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Abstract In this research, a new integrated neural-
network-based approach is presented for the prediction
and optimal selection of process parameters in die sinking
electro-discharge machining (EDM) with a flat electrode
(planing mode). A 3–6–4–2-size back-propagation neural
network is developed to establish the process model. The
current (I), period of pulses (T), and source voltage (V) are
selected as network inputs. The material removal rate
(MRR) and surface roughness (Ra) are the output para-
meters of the model. Experimental data were used for
training and testing the network. The results indicate that
the neural model can predict process performance with
reasonable accuracy, under varying machining conditions.
The effects of variations of the input machining parameters
on process performance are then investigated and analyzed
through the network model. Having established the process
model, a second network, which parallelizes the augmented
Lagrange multiplier (ALM) algorithm, determines the
corresponding optimum machining conditions by maximiz-
ing the MRR subject to appropriate operating and pre-
scribed Ra constraints. The optimization procedure is
carried out in each level of the machining regimes, such
as finishing (Ra≤2 μm), semi-finishing (Ra≤4.5 μm), and
roughing (Ra≤7 μm), from which, the optimal machining
parameter settings are obtained. The optimization results

have also been discussed, verified experimentally, and the
amounts of relative errors calculated. The errors are all in
acceptable ranges, which, again, confirm the feasibility and
effectiveness of the adopted approach.
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1 Introduction

Amongst the nonconventional machining processes, which,
nowadays, find a wide range of applications, electro-
discharge machining (EDM) is considered to be one of
the most important processes for machining intricate and
complex shapes in various electrically conductive materials,
including high-strength, temperature-resistant (HSTR)
alloys, especially in the aeronautical and automotive
industries. In EDM, controlled discrete electrical discharges
(sparks) provided by a generator, between a tool (electrode)
and a work piece submerged in a liquid dielectric medium,
are used to remove material by melting and vaporizing the
surface layers of the work piece. Since EDM uses high-
energy electro-thermal erosion (instead of mechanical
cutting forces) and there is no physical contact between
the tool and the work piece, the process is not restricted by
physical and metallurgical properties of the work material,
such as strength, toughness, microstructure, etc. Thus,
slender and fragile tasks can also be machined conveniently,
making the process more versatile.

Comprehensive qualitative and quantitative analysis of
the material removal mechanism and, subsequently, the
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development of model(s) of material removal are not only
necessary for a better understanding of the process, but are
also very useful in parametric optimization, process
simulation, operation and process planning, parametric
analysis (i.e., understanding the influence of various
process parameters on the process performance measures),
verification of the experimental results, and improving the
process performance by implementing/incorporating some
of the theoretical findings [1].

The successful integration of optimization techniques
and adaptive control of EDM depends on the development
of proper relationships between output parameters and the
controllable input variables, but the stochastic and
complex nature of the process makes it too difficult to
establish such relationships. The erosion by an electric
discharge involves phenomena such as heat conduction,
melting, evaporation, ionization, formation, and collapse
of gas bubbles and energy distribution in the discharge
channel. These complicated phenomena, coupled with the
surface irregularities of electrodes, interactions between
two successive discharges, and the presence of debris
particles, make the process too abstruse, so that complete
and accurate physical modeling of the process has not
been established yet [2, 3].

Most previous theoretical studies have been concerned
with microscopic metal removal arising from a single spark,
the effects being modeled from heat conduction theory and
thermodynamic considerations [4–9]. Although, the models
are physically based, due to the random distribution of
electrical discharges in the gap space and the overlapping
effects of two consecutive sparks on the work piece surface,
as well as inevitable assumptions and simplified
approaches, which, in turn, push the physical model far
away from reality, they can not be generalized to the real
multi-spark state of the EDM process [3].

