Int J Adv Manuf Technol (2008) 39:199-210
DOI 10.1007/s00170-007-1198-2

ORIGINAL ARTICLE

Manufacturing interoperability using a semantic mediation

Seog-Chan Oh - Shang-Tae Yee

Received: 24 April 2007 / Accepted: 6 August 2007 /Published online: 9 September 2007

© Springer-Verlag London Limited 2007

Abstract Globalization has become a major trend in
today’s business environment, which has led to the
explosion in the amount of information shared amongst
business partners. It is critical to share information
correctly, inexpensively, and effectively for accomplishing
business goals using global information sharing architec-
tures under increasing pressure of competitive markets. One
of the major barriers to build such a global information
sharing architecture is caused by the absence of universally
accepted ontology needed to facilitate business partners to
be seamlessly interoperable with one another within a
global manufacturing world. In reality, due to heteroge-
neous enterprise environments in which business partners
find themselves, multiple ontologies are defined and used.
In this paper, we present a method for semantically
mapping different business documents to a conforming
document format, given inevitable existence of multiple
ontolgoies. Forward reasoning rules are used to express the
mapping, and they are applied to exchange messages
between heterogeneous business partners. We demonstrate
our semantic mapping approach by using a demonstrator
that uses Web services for service components and the Jena
package for a reasoning engine. A business scenario of the
demonstrator consists of a part ordering transaction taking
place between an original equipment manufacturer and its
supplier. This approach can also be applied to other
manufacturing operations such as parts scheduling, order
sequencing, and inventory.

S.-C. Oh - S.-T. Yee (PX)

Manufacturing Systems Research Laboratory,
General Motors R&D Center,

30500 Mound Road,

Warren, MI 48090, USA

e-mail: shang-tae.yee@gm.com

S.-C. Oh
e-mail: seogchano@gmail.com

Keywords Semantic mediation -
Manufacturing interoperability - Ontology -
Logic programming - Web service -
Service oriented architecture

1 Introduction

It is evident that today’s manufacturing world has experi-
enced fast growth on both volume and scope in information
sharing amongst business partners. Because companies
have been using heterogeneous information systems, they
primarily have used standard-based approaches (e.g, Roset-
taNet, ebXML) for large scale information sharing.
However, these standard-based approaches have raised
several issues and problems. First of all, the standard-based
approach forces whole trading partners to follow a single
unified standard, ignoring the heterogeneous nature inher-
ent in business partners’ environments. An automotive
company has vehicle programs and one vehicle production
program usually needs 20,000 parts from 8,000 different
tier-1 suppliers. Therefore, it does not make sense to use a
single unified standard, ignoring the heterogeneous nature
of suppliers. Second, it is significantly inefficient and
difficult to version, customize, and integrate complex
industrial standards. For example, the purchase order
schema of AIDIMA' and the sale order schema of UBL?
are not interoperable because of many schema mismatches,
such as terminology, structure, data organization, and data

" A Spanish research and development association for the wood and
furniture industries consisting of more than 650 manufacturers.

2 OASIS Universal Business Language (UBL) with intension to
become an international standard for electronic commerce freely
available to everyone without licensing or other fees.

@ Springer

200

Int J Adv Manuf Technol (2008) 39:199-210

granularity, even though two schemas share the same
semantics at higher abstract level. Third, because these
standards allow flexibility in terms of message contents and
their processes composed, a significant effort is required to
implement precisely business transactions [12], even
though the partners agreed to use them. Fourth, an
excessive lead-time is required to accept new partners and
connect them to existing partners. Lastly, the traditional
standardization process cannot manage semantics of mes-
sages effectively.

To address the issues and problems of the standard-based
approaches, semantic mediation-based technologies have
been introduced. If business partners can describe their
semantics on how to interact with themselves, it is possible
to use the semantic mediation technologies to accomplish
interoperability and, thereby, to build business transaction
processes and share information accordingly. However,
there is a major barrier to build a global semantic
interoperable architecture because no universally accepted
ontology exists. In reality, companies are exposed to
multiple ontologies because they are in heterogeneous
enterprise information system’s environments. In this paper,
we present a semantic mediation method that maps different
ontologies, translates them into one business document
format, and exchanges the translated documents between
the partners.

Automated and seamless business transactions between
the partners would result in improvement of data accuracy,
elimination of repetitive manual operations, and concentra-
tion on more important and meaningful tasks.

To motivate our work, we use a typical part ordering
scenario as an example. Let’s consider a manufacturing
company named OEM, which needs to outsource its part to
a supplier named T1. When OEM consumes parts, it sends
a message to T1 to place an order for the part. T1 receives
and processes the part ordering (PO) message based on its
inventory availability, and delivers ordered parts to OEM.
In this scenario, both OEM and T1 may use different XML

document formats for the same purpose. In other words,
business partners OEM and T1 may use heterogeneous data
formats, implying that they have a significant problem in
exchanging information in an automated manner.

As shown in Fig. 1, OEM and T1 have different XML
instance documents even for the same purpose, and this
issue should be addressed in order to enable automatic
communication. In detail, there are two distinct mismatches
between their XML documents, which should be translated
as follows:

1. 1:1 translation between requestTime of OEM and
creationDataTime of T1.

2. 2:1 translation by joining both sender and part/name of
OEM to part/name of T1.

In the first case, requestTime of OEM has the direct
counterpart entry, that is, creationDataTime of T1. We refer
to this case as sameds 1:1 translation, and it can be
resolved using the one-to-one pattern matching forward rule
that will be introduced in the following sections. In the
second case, both sender and part/name of OEM have no
direct counterpart entries in T1. Instead, both can be joined
together to build a new entry, namely, part/name of T1.
Precisely, both sender and part/name of OEM need to be
concatenated with a hyphen (-) to build part/name of T1.
We denote this case as joinTo 2:1 translation. In the
following sections, we will specify ways to resolve two
translation cases by using the logic programming approach
and the bi-translation method between XML and RDF.

When OEM deals with only T1, it would be good
enough to unify the document formats between them.
However, when the number of suppliers increases, it would
not be feasible to unify the partners’ document formats,
because for even a single business process, numerous XML
instance documents are used.

The rest of this paper is organized as follows. In Sect. 2,
we survey the methodological background of the work with

<OEMPartOrder xmiIns="http://www.oem.com/ ">
<sender> OEM </sender>
<requestTime>
Wed Mar 14 21:51:18 PDT 2007
</requestTime>
<documentID >100</documentID>
<part >
<name>Gear ASM</name>
<id>25737126</id>
</part>
</ OEMPartOrder >

<T1PartOrder xmins="http://www.tl.com/">
<documentID>100</documentID>
<creationDataTime>
Wed Mar 14 21:51:18 PDT 2007
</creationDataTime>
<part >
<id>25737126</id>
<name>0EM-Gear ASM</name>
</part>
</ T1PartOrder >

b

Fig. 1 Different XML documents of OEM and T1 for the same purpose. a Instance of OEM’s XML document. b Instance of T1’s XML

document

@ Springer

Int J Adv Manuf Technol (2008) 39:199-210

201

the focus on semantic mediation technologies. In Sect. 3,
we present the RDF transformation concept following a
logic programming approach with formal definitions about
mapping rules. In Sect. 4, we propose how semantic
mediation technologies could accomplish interoperability
for heterogeneous enterprise networks, especially by re-
solving the motivating scenario. In Sect. 5, we describe our
demonstrator that implements the semantic interoperability
between business partners of the motivating scenario, and
suggest a scalable framework for implementing large-scale
interoperability. In Sect. 6, we position our work with
related works on enterprise interoperability. In Sect. 7, we
present conclusions and further research work.

2 Survey of techniques for interoperability

In this section, we review various available techniques used
to achieve interoperability. These methods can be employed
for the semantic mediation approach.

2.1 Web services and Service Oriented Architecture (SOA)

A Web service is a set of related functionalities that can be
loosely coupled with other services programmatically
through the Web. Web services have taken the concept of
services that are designed to fit an environment that needs
dynamic discovery, binding, and execution of services. Web
services are published and managed using technologies
such as XML, WSDL (Web Service Description Language)
[4], SOAP (Simple Object Access Protocol) [7], and UDDI
(Universal Description Discovery and Integration) [10].
SOA is an architectural style for building software
applications that use services distributed in a network such
as the Web. The SOA concept is to design individual
functions that can be blended to provide hundreds of
different services, instead of designing individual programs
that perform hundreds of functions. It promotes loose

a pairwise
mapping

coupling between software components in such a way that
they can be reused. In essence, SOA and Web services are
two different things, but Web services are the preferred
standard for providing services to realize SOA. In theory,
SOA should be a perfect architectural model to bridge
organizations, services, platforms, and networks in order to
achieve interoperability between them.

2.2 Ontology reconciliation

Ontologies are constructed to specify the conceptual model
of an information and knowledge domain explicitly. While
ontology describes the domain, a knowledge base contains
a particular state of affairs based on an ontology. Ontologies
can be used in supporting information and knowledge
exchange between different organizations. By 2010, ontol-
ogies using strong knowledge representations will be the
basis for 80% of application integration projects [6]. Since
information and knowledge domains are diverse and even
evolve, different people and organizations tend to adopt
different ontologies. As shown by Madnick [16], we cannot
hope that one universally accepted unchanging ontology,
even for a small domain, would ever be created. Therefore,
in order to achieve interoperability of information and
knowledge among heterogeneous organizations, different
ontologies must be reconciled.

There exists a variety of alternative architectures to
reconcile multiple ontologies for interoperability of hetero-
geneous organization networks. Hameed et al. [8] suggests
three architectures as shown in Fig. 2.

Figure 2a shows the pairwise mapping which is used in
the case when there is no need to reconcile all ontologies,
but rather just interrelate individual ontologies as needed.
While this approach gives great flexibility and simplicity, in
the worst case, there will be as many sets of mappings as O
(n?), if n individual ontologies are required to be mapped to
the rest of others in a bidirectional way. Figure 2(b) depicts
the mapping based on a single common ontology, when

’ e

b using one
reference ontology

c using multiple
reference ontology

Fig. 2 Various ontology reconciliation architectures where the nodes represent ontologies and bidirectional arcs depict mapping; the large dark-
shaded node is a common ontology; small dark-shaded nodes are reference ontologies; light-shaded nodes are individual ontologies

@ Springer

202

Int J Adv Manuf Technol (2008) 39:199-210

there is an attempt to reconcile individual ontologies in a
principled, top-down fashion. This approach supposes that
a common and standard conceptualization is identified and
developed, whatever the cost of the development might be.
It also loses some flexibility in the local management level,
because all individual ontologies must follow a centralized
standard. Figure 2c illustrates the case that uses multiple
reference ontologies, forming clusters of interrelated ontol-
ogies. Each individual ontologies are mapped to the
reference ontology for its cluster, and the reference
ontologies are mapped to each other. This hybrid approach
is to combine the advantages of Fig. 2a and b—a reduced
number of mapping using principled conceptualization, and
yet also there is flexibility to extend interoperability
through adding different clusters. In this paper, we will
simply use the pairwise mapping concept to highlight our
approach concretely, where two business partners should
translate their heterogeneous message documents for their
seamless transaction. And yet, in Sect. 5.2, we will further
discuss a scalable interoperability framework using the
ontology reconciliation technique in order to accommodate
multiple business partners.

2.3 RDF transformation

The Resource Description Framework (RDF) is used for
describing resources that are identifiable by Uniform
Resource Identifiers (URIs). RDF is based on the triplet
model—subject—property—object—where these triplets to-
gether form a graph that serves as the representation of
data, information, and knowledge in a machine-understand-
able way. It is evident that there is a need to transform RDF
documents of different domains in order to exchange
knowledge. However, at present, there is no standard way
to transform RDF documents. Peer [18] surveyed several
approaches to transform RDF documents or queries, as
shown in Table 1.

Table 1 Survey of existing RDF transformation approaches

While each approach in Table 1 has its different character-
istics, in this paper, we will choose the logic programming
approach suggested by Bowers and Delcambr [2], because of
its high expressiveness as well as simplicity. We will discuss
this logic programming approach in Sect. 3 in detail.

2.4 Transformation between XML and RDF

At present, many legacy systems already have developed
their XML interfaces in support of business to business
(B2B) integration scenarios, but very few of them have
implemented RDF(S) interfaces. To address this XML to
RDF and RDF to XML transformation, there are a number
of approaches available today [12]. In this paper, we choose
to use the transformation mechanism suggested in [15],
especially because of its simplicity, that is, the approach
does not necessarily require an XML schema to be present
when transforming an XML instance into an RDF instance
and vice versa.

When observing the XML Schema and XML instance
documents, we can notice that only XML Schema
constructs, such as xsd:element and xsd:attribute, occur in
the XML instance documents. In other words, the XML
instance document is composed only of elements and
attributes.

Based on this observation, the chosen transformation
mechanism builds an internal representation of the XML
Schema consisting of only necessary elements and attrib-
utes from the XML Schema, and forms the internal
representation in terms of a tree. The tree has nodes which
encapsulate information such as name, type, extension,
restriction, and namespace. Eventually, the internal tree is
transformed into RDF through predefined transformation
rules and a naming convention. For example, the XML
instance document in Fig. 3a can be transformed into the
RDF instance document in Fig. 3b using the transformation
mechanism, guaranteeing that the transformed document is

Approach Characteristics

DAMLAOIL [9]

DAML+OIL sameAs properties (sameClassAs, samePropertyAs and samelndividualAs) are used to provide the

equivalence between classes with classes, properties with properties, and instances with instances. However, it is
limited when major structural differences exist between RDF graphs.

XSLT [5]

XSLT can be used to perform transformation on RDF documents, because RDF transformation can be seen as a

styling transformation (e.g., styling XML documents in HTML). However, it must show weakness when the
transformation requires expression in logic-based rules.

KR-transformation

OntoMorph [3] represents this approach. OntoMorph achieves the high-expressiveness transformation using so-

called rewrite rules. One open issue associated with this approach is attributed to its heavy weight expressive
features which may give away many opportunities for simplifications.

Logic programming
approach [2]

RDF can be interpreted as an application of First Order Predicate Calculus. Therefore, a transformation between
two RDF documents can be defined by a set of mapping rules that consist of predicates to deal with RDF triplets.

@ Springer

Int J Adv Manuf Technol (2008) 39:199-210

203

<part xmlns="http://www.example.com/ ">
<name>Motor</name>
</part>

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#"
xmins="http://www.ocem.com/">
<part>
<part_name_PROP>
<part_name>
<part_name_sValue>
Motor
</part_name_sValue>
</part_name>
</part_name_PROP>
</ part>

a Example of the XML instance document

b The RDF instance document for a

Fig. 3 Example of the XML to RDF transformation

valid according to the corresponding RDF schema. Of
course, we can transform an RDF instance into an XML
instance in a reverse way, because this transformation
mechanism is a bi-translation method. Usually, we will use
the term ‘lift’ to refer to the semantic transformation from
XML to RDF. Conversely, we will use the term ‘lower’ to
refer to the reverse transformation from RDF to XML.

3 Logic programming based RDF transformation

In this section, we present the RDF transformation concept
following the logic programming approach, providing the
high expressiveness required to build generic services for
management of RDF documents [13]. Table 2 shows the
basic definition used to formalize the RDF transformation.
A transformation between two RDF documents is defined
by a mapping scheme M that consists of a set of pattern-
matching forward rules, where the rules are defined over
triplets of the RDF representation.

RDF triplets are represented in 7. For example, "The sky
has the color blue" in RDF can be formatted to be 7(‘sky’
‘hasColorof” ‘blue’), where (1) a subject, ‘sky’ denