance of problems. Overall, the MRE
our algorithm obtained is 0.28% and outperforms almost all
others algorithms except for the famous SB-GLS5. Com-
pared with those of a similar HGA which use a procedure
that generates parameterized active schedule and is presented
by J. F. Gonçalves, our computational results showed a great
improvement both in terms of solution quality and comput-
ing time, validating the effectiveness of the full active
schedule procedure. Table 7 presents the computational
results of the ORB benchmarks, and the MRE our algorithm
obtained is less than all others algorithms. Moreover, the
tabu search algorithm had better performance in the stability.
Table 8 presents the computational results of the YN
benchmarks that are problems of dimension 20×20. Figure 8
shows the optimal solution of the LA38 15×15 problem that
is one of the hardest problems.

5 Conclusions

This paper presents a hybrid algorithm combining genetic
algorithm with local search for the JSP, in which GA
performs global exploration among the population and the
local search performs local exploitation around chromo-
somes. The chromosome representation of the problem is
based on the operation-based representation. A new full
active schedule procedure based on the operation-based
representation is proposed to construct schedule, which can
further reduce the search space. The superior results compared
with other HGA prove the effectiveness of the full active
schedule procedure. To preserve the meaningful character-
istics of the previous generation and reduce the disruptive
effects of genetic operators, a new crossover operator named
precedence operation crossover (POX) is proposes for the
operation-based representation and an improved generation
alterationmodel is introduced. The approach is tested on some
standard instances taken from the literature and compared
with the other approaches. TheMRE our algorithm obtained is
less than almost all others algorithms, which validates the
effectiveness of this approaches.

Further research is necessary to reduce the computing
time. The TS algorithm showed better performance in
computing times and stability, providing a further improve-
ment procedure for our algorithm. If we apply the TS to
instead the local search in the hybrid GA algorithm, better
results might be obtained in reasonable times.

r < Pm

Y

N

Y

N

Copy best

Select two
individuals

Old population

Mutation

The best two individuls
in the descendant

if(fP1!= fP2)

New population

the better children replace
the the better parent

Fig. 7 Hybrid genetic algorithm procedure

Hybrid genetic algorithm
(HGA)

José Fernando Gonçalves
(2002)[17]

GRASP (GRASP) Aiex et al. (2003)[20]
Tabu search (TSAB′) Nowicki and Smutnicki

(1996)[6]
Tabu search method guided by
SB (TSSB)

Ferdinando Pezzella et al.
(2000)[21]

Guided local search with SB
(SB-GLS)

Balas, E. and Vazacopoulos, A.
(1998) [22]
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Fig. 8 The optimal solution of the LA38 15×15 problem

Table 5 Results of the 15 tough FT, LA and ABZ problems

Problem Size LB Best Average Worst S.D. n-opt t-opt

FT10 10×10 930 930* 930 930 0 20/20 12.6
FT20 20×5 1165 1165* 1166.05 1178 3.2 18/20 37.5
LA21 15×10 1046 1046* 1052.4 1059 3.6 1/20 109
LA24 15×10 935 935* 941.6 946 3.5 1/20 186
LA25 20×10 977 977* 981.95 984 2.5 3/20 156
LA27 20×10 1235 1236 1252.35 1264 8.3 – –
LA29 20×10 1152 1162 1177 1191 8.4 – –
LA36 15×15 1268 1268* 1279.6 1291 5.5 1/20 394
LA37 15×15 1397 1397* 1399.1 1411 4.1 12/20 228
LA38 15×15 1196 1196* 1203.5 1215 4.8 3/20 222.7
LA39 15×15 1233 1233* 1240.15 1249 2.6 1/20 252
LA40 15×15 1222 1224 1233.25 1242 5.6 – –
ABZ7 20×15 656 666 671.4 678 3.1 – –
ABZ8 20×15 665(645) 672 680.8 690 4.9 – –
ABZ9 20×15 679(661) 682 688.9 695 3.9 – –

*The optimal solutions were found by our algorithm
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Table 6 Computational results of the 15 tough FT, LA and ABZ problems

Balas, E.(1998)

Prob. Size LB Our HGA best GRASP HGA TSSB SB-GLS2 SB-GLS5 TSAB′

FT10 10×10 930 930 930 930 930 930 930 930
FT20 20×5 1165 1165 1165 1165 1165 1165 1165 1165
LA21 15×10 1046 1046 1057 1046 1046 1048 1046 1047
LA24 15×10 935 935 954 953 938 937 935 939
LA25 15×10 977 977 984 986 979 977 977 977
LA27 20×10 1235 1236 1269 1256 1235 1240 1235 1236
LA29 20×10 1152 1162 1203 1196 1168 1164 1164 1160
LA36 15×15 1268 1268 1287 1279 1268 1268 1268 1268
LA37 15×15 1397 1397 1410 1408 1411 1397 1397 1407
LA38 15×15 1196 1196 1218 1219 1201 1198 1196 1196
LA39 15×15 1233 1233 1248 1246 1240 1233 1233 1233
LA40 15×15 1222 1224 1244 1241 1233 1234 1224 1229
ABZ7 20×15 656 666 692 – 666 671 664 670
ABZ8 20×15 665(645) 672 705 – 678 676 671 682
ABZ9 20×15 679(661) 682 740 – 693 694 679 695
MRE 0.28 2.58 1.21 0.69 0.61 0.22 0.64

Table 7 Computational results of the ORB benchmarks

Our HGA Balas, E(1998)

Prob. Size LB Best Average t-opta GRASP TSSB SB-GLS2 SB-GLS5 TSAB′

ORB01 10×10 1059 1059* 1062.2 19.8 1059 1064 1059 1059 1059
ORB02 10×10 888 889 889.2 – 888 890 888 888 890
ORB03 10×10 1005 1005* 1005 22.2 1005 1013 1005 1005 1005
ORB04 10×10 1005 1005* 1008.6 15.5 1011 1013 1019 1013 1011
ORB05 10×10 887 887* 888.7 20.3 889 887 889 889 889
ORB06 10×10 1010 1010* 1014.1 22.5 1012 – 1010 1010 1013
ORB07 10×10 397 397* 399.4 8.6 397 – 397 397 397
ORB08 10×10 899 899* 899.5 15.8 899 – 899 899 913
ORB09 10×10 934 934* 934 6.9 934 – 934 934 941
ORB10 10×10 944 944* 944 15.3 944 – 944 944 946
MRE 0.01 0.10 0.10 0.87 0.10 0.38

*The optimal solutions were found by our algorithm
a t-opt indicates the average cpu time which the optimal schedule are obtained

Table 8 Computational results of the YN benchmarks

Our HGA Balas, E.(1998)

Prob. Size LB Best Average SB-GLS2 SB-GLS5 TSAB′

YN1 20×20 888 (826) 889 906.4 896 893 897
YN2 20×20 909 (861) 917 923.9 918 911 924
YN3 20×20 893 (827) 898 905.8 901 897 901
YN4 20×20 968 (918) 974 984.7 990 977 988
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