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Abstract Replacement problems of deteriorating systems
have been extensively studied. Typically, the time between
failures is characterized by lifetime distribution in which the
parameters are estimated from historical data. On the other
hand, in most cases, the work focuses on determining the
optimal replacement schedule by assuming that model
parameters are constant. Here, the issues arising from the use
of estimated parameters are studied and the results are applied
to opportunistic replacement. Also, a graphical approach is
proposed to obtain the confidence limits for the optimal
replacement time, considering the key parameters of the two
popular replacement models, namely, the age replacement
model and the block replacement model. The applications of
the proposed confidence interval are presented, namely,
determination of the window of opportunity for minimum
cost, maintenance scheduling given erratic customer demand,
and opportunistic maintenance for multi-component systems.

Keywords Preventive maintenance planning .

Age replacement policy . Block replacement policy .

Optimal replacement interval . Confidence limits .

Opportunistic replacement

Notations
R(t) Reliability of the system over time t
F(t) Unreliability of the system over time t, F (t) =

1 – R(t)

f (t) Failure density of the system, f (t) = - R’(t)
h(t) Hazard rate of the system, h(t) = f (t) / R(t)
H(T) Cumulative hazard rate of the system, H Tð Þ ¼R T

0 h tð Þdt
n Number of failure in one preventive replacement

cycle
F (n)(T) n-fold Stieltjes convolution of F(T) with finite

mean
M(T) Renewal function of block replacement policy:

expected number of failures on [0, T], M Tð Þ ¼P1
n¼1 F

nð Þ Tð Þ � F Tð Þ
m(T) Renewal density of block replacement policy,

m(T) ≡ dM(T) / dT ≈ f (T)
μ MTTF of the system, m ¼ R10 R tð Þdt
Cp Cost of system preventive replacement
Cf Cost of system failure
Cr Cost ratio of system preventive replacement to

cost of system failure
C(T) Total cost per unit time when T is the replacement

time
η Weibull distribution scale parameter
β Weibull distribution shape parameter
β* Shape parameter that corresponds to minimum T*

for a given Cr

T*
η

Cost-optimal time between preventive
replacements

T* Normalized cost-optimal time between preventive
replacements, T* ¼ T*η

.
η

1 Introduction

In today’s manufacturing companies, there is a growing
dependence upon smoothing operations of systems consist-

Int J Adv Manuf Technol (2009) 40:203–213
DOI 10.1007/s00170-007-1315-2

T. Halim (*) : L.-C. Tang
Department of Industrial & Systems Engineering, National
University of Singapore,
Singapore, Singapore
e-mail: tonyhalim@nus.edu.sg
URL: http://www.ise.nus.edu.sg

L.-C. Tang
e-mail: isetlc@nus.edu.sg



ing of software, people, and equipment. Failure of some of
these operations often leads to grave economic losses.
Recognizing the importance of ensuring failure-free and
economically viable operations, comprehensive mainte-
nance programs have been put in place for many systems
in which preventive maintenance (PM) is a key component.
However, maintenance is often a business process that has
not been optimized, and thus considered a liability of
business operations (Jardine and Tsang [1]). As highlighted
by Tu et al. [2], effective control of maintenance cost can be
used as a competitive edge over other competitors.

Over the years, many PM models have been developed,
based on economics, reliability and operational consider-
ations (Tam et al. [3]; Lai et al. [4]). Optimal maintenance
schedules have been derived using techniques ranging from
fundamental renewal process (Barlow and Proschan [5];
Jardine [6]) to the more recent genetic algorithms (Shum
and Gong [7], Ilgin and Tunali [8]; Robert and Shahabudeen
[9]; Marsequerra and Podofillini [10]). In these models, one
of the key decision variables is the time interval after which
PM should be performed. For example, the recent survey by
Wang [11] reveals that the central theme in most research
publications is to determine the optimal PM interval under
various maintenance policies.

Common parameters in these PM models are the cost of
preventive replacement, Cp, and the cost of failure, Cf. Cp is
usually easy to quantify as it typically consists of the cost of
new replacement component and installation cost. But, Cf

cannot be easily determined as it is related to the cost due to
loss in production, downstream delay, etc. As a result, it is
often an estimated value from repair cost data. Another
source of inaccuracy comes from the inter-failure time

model and its parameters. In most existing literature, it is
assumed that these parameters are known; however, in
practice, they must be estimated from failure data. As a
result, the optimal PM interval computed is exposed to
sampling risk as the repair cost and failure data used for
estimation are only incidents experienced thus far. In many
practical situations, these data are highly censored due to
issues related to data collection and unobserved failures.
Fortunately, this sampling risk can suitably be addressed
through the use of statistical confidence interval in which
the uncertainty of the cost and parameter estimates are
conveyed through ranges of possible values, also known as
interval estimates, for the unknown cost and parameters. In
essence, sampling variations in cost and parameter esti-
mates are transmitted to that of the optimal PM interval and
the latter can be computed from those of the former. In this
paper, we present a graphical approach to obtaining the
confidence interval for the optimal PM interval.

Publications dealing with the effect of sampling vari-
ability on optimal replacement interval are scarce. Leger
and Cleroux [12] used the bootstrap methodology of Efron
[13] to construct a confidence interval for the actual cost of
using a given nonparametric estimate of the optimal age
replacement strategy. Gaver et al. [14] addressed the issue
of Weibull parameters variability by conducting sensitivity
studies on the long-run average costs of the system. So far,
there appears to be no work that derives the confidence
interval for the optimal PM interval, considering the
variability involved in estimating the requisite input
parameters.

In this paper, we derive the confidence interval of the
optimal PM interval under two common replacement

Fig. 1 Age replacement schematic

Fig. 2 Block replacement schematic
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policies, namely age replacement policy and block replace-
ment policy (Wang [11]; Yoo et al. [15]). Based on the
concept of equivalence set (Lehmann [16]), the confidence
interval for the optimal PM interval is constructed from those
of the parameters involved in determining the point estimate
of the PM interval. As confidence interval is dependent on
the sample size and the sampling distribution of the statistics
used in estimating the parameters, it only captures variability
due to estimation, and does not address possible error in
model selection. For illustration purposes, it is assumed that
the inter-failure time follows a two-parameter Weibull
distribution in which the parameters are estimated.

There are many applications related to the use of
confidence interval for the optimal PM interval. For
example, from the confidence intervals, a simple opportu-
nistic PM strategy for multiple components systems can
easily be determined.

This paper is organized as follows. In the following section,
popular replacement models whose failure density function
follows that of a Weibull distribution with η=1, are reviewed.
For each type of model, the relationship between Cr, T

* and

β is derived mathematically and then depicted graphically.
Exploiting the unique graphical property, the confidence
limits for T* and T*

η
are derived. Finally, two practical

scenarios are presented in which the results are useful.

2 Preliminary results

In this section, the common replacement models—age
replacement and block replacement—are reviewed. The
models are optimized based on minimization of cost per
unit time that is determined using the renewal-reward
theorem (Tijms [17]). This is followed by illustrating the
case of Weibull failure distribution, and reviewing the
relationship between its parameters and replacement model
parameters.

In age replacement policy, as proposed by Barlow and
Proschan [5], a system is replaced upon failure or after T*

units of operation, whichever comes first. This is illustrated
in Fig. 1, which shows the cost that will be incurred during
failure and replacement.

Table 1 Replacement model and key expressions

Age replacement Block replacement

Replacement cost per unit time, C(T) where Cr

= Cf / Cp

1þ Cr�1ð Þ F Tð Þð Þ½ �R T

0
1�F tð Þ½ �dt

1þCrM Tð Þ
T

Functional optimal replacement interval, T*;
d C Tð Þð Þ

dT ¼ 0
h T �ð ÞR T�

0 1� F tð Þ½ �dt � F T �ð Þ ¼ 1
Cr�1 T�f T�ð Þ � F T�ð Þ ¼ 1

Cr

Functional T* for the case of a two-parameter
Weibull function with η=1

b T�ð Þ b�1ð ÞR T �

0 exp � tð Þb
on
dt þ exp � T�ð Þb

on
¼ Cr

Cr�1 1þ b T�ð Þb
h i

exp � T�ð Þb
n o

¼ 1þ 1
Cr

Fig. 3 Age replacement: Be-
haviour of Cr, T

* and β using
Cr as x-axis
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Figure 2 illustrates the cost concept of block replace-
ment. For every T* units of operation, the system is
replaced by a new one from the same population. At each
failure, a new one also replaces the system. However, the
count down to the next preventive replacement is not reset
at each unscheduled failure replacement. It is assumed that
the probability of having more than one failure in one
replacement cycle is negligible, thus the renewal function,
M(T), can be approximated by F(T) (Gertsbakh [18]).

Table 1 summarizes the cost expression for each model
and readers can refer to Gertsbakh [18] for a detailed
derivation. For illustration purpose, the inter-failure times
are assumed to follow a two-parameter Weibull distribution

with increasing failure rate. Without loss of generality and
simplicity, Weibull scale parameter is set to η=1, so that the
resulting optimal replacement interval is now normalized by
the actual scale parameter, η. The relationship between cost
of failure replacement, Cr, the optimal replacement interval
T* and the distribution parameter β is shown in Table 1.

3 Methodology

Optimal replacement time is a function of Cr and β as
shown in Table 1. Theoretically, by the principle of
equivariant confidence sets (Lehmann [16]), the confidence

Fig. 4 Age replacement: Be-
haviour of Cr, T

* and β using β
as x-axis

Fig. 5 Block replacement: Be-
haviour of Cr, T

* and β using Cr

as x-axis
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limits for T* can be constructed from those of Cr and β.
Closed form solution for the confidence limits can be
expressed easily if T* can be explicitly evaluated in closed
form. However, this is not the case for both the replacement
models. Therefore, the alternative approach is to numeri-
cally integrate and graph the functional T* of the replace-
ment models. The confidence limits for T* are then
obtained by projecting the confidence bounds for Cr and
β on the graph. In this section, their graphical relationship
will be shown and later exploited to derive the confidence
limits for T*.

3.1 Graphing Cr, T
* and β

The functional T* contour plots of the age replacement
model on two different axes (Figs. 3 and 4) reveal some
interesting and useful properties. It can be seen that for each
(β, Cr) there exists a unique value of T*. Similarly, (β, T*)
uniquely determines Cr. Figure 3 reveals that for each
constant β, T* is monotonic decreasing with respect to Cr.
This unique relationship between Cr, T

* and β facilitates the
derivation of the confidence limits for T* from the
confidence limits for Cr. Figure 3 shows non-monotonic

Fig. 6 Block replacement: Be-
haviour of Cr, T

* and β using β
as x-axis

Fig. 7 Graphical representation of Eqs. (8) and (9)
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relationship between T* and β. Also, Cr is not monotonic in
β. This is illustrated by the curve belonging to β=1.2,
where it intersects through other family of curves.

Figure 4 confirms that for each constant Cr, T
* is not

monotonic in β. Similarly, for each constant T*, Cr is not
monotonic in β. Nevertheless, for any interval of β, the
minimum T* always occurs at either of the extremes.

Similarly, the functional T* contour plots of the block
replacement model are shown in Figs. 5 and 6. It is
observed that the relationship between Cr, T

* and β exhibits
the same graphical characteristic for both the replacement
models. This unique characteristic will be utilized in
determining the confidence limits of T*.

3.2 Confidence limits for Cr, β and η

In practice, it is difficult to estimate the value of Cf.
However, when historical data of Cf for a sufficiently large
sample is available and Cp is a constant, one can
approximate the 100(1-α) % confidence interval for Cr

thus:

Cr;Cr

� � � bCr � Zα=2
sffiffiffi
n

p ; bCr þ Zα=2
sffiffiffi
n

p
� �

ð1Þ

where, Zα/2 is the (1-α/2) fractile of the standard normal
variate, s the sample standard deviation and bCr the average
cost ratio.

For large, uncensored data, the upper and lower
confidence limits (β and β) of β can be obtained as follows,
using the following equation of Abernethy et al. [19] for the
approximate calculation of 100(1-α) % confidence interval:

β;β
h i

� bβ exp � 0:78Zα=2ffiffiffi
n

p
� �

; bβ exp
0:78Zα=2ffiffiffi

n
p

� �� �
ð2Þ

where, Zα/2 is the (1-α/2) fractile of the standard normal
variate and bb the estimated Weibull shape parameter, which
can be derived from probability plotting.

Fig. 8 Graphical representation of Eqs. (10) and (11)

Table 2 Failure time data (in ascending order)

Relay failure times (in thousand switch cycle)

3647.9 13692.9
4708.4 14453.1
5123.1 14462.4
6556.3 15472.1
7206.7 16906.7
7790.5 18594.4
8550.4 18661.8
8804.5 19068.5
8879.9 19764.7
10466.4 19777.3
10479.4 20007.9
10611.5 22817.2
11627 23174.2
12046.3 23274.8
12418.7 24651.9

Table 3 Key parameters of example 1 and their confidence limits

β η (Thousand of switch cycle)

Estimate Lower C.L Upper C.L Estimate Lower C.L Upper C.L
2.5 1.98 3.16 15585.5 13738.63 17680.64
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Applicable, as is Eq. (2), to large uncensored data,
Abernethy et al. [19] also gives the 100(1-α) % confidence
interval for the characteristic life η as shown in Eq. (3).

η; η
h i

� ⌢η exp � 1:05Zα=2bβ ffiffiffi
n

p
 !

;
⌢η exp

1:05Zα=2bβ ffiffiffi
n

p
 !

�
"

ð3Þ

where, Zα/2 is the (1-α/2) fractile of the standard normal
variate and the estimated Weibull scale parameter, which
can be derived from probability plotting.

3.3 Confidence limits for T* and T�
h

Treating T* as the statistic of interest, one can write thus:

L1 T� : β;Crð Þ ¼ β T�ð Þ β�1ð ÞZ T�

0
exp � tð Þβ

n o
dt þ exp � T �ð Þβ

n o
� Cr

Cr � 1

ð4Þ

L2 T � : b;Crð Þ ¼ 1þ b T�ð Þb
h i

exp � T�ð Þb
n o

� 1

� 1

Cr
ð5Þ

where, Eqs. (4) and (5) apply to age and block replacement
model, respectively.

Previously, it has been shown that all the three
replacement models share the same relational traits between
Cr, T

* and β. Hence, it is now possible to generalize the
approach for determining the confidence limits for T*.

By utilizing the unique and monotonic relationship
between T* and Cr for each β, one can determine the upper
and lower confidence limits for T*; T

�
;T �� 	

can be
obtained using CrandCr, respectively. However, the rela-
tionship between T* and β, given Cr, follows a concave
function. Therefore, combining the relationship between Cr,
T* and β, and by principle of equivariant, the 100(1-α) %
confidence limits of T* can be expressed mathematically
thus:

T� ¼ argmin T� : Li T� : β;Cr

� 	 ¼ 0

 �

; 8i ¼ 1 & 2 ð6Þ

T
� ¼ argmax T� : Li T � : β;Crð Þ ¼ 0f g; 8i ¼ 1 & 2 ð7Þ

For each curve, in Figs. 4 and 6, that corresponds to a
constant Cr, there exists a β

* that gives the minimum T*. In
particular, when b � b�, the unique solutions of Eqs. (6)

Fig. 9 Graphical solution to
example 1

Table 4 90% Confidence limits for T* under different scenarios of Example 1

Case η=1 h � bh h � h; h
� �

bT� T � T
� bT�

h T�
h T

�
h

bT�
h T�

h T
�
h

(I) Bounded β with constant Cr 0.167 0.129 0.216 2595.517 2008.883 3361.98 2595.517 1770.832 3813.928
(II) Bounded β and Cr 0.167 0.105 0.246 2595.517 1631.075 3833.176 2595.517 1349.345 4348.465
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and (7) are shown graphically in Fig. 7, and mathematically
thus:

T� ¼ T� : Li T � : β;Cr

� 
¼ 0

n o
; 8i ¼ 1 & 2 ð8Þ

T
� ¼ T� : Li T� : β;Cr

� 	 ¼ 0

 �

; 8i ¼ 1 & 2 ð9Þ

Similarly, when b � b�, the unique solutions of Eqs. (6)
and (7) are shown graphically in Fig. 8 and mathematically
thus:

T� ¼ T� : Li T� : β;Cr

� 	 ¼ 0

 �

; 8i ¼ 1 & 2 ð10Þ

T
� ¼ T� : Li T � : β;Cr

� 
¼ 0

n o
; 8i ¼ 1 & 2 ð11Þ

It is assumed that the characteristic life η=1. As η has a
linear scaling effect on T*, the confidence limits for T�

h
are

as shown in Eq. (12), when variability of η is negligible.

T�
h;T

�
h

h i
� bhT�;bhT �� � ð12Þ

Equation (13) gives the confidence limits for T�
h
, taking the

confidence interval of η into consideration.

T�
h;T

�
h

h i
� hT�; hT �� � ð13Þ

4 Illustrative examples

The following examples serve to illustrate the usage of
confidence limits for T* through two common applications.

Example 1 Relays are used in many data acquisition
equipments. As relays are electromechanical devices, they

Table 5 Components’ failure time data (in ascending order)

Component A failure times (days) Component B failure times (days) Component C failure times (days)

35.576 127.413 29.401 180.389 30.078 93.104
42.817 132.012 68.014 182.389 40.752 94.273
48.201 132.889 79.946 205.1 44.355 94.364
55.373 133.512 85.768 227.249 46.395 95.238
69.158 136.137 106.538 234.491 48.003 98.025
75.925 158.988 116.571 236.361 48.806 98.617
80.837 160.469 117.631 239.619 61.883 102.971
82.286 170.664 120.451 251.017 62.312 103.369
83.119 177.785 127.281 270.106 63.827 104.15
90.297 178.758 143.668 277.514 64.002 107.215
94.177 182.181 147.417 303.833 69.294 108.782
95.377 186.489 149.77 314.077 73.579 117.42
105.673 191.408 154.627 345.372 73.898 118.536
107.7 199.818 156.196 377.557 73.974 123.454
114.738 214.809 77.358 124.801
121.307 218.889 83.14 134.148
122.081 253.689 87.545 135.996
122.41 259.501 88.08 155.166

89.715 158.21
90.257 175.463

Table 6 Key parameters of example 2 and their confidence limits

Component β η (days)

Estimate Lower C.L Upper C.L Estimate Lower C.L Upper C.L

A 2.50 2.02 3.10 149.40 133.15 167.63
B 2.30 1.80 2.93 211.80 183.78 244.09
C 3.00 2.45 3.67 102.50 93.58 112.27
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eventually wear out. A relay operates on a continuous basis
(7 days a week, 24 hours a day). The switching frequency is
a better measure of wear and tear than calendar time. The
excellent equipment reliability information system makes
available historical data for the past 3 years. The sorted
failure data are shown in Table 2. From the probability plot
of historical failure data, it is observed that the two-
parameter Weibull life distribution best describes it. The
estimated value and 90% confidence interval of the Weibull
parameters are given in Table 3.

Assuming that the age replacement model is used as the
preventive replacement policy and the estimated value of Cr

is 60, the normalized optimal replacement interval, T*, is
0.1665. Including the effect of bh ¼ 15585:5k switch cycle,
the optimal replacement interval, T�

h
, is 2595.5k switch

cycle. However, this may not be the optimal replacement
interval, because the estimated value of Cr and β may not
reflect the true value of the component.

The relationship between Cr, T
* and β is shown in Fig. 9.

From Fig. 9, using the proposed graphical approach, one
can derive the confidence limit for T*. Table 4 gives the
possible 90% confidence limits of T* and T�

h
for the case

when Cr is constant, and when it is bounded within a range
of likely values, like [40, 90] as in this case.

Through comparing the initial estimate of T�
h ¼ 2595:5k

switch cycle, which was obtained without considering the
varying effect of Cr and β , with that of Table 4, it can be
seen that a large disparity in replacement interval is caused
by ignoring the confidence limits for Cr and β.

As the confidence interval for T�
h

provides the PM
interval range, executing the PM is more flexible. This is
useful especially in the manufacturing scenario when an
urgent unplanned customer order arrives at a time that
might overlap with the scheduled PM. If the job can be
completed within the time frame T �

h; T
�
h

h i
, PM can be

delayed up to T
�
h, thus allowing the job to be completed

without interruption.

Example 2 Based on real-life lift failure data, the three most
common types of component replacement failure are car
light, LED display and indicator/button light. Table 5 shows
the sorted historical data of failure time for each component
over the past 5 years. It has been shown that the
components’ inter-failure time adheres to the two-parameter
Weibull distribution. For the sake of simplicity, the car
light, LED display and indicator/button light are designated
as component A, B and C, respectively. The estimated
value and 90% confidence interval of the Weibull param-

Fig. 10 Deriving confidence
limits for T* of each component

Table 7 90% Confidence limits for T* under different scenarios of example 2

Component η=1 h � bh h � h; h
� �

bT� T � T
� bT�

h T �
h T

�
h

bT�
h T�

h T
�
h

A 0.167 0.132 0.211 24.880 19.667 31.529 24.880 17.528 35.376
B 0.152 0.118 0.199 32.123 24.997 42.113 32.123 21.690 48.535
C 0.204 0.163 0.252 20.905 16.680 25.86 20.905 15.229 28.324
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eters for each component are given in Table 6. The
estimated value of Cr is 60 and equal.

Assuming that the age replacement model is used, the
normalized optimal replacement time interval, T*, is 0.167,
0.152 and 0.204 for components A, B and C, respectively.
Including the effect of their individual bh, the optimal
replacement interval (in days) is 24.88, 32.123 and 20.905
for components A, B and C, respectively.

Using the confidence limits for β, one can derive the
confidence limits for T* of each component as illustrated in
Fig. 10. Confidence limits for T* and T�

h
of each

component, including the effect of their individual bh, are
given in Table 7.

The spread of confidence bounds for T �
h

of each
component is shown in Figs. 11 and 12. The confidence
bounds for T�

h
in Fig. 11 assumes h � bh while that in

Fig. 12 assumes h � h; h
� �

.

There are regions where each component’s confidence
bounds for T�

h
overlap each other. This enables the PM to

be carried out concurrently for all the three components,
thus resulting in lesser scheduled down time. In this
example, the opportunistic replacement time interval is
[24.997, 25.860] days when one assumes that h � h or
[21.690, 28.324] days when one assumes that h � h; h

� �
.

5 Conclusions

A graphical method is proposed for determining the
confidence interval for the optimal replacement interval,
T*, under age replacement and block replacement models in
which the inter-failure times follow a two-parameter
Weibull distribution. If one is armed with the confidence

Fig. 11 Confidence limits for T�
η of each component when η � bη

Fig. 12 Confidence limits for T�
η of each component when η � η; η

h i
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limits for T*, scheduling PM can be more flexible. When
faced with multiple components replacement situation, an
opportunistic replacement strategy can easily be formulated
based on the confidence intervals for T* of these compo-
nents. Although the current replacement models seek to
optimize the cost, the method proposed here can be easily
extended to those aimed at maximizing availability.

Acknowledgment This work was done at the National University of
Singapore and was supported by the Singapore Ministry of Educa-
tion’s AcRF Tier 1 funding (R-266-000-035-112).

References

1. Jardine AKS, Tsang AHC (2006) Maintenance, replacement, and
reliability: theory and applications. CRC/Taylor & Francis, Florida

2. Tu PYL, Yam R, Tse P, Sun AOW (2001) An integrated
maintenance management system for an advanced manufacturing
company. Int J Adv Manuf Technol 17(9):692–703

3. Tam ASB, Chan WM, Price JWH (2007) Maintenance scheduling
to support the operation of manufacturing and production assets.
Int J Adv Manuf Technol 34(3/4):399–405

4. Lai MT, Shih W, Tang KY (2006) Economic discrete replacement
policy subject to increasing failure rate shock model. Int J Adv
Manuf Technol 27(11/12):1242–1247

5. Barlow HE, Proschan F (1965) Mathematical theory of reliability.
Wiley, New York

6. Jardine J (1985) Equipment reliability and maintenance. Euro J of
Operational Res 19(2):285–296

7. Shum YS, Gong DC (2007) The application of genetic algorithm
in the development of a preventive maintenance analytical model.
Int J Adv Manuf Technol 32(1/2):169–183

8. Ilgin MA, Tunali S (2006) Joint optimization of spare parts
inventory and maintenance policies using genetic algorithms. Int J
Adv Manuf Technol DOI 10.1007/s00170-006-0618-z

9. Robert TP, Shahabudeen P (2004) Genetic algorithms for cost
effective maintenance of a reactor–regenerator system. Int J Adv
Manuf Technol 23(11/12):846–856

10. Marsequerra M, Zio E, Podofillini L (2002) Condition-based
maintenance optimization by means of genetic algorithms and
Monte Carlo simulation. Reliab Eng Syst Safe 77:151–166

11. Wang H (2002) A survey of maintenance policies of deteriorating
systems. Euro J Operational Res 139(3):469–489

12. Leger C, Cleroux R (1992) Nonparametric age replacement –
Bootstrap confidence-intervals for the optimal cost. Operations
Res 40:1062–1073

13. Efron B (1979) Bootstrap methods: Another look at the Jackknife.
Ann Stat 7:1–26

14. Gaver DP, Jacobs PA, Dudenhoeffer DD (1998) Failure, repair
and replacement analysis of a navy subsystem: case study of a
pump. Appl Stoch Models Data Anal 13:369–376

15. Yoo YS, Gong DC (2001) Optimal joint spare stocking and block
replacement policy (cost modelling of spare stocking and block
replacement). Int J Adv Manuf Technol 18(12):906–909

16. Lehmann EL (1986) Testing statistical hypotheses. Wiley, New
York

17. Tijms HC (1994) Stochastic models: an algorithmic approach.
Wiley, New York

18. Gertsbakh I (2001) Reliability theory: with applications to
preventive maintenance. Springer, Berlin Heidelberg New York

19. Abernethy RB, Breneman JE, Medlin CH, Reinman GL (1983)
Weibull analysis handbook. U.S. Air Force AFWAL-TR-83-2079

Int J Adv Manuf Technol (2009) 40:203–213 213

http://dx.doi.org/10.1007/s00170-006-0618-z

	Confidence interval for optimal preventive maintenance interval and its applications in maintenance planning
	Abstract
	Introduction
	Preliminary results
	Methodology
	Graphing Cr, T* and β
	Confidence limits for Cr, β and η
	Confidence limits for T<Superscript>*</Superscript> and equation(IEq18)...

	Illustrative examples
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