The difficulties of EDM physical modeling have
motivated the use of data-driven or empirical methods in
which the process is analyzed using statistical techniques.
Ghoreishi and Atkinson [10, 11] employed statistical
modeling and process optimization for the case of EDM
drilling and milling. They compared the results of
vibratory EDM, rotary EDM, and a combination of these
(vibro-rotary EDM), and concluded that the vibro-rotary
electrode compared with the rotary or vibratory cases
alone gives satisfactory results when the most usual
combination of requirements were considered in an
optimization procedure. In another study, Wang and Tsai
[12, 13] proposed semi-empirical models for the material
removal rate (MRR), surface finish, and tool wear on the
work piece and the tool for various materials in EDM,
employing dimensional equations based on relevant
process parameters for the screening experiments and the
dimensional analysis. Although their semi-empirical

models involve thermal, physical, electrical, and material
properties of the work piece and the tool in comparison
with the other empirical models proposed earlier, the error
analysis between predictions and experimental results
showed that the models, especially the MRR model, have
reasonable accuracy only if the MRR is large, i.e., should
the process inputs be in the range of yielding large MRR,
the model will be trustable. This reduces the reliability and
versatility of their models for use under various machining
conditions.

In general, while statistical techniques are useful for
identifying general trends in process inputs and outputs,
they are subject to a number of disadvantages. Fitting
curves to nonlinear data needs the selection of transforms,
which, inevitably, is subjective and becomes very difficult
when multiple inputs are involved [14]. Also, regression
analysis is not well suited to modeling noisy data. These
considerations have led to the identification of the neural
network approach, which overcomes these difficulties.

Artificial neural networks (ANNs), as one of the most
attractive branches in artificial intelligence, has the potential
to handle problems such as modeling, estimating, predic-
tion, optimization, diagnosis, and adaptive control in
complex nonlinear systems [15]. The capabilities of ANNs
in capturing the mathematical mapping between input
variables and output features are of primary significance
for modeling machining processes. Kao and Tarng [16] and
Liu and Tarng [17] have employed feed-forward neural
networks with hyperbolic tangent activation functions and
abductive networks for the classification and on-line
recognition of pulse types. Based on their results, discharge
pulses have been identified and then used for controlling
the EDM machine. Indurkhya and Rajurkar [18] developed
a 9–9–2-size back-propagation neural network for orbital
EDM modeling. Having compared the results of the neural
network model with estimates obtained via multiple
regression analysis, they concluded that the neural model
is more accurate and also less sensitive to noise included in
the experimental data. Although the various effects of
changes of input parameters on the process outputs were
analyzed and interpreted through the network model, they
did not present any way of determining optimal input
conditions to optimize the process for an arbitrary desired
surface roughness (Ra). Tsai and Wang [19, 20] applied
various neural network architectures for the prediction of
the MRR and Ra in EDM. Compared with their previous
semi-empirical models reported in [12, 13], the selected
networks had considerably lower amounts of error, but,
nevertheless, the neural models have a lack of generality,
since the networks were trained to have just one output of
either the MRR or Ra. Therefore, an inadequate model was
obtained to estimate both the MRR and Ra simultaneously.
Also no discussion was paid to the determination of
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operating conditions leading to optimum machining
performance.

The purpose of this paper is to present an efficient and
integrated approach for the determination of appropriate
machining parameters yielding the objective of maximum
MRR, and, hence, the shortest machining time, which is
very important for the time-consuming EDM process,
whilst at the same time, satisfying the requirements of Ra
and side constraints on input parameters. First, a back-
propagation neural network is developed to establish the
process model. Training and testing of the network are
performed using experimental data. As a result of
modeling, the effects of changes of process input
parameters on output features are illustrated and studied.
The modeling phase is followed by an optimization
procedure, during which, an augmented Lagrange multi-
plier (ALM) network is used to determine optimal input
parameters for the maximum MRR in each machining
regime of finishing, semi-finishing, and roughing. The
obtained optimal input settings are also interpreted and
verified experimentally. Finally, our concluding remarks
are outlined.

2 Back-propagation neural network

Since the objective is to evolve a model that relates selected
inputs with outputs, so, the back-propagation (BP) neural
network constitutes an excellent tool due to its universal
approximation capabilities [21]. The BP network is a
multiple-layer network with an input layer, output layer,
and some hidden layers between the input and output
layers.

Before practical application, the network has to be
trained so that the free parameters or connection weights
are determined, and the mapping between inputs and
outputs is accomplished. The training method is called
back-propagation [22], a supervised learning technique,
which generally involves two phases through different
layers of the network; a forward phase and a backward
phase. In the forward phase, input vectors are presented and
propagated forward to compute the output for each neuron.
During this phase, synaptic weights, which are all randomly
set to begin with, are fixed and the mean square error
(MSE) of all of the patterns in the training set is calculated.

The backward phase is an iterative error reduction
performed in the backward direction from the output layer
to the input layer. Usually, the gradient descent method,
adding a momentum term, is used to minimize the error,
MSE, as fast as possible. These two phases are iterated until
the weight factors stabilize their values and the mean square
error is at a minimum or an acceptably small value.

More details about the mechanism of the training process
can be found in [15] and [22].

3 Experimental details

In order to obtain different machining process parameters
and output features for the training and testing of the
neural network, a series of experiments was performed on
a Pishtazan electro-discharge machine (model SP120A)
equipped with an iso-frequency pulse generator. A
schematic drawing and photograph of the experimental
apparatus is shown in Fig. 1.

At first, some preliminary tests were carried out to
determine the stable domain of the machine parameters and
also the different ranges of process variables. Based on
preliminary test results and working characteristics of the

Fig. 1a, b The experimental equipment. a Schematic drawing. b
Photograph of the electro-discharge machining (EDM) machine

Table 1 Pertinent process parameters and their levels for machining
experiments

Process parameters Operating conditions

Discharge current, I (A) 2, 5, 8, 11, 14, 17
Period of pulses, T (μs) 50, 100, 200, 500
Source voltage, V (v) 35, 50, 60, 70
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EDM machine, the discharge current (I), period of pulses
(T), and source voltage (V) were chosen as the independent
input parameters. During these experiments, by altering the
values of the input parameters to different levels, stable
states of the machining conditions have also been specified.
Accordingly, the main experiments were conducted with six
levels of discharge current, four levels of period of pulses,
and four levels of source voltage. Table 1 shows the input
process variables and their levels in the experiments.

Throughout the experiments, BD3 steel and commercial
copper were used as the work piece and tool electrode
materials, respectively. The work pieces were heat-treated
up to 58 RC to establish real and practical situations in all
tests. Also, the dielectric liquid used was kerosene and the
positive terminal of the power supply was linked with the
tool electrode (tool: positive polarity, work piece: negative
polarity). Particular attention was paid to ensure that the
operating conditions permitted the effective flushing of
machining debris from the working region. Thus, the
experiments were done in the planing process mode, in
which the bottom surface of the electrode is flat and
parallel to the work piece surface. Also, the diameter of
the cylindrical electrode was equal to the diameter of the
round bar work piece and was chosen to be 12 mm.

To achieve validity and accuracy, each test was repeated
three times. The MRR and Ra were selected as the
performance characteristics or process outputs, since the
performance of any machining process is evaluated in terms
of these two measures. Then, the mean values of the three
response measurements (MRR and Ra) were used as the
output for each set of parameters. The machining time
considered for each test was dependent on the discharge
current and much time was allocated to the tests with a
lower current.

The MRR was estimated by the weight difference of the
work pieces before and after machining using a digital single
pan balance (maximum capacity=1,000 g, precision=0.01 g)
and are reported in units of g/h. The surface roughness (Ra)
was measured by means of a Surtronic 3+, with the Ra value
in microns at a cut-off length of 0.8 mm.

The total data obtained from the machining experiments
(6×4×4) is 96 and these form the neural network’s training and

testing sets. The results also show that the training data cover
a wide variety of possible ranges, i.e., in our case, the three
main groups of finishing (Ra≤2 μm), semi-finishing
(2 μm<Ra≤4.5 μm), and roughing (Ra>4.5 μm) are involved.

Finally, it should be mentioned that the adopted planing
mode of machining did help reduce the tool wear rate
(TWR) greatly, so that its amount was less than 0.001 g
accuracy of weight. If another mode, e.g., drilling, was
selected for the experiments, the TWR could manifest itself
noticeably [23].

4 BP neural network modeling of the EDM process

Modeling of the EDM process with a BP neural network is
composed of two stages: training and testing of the network
with experimental machining data. The training data consist
of values for current (I), period of pulses (T), and source
voltage (V), and the corresponding MRR and Ra. In all, 96
such data sets were used, of which, 82 data sets were selected
randomly and used for training purposes, while the remain-
ing 14 data sets were presented to the trained network as new
application data for verifying or testing the predictive
accuracy of the network model. Thus, the network was
evaluated using data that had not been used for training.

4.1 Data preprocessing

Before the ANN can be trained and the mapping learnt, it is
important to process the experimental data into patterns.
Training/testing pattern vectors are formed. Each pattern is
formed with an input condition vector, Pi:

Pi ¼
Current Ið Þ
Period of pulses Tð Þ
Voltage Vð Þ

2
4

3
5

Table 2 The effects of different numbers of hidden neurons on the
back-propagation (BP) network performance of a single-hidden-layer
network (η=α=0.9; mean square error (MSE) goal=0.005)

No. of hidden
neurons

Average error
in MRR (%)

Average error
in Ra (%)

Total average
error (%)

6 11.73 4.97 8.35
7 11.33 7.52 9.43
8 9.83 7.17 8.50
9 16.35 5.51 10.93

Table 3 The effects of different numbers of hidden neurons on the BP
network performance of a double-hidden-layer network (η=α=0.9;
MSE goal=0.005)

No. of
neurons
in the first
hidden layer

No. of
neurons
in the second
hidden layer

Average
error in
MRR (%)

Average
error in
Ra (%)

Total
average
error (%)

5 3 9.38 7.18 8.28
4 12.29 6.14 9.22
5 11.67 6.10 8.89

6 4 5.31 4.89 5.10
5 8.06 6.42 7.24
6 16.20 7.58 11.89
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and the corresponding target vector, Ti:

Ti ¼ Material removal rate MRRð Þ
Surface roughness Rað Þ

� �

The scale of the input and output data is an important
matter to consider, especially when the operating ranges of
process parameters are different. The scaling or normalizing
ensures that the ANN will be trained effectively, without
any particular variable skewing the results significantly. As
a result, all of the input parameters are equally important in
the training of the neural network. The scaling is performed
by mapping each term to a value between –1 and 1 using
the following equation:

N ¼ R� Rminð Þ � Nmax � Nminð Þ
Rmax � Rminð Þ þ Nmin ð1Þ

whereN is the normalized value of the real variable, Nmin=−1
and Nmax=1 are the minimum and maximum values of the
normalization, respectively, R is the real value of the

variable, and Rmin and Rmax are the minimum and maximum
values of the real variable, respectively.

4.2 Network topology, training, and testing

The network has three inputs of current (I), period of pulses
(T), and source voltage (V), and two outputs of MRR and
Ra. The size of the hidden layer(s) is one of the most
important considerations when solving actual problems
using multi-layer feed-forward network. To find the best
network model that gives superior results in comparison
with other networks topologies, a number of candidate
networks with different hidden layers and neurons were
developed using the Neural Network Toolbox (NNET) of
the MATLAB software package. Single- and double-
hidden-layer networks with various hidden nodes were
trained separately and their performances checked. In other
words, the best model, is selected based on its predictive
accuracy in response to new input data in the testing phase
when compared with experimental values. The results for
one- and two-hidden-layer networks having different

I 

T 

V 

Input Layer 

Output Layer 

MRR 

Ra 

Second Hidden Layer 

First Hidden Layer Fig. 2 Configuration of the
back-propagation (BP) neural
network model for the EDM
process

Table 4 Comparison of the MRR and Ra measured and predicted by the BP neural network model

Test no. Machining conditions MRR (gr/hr) Ra (μm) Relative error (%)

I (A) T (μs) V (v) Experimental BP model Experimental BP model Error in MRR Error in Ra

1 5 500 35 0.70 0.71 3.05 2.68 1.43 12.13
2 5 100 50 3.54 3.61 3.28 3.35 1.98 2.13
3 8 50 70 5.45 6.26 4.27 4.32 14.86 1.17
4 8 200 50 6.39 6.83 4.52 4.48 6.89 0.88
5 8 50 60 7.72 8.41 4.85 4.90 8.94 1.03
6 11 500 70 5.97 6.03 4.92 5.23 1.01 6.30
7 11 100 70 10.64 11.34 5.25 5.74 6.58 9.33
8 11 200 60 11.83 12.30 5.45 6.08 3.97 11.56
9 11 200 35 21.01 19.92 6.9 6.60 5.19 4.35
10 14 500 50 9.52 8.85 5.12 5.29 7.04 3.32
11 14 50 50 15.3 14.57 6.1 6.13 4.77 0.49
12 14 100 60 18.64 18.57 7.3 6.95 0.38 4.79
13 17 50 35 24.27 25.51 7.2 6.47 5.11 10.14
14 17 100 35 27.51 29.22 7.32 7.26 6.22 0.82
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combinations of hidden nodes are shown in Tables 2 and 3,
respectively. To train each network, an equal learning rate
and momentum constant of η=α=0.9 was used, the
activation function of hidden and output neurons was
selected as a hyperbolic tangent, and the error goal (mean
square error, MSE) value was set at 0.005, which means
that training epochs are continued until the MSE fell below
this value. As the error criterion for all networks is the
same, their actions are comparable. From Table 2, it is
concluded that a total average error of 8.35% is achievable
in the best case of a single hidden layer with six neurons,
which is generally less than that of the errors belonging to
other networks in its group. However, when two hidden
layers were tested, a 3–6–4–2-size network gave the best
results, reducing average errors the most, compared to other
trials. The selected network has mean errors of 5.31% and
4.89% in predicting the MRR and Ra, respectively, over the
14 experimental test data sets. Thus, it has a total average
error of 5.10%. This neural model is the best amongst the
other competitors of different networks architectures,
possessing the least amount of verification errors. The
configuration of the neural network model developed is
illustrated in Fig. 2. Table 4 shows the experimental and

predicted values for the MRR and Ra, as well as the
percentage relative errors in the verification cases. Good
agreement between the neural predictions and experimental
verifications has been demonstrated in those machining
conditions. Figures 3 and 4 also show the comparison of
experimental results and modeling in verifying the network
generalization capabilities. Figure 5 illustrates the conver-
gence of the output error (MSE) with the number of
iterations (epochs) during the training of the best chosen BP
network. After 25,908 epochs, the MSE requirement is met,
training is stopped, and the weight values of the network
are stored. At the beginning of the training, the output from
the network is far from the target value. However, the
output slowly and smoothly converges to the target value
with more epochs, and the network learns the input/output
relation of the training samples.

As a further step for studying the capabilities of the
model in fitting all points in the input space, a linear
regression between the network responses and the
corresponding target (experimental) values was performed.
In this case, the entire data sets (training+testing) were put
through the trained network model, and regression analysis
was done. The results are presented separately for the two
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output parameters in Fig. 6. The correlation coefficients (R)
are 0.994 and 0.989 in simulating the MRR and Ra,
respectively. From a statistical point of view, the closer this
number is to 1, the more powerful the network in
correlating the input space to the output space. Therefore,
the adopted BP neural network can be used to acquire a
function that maps input parameters to the desired process
outputs in a wide range of machining conditions.

4.3 Influences of machining parameters on machining
performance

In general, both the MRR and Ra depend on the spark
energy crossing the discharge gap, and is expressed as
E ¼ R

tpVdisIdt: Thus, the process outputs are functions of
the discharge voltage, current, and pulse-on time parameters.
To separate the effect caused by each machining parameter,
the other input variables are set to a constant value in the
allowable working spaces when one of the machining
parameters is varied and analyzed. In the following, the
effects of the machining parameters on the process outputs
will be discussed one by one using the developed BP neural
network model. Then, by considering the actual circum-
stances occurring in practice, overall interpretations are
drawn. It should also be noted that, in this section, the input
values to the neural network are different from those in the
experimental data set, so as to fully exploit the generalization
capabilities of the model in predicting process behavior
under various machining conditions.

4.3.1 Effect of discharge current

The effect of current on EDM characteristics (MRR and
Ra) is shown in Figs. 7 and 8, respectively, under the

condition of different pulse periods and a constant 55-v
source voltage.

At all values of pulse period, both the MRR and Ra
increase steadily with the increase of the current. This was
expected, because the MRR and Ra depend on the spark
energy, which is directly proportional to the intensity of the

Fig. 6a, b Linear regression analysis between BP network outputs
and experimental values. a MRR. b Ra

Fig. 5 Learning behavior of the BP neural network model

494 Int J Adv Manuf Technol (2008) 39:488–500



current. Therefore, increasing the current results in a greater
discharge energy, rising MRR, and leading to poor surface
quality.

4.3.2 Effect of pulse period

The effect of the pulse period (pulse-on time+pulse-off
time) on the MRR and Ra is depicted in Figs. 9 and 10,
respectively, for various source voltage settings at a
constant current of 9 A. It is shown that the values of
MRR and Ra are highest with a pulse period of about
150 μs. However, with longer pulse periods, the MRR and
Ra decrease. This can be explained from the fact that,
although spark energy increases with increasing pulse-on
time, too long a pulse period causes unfavorable heat losses
in the gap space, which does not contribute to the material
removal. Therefore, keeping other factors constant, there is
an optimum value of pulse period in which the highest
MRR occurs.

4.3.3 Effect of source voltage

The effect of source voltage on the MRR and Ra is
illustrated in Figs. 11 and 12, respectively, for different
current values at a constant pulse period of 250 μs. There
are slight changes in the MRR and Ra with respect to source
voltage variations. In other words, the source voltage in the

working domain considered in the experiments has not
influenced the MRR and Ra considerably.

In brief, the following points can be mentioned as the
main findings of a modeling attempt resulting from
studying the input parameter variations on the output
features considered in the EDM process:

– The discharge current is the most influential or
dominant variable among the other input parameters,
so that increasing the current with a constant level of
pulse period and source voltage increases the MRR and
Ra steadily. A high discharge energy associated with
high current is capable of removing a chunk of
material, leading to the formation of a deep and wide
crater, and, hence, worsening the machined surface
quality.

– For the effect of pulse period, initially, it is observed
that, for all values of source voltage and a constant
current, the MRR and Ra increase with increasing pulse
period, but these trends continue until about 150-μs
pulse period, in which, the MRR gains its maximum
value. Although increasing pulse period and, hence,
pulse-on time, results in a greater discharge energy,
with too long pulse durations, the results become
reverse. This is mainly due to the undesirable heat
dissipation phenomena of thermal energy liberated
during discharge, which, in turn, lessens the erosive
effects of sparks.
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– In normal EDM, the discharge voltage (Vdis), influenced
primarily by the electrode and work piece materials, is
somehow constant, so that an increase in source
voltage will have little effect on the discharge energy
for a given pair of electrode–work-piece materials.
Therefore, increasing the source voltage alone does not
necessarily confirm the availability of high discharge
voltage, which directly affects the MRR and Ra.

5 Optimization using a neural network

Nonlinear constrained programming is a basic tool in
systems where a set of design parameters are optimized
subject to inequality constraints. In this section, it is
discussed how a trained multi-layered neural network
(process model) can be used to optimize a performance
index. In the optimization phase, the parameters of the
network which have been known as a result of training are
kept fixed and the inputs should be adjusted so that the
objective function, designated as F, is minimized (or
maximized) subject to certain constraints. The key point is
to find the partial derivatives of the objective function F
with respect to the input data, not the partial derivatives of
the error E with respect to the parameters of the network as
in the modeling phase.

The ALM neural network [24] is, essentially, a method
attached to a punishing function, utilizing an iterative
process to find the optimal input parameters in accordance
with the prescribed constraints. In the EDM process, the

objective function F(X), which is to be minimized, is the
negative of the MRR and the constraint G(X) is on the Ra,
which should be less than or equal to the maximum
allowable Ra, corresponding to each machining regime.
The solution to the above problem is a locally optimal set
of process input variables.

The optimization by neural network is simply an
optimization procedure with two important differences: no
assumption of the input–output model is made and the
computations required for the optimization procedure are
made in parallel.

Figure 13 shows the general procedure for the modeling
and optimization of the EDM process using the two
aforementioned neural networks. The partial derivatives of
F and G with respect to the input variables xi can be
calculated by using the back-propagation pass performed
on the trained network (neural model of the process). This
assistance can considerably reduce the computing time in
solving the optimization problem. Detailed mathematical
explanations of this technique have been given in [25].

6 Determination of optimum machining parameters

What EDM machine manufacturers and users want is to
achieve higher machining productivity with a desired
accuracy and surface finish. In other words, the higher the
MRR and the smoother the surface, the better. But,
unfortunately, the goals of high metal removal rate and
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high surface finish quality are, to some extent, conflicting.
Consequently, no particular combination of machining
parameters can be expected to result simultaneously in the
best MRR as well as the best Ra under all circumstances.
Therefore, the present problem must be considered to be a
multi-objective optimization problem.

To determine the optimum machining conditions, the
goals have to be taken separately in different phases of
work with different emphasis, i.e., three machining regimes
of finishing, semi-finishing, and roughing with relevant
prescribed constraints on the Ra need to be considered, and
then the optimization procedure (maximizing MRR) is
performed in each working domain. Here, the objective
function F(X), which should be minimized, is the negative
of the MRR (hence, the MRR is maximized) and the
constraint G(X) is on the Ra. Assuming that X=[x1, x2, x3]=
[I, T, V], then, mathematically, the problem is expressed as:

min : F Xð Þ ¼ �MRR

subject to : G Xð Þ ¼ Ra � Ramax

2 � x1 � 17

50 � x2 � 500

35 � x3 � 70

The Ramax values are 2 μm, 4.5 μm, and 7 μm for the
finishing, semi-finishing and roughing regimes, respectively.

Also, the limitations on the input parameters were assigned
according to the experimental setup and electrical capacity of
the EDM machine generator described in Sect. 3. Before
performing the optimization procedure, it should be noted
that the Ra≤Ramax constraint is always active, since, based
on the physics of the process, high MRR results in coarser
surface quality. This fact is shown in Fig. 14. Also, from this
figure, it is concluded that the optimization problem can
yield several locally optimal solutions for some Ramax

values. The ALM network starts with an initial point in the
input space and converges to a local optimum solution.
Furthermore, the graphs of the objective and constraint
functions, which are shown in Fig. 15, at a constant current
(9 A), indicate that the variation trends of the two functions
with respect to the other parameters (T and V) are smooth.
Therefore, to find global optimum solutions in each
machining case, the optimization process should be repeated
several times with different starting points, so as to fully
assure that the obtained point is globally optimal. Among all
of the possibly obtained candidates of optimal input
parameters, the setting which gives the highest MRR and
meets the constraint requirements is selected as the global
optimum point in each machining regime.

Using the MATLAB software package, an optimization
program based on the algorithm described in Sect. 5 was
developed, and, in conjunction with the neural network
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model program, all of the optimum points were found.
Table 5 shows the final optimization results. As expected,
current intensity increases steadily from the finishing
regime to roughing, so that more discharge energy is

provided, and, therefore, the MRR is enhanced. Especially
in the roughing regime, when the surface finish quality is
not so important, a maximum MRR has been obtained
with almost the highest current (16.96 A). As was
explained in Sect. 4.3, it is once more revealed that the
discharge current is the dominant factor among the other
two input parameters, since the optimum voltages and
pulse periods of the semi-finishing and roughing regimes
are almost the same, and here, the current is the only
variable that has increased to yield maximum MRR,
subject to the corresponding constrained Ra. Again, in
the finishing regime, as the current is low, the optimal
pulse period and voltage have changed in such a way that
the maximum MRR of 0.84 g/h is obtained. In this case,
the voltage has increased to 59 v, which is higher than the
other two optimum voltages in semi-finishing and rough-
ing, to compensate for attaining the maximum MRR. This
also leads to a wider gap distance, which facilitates a flushing
action, and prevents process instability. For the effect of pulse
period, it was shown in Fig. 7 that, at a constant level of
source voltage, lower pulse durations, along with higher
discharge currents, result in a higher MRR. Therefore, the
optimum values of pulse period in the semi-finishing and
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roughing regimes were found to be the least allowable
amount in the machining conditions (50 μs).

Finally, confirmation experiments were conducted to
verify the optimization results. The error values, which are

all less than 8%, are also given in Table 5. This proves that
the ALM neural network possesses sufficient knowledge in
order to perform optimization.

7 Conclusions

In this study, a new approach to optimizing the machining
conditions in electro-discharge machining (EDM) for
achieving maximum metal removal subject to appropriate
operating constraints on the surface roughness (Ra) and
machining variables has been presented. As no single
combination of input parameters can be optimal for both the
material removal rate (MRR) and surface finish (Ra), this
led to the notion of separating each level of machining
regime based on surface quality emphasis. First, a 3–6–4–2-
size back-propagation (BP) neural network model was
developed to enable the measures of performance (MRR
and Ra) to be predicted in terms of three different control
parameters of current (I), pulse period (T), and source
voltage (V). Then, an augmented Lagrange multiplier
(ALM) neural network is used for determining the optimum
parameter settings in each machining regime. The integrated
BP-ALM neural network system is fairly general and can be
used as a powerful paradigm for the modeling and
optimization of any kind of machining process, e.g.,
electro-chemical machining. The superiority of this approach
is highly noticeable when there is only experimental data
which demonstrate the process behavior, and little or no
explicit mathematical relationships based on the physics of
the process are available to correlate the input and output
parameters.

Based on the simulation and verification results, the
following conclusions can be drawn:

1. The effectiveness of using the BP neural network
model for the prediction of the MRR and Ra in the
EDM process has been proved.

2. An appropriately trained neural network model along
with the ALM neural network can successfully synthe-

Table 5 Final optimization results of the EDM process in different machining regimes

Machining regime Optimum setting Responses in optimum conditions Relative error

ALM network Experimental

Current I
(2–17) A

Period T
(50–500) μs

Voltage V
(35–70) v

MRR
(g/h)

Ra
(μm)

MRR
(g/h)

Ra
(μm)

Error in
MRR (%)

Error in Ra
(%)

Finishing:
Ra≤2 μm

5.67 500 59.72 0.84 2 0.87 2.14 3.45 6.54

Semi-finishing:
Ra≤4.5 μm

9.55 50 35.83 13.02 4.5 13.31 4.69 2.18 4.05

Roughing:
Ra≤7 μm

16.96 50 35 24.89 7 24.17 7.55 2.98 7.28

a

b
Fig. 15 Three-dimensional surface plots of the objective (a) and
constraint (b) functions at a current of 9 A
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size optimal input conditions for the EDM process. The
optimal input settings maximize the MRR, subject to
necessary process constraints.

3. An important aspect is that process optimization can be
implemented in the absence of an analytical process
model and purely by observations of experimental
information.

Following this research, regarding the capability of this
method in solving multi-objective optimization problems,
the EDM drilling case will be studied by taking the tool
wear rate (TWR) and electrodes’ corner wear, as well as the
corner radius at the bottom surface of the hole as additional
constraints, into consideration.
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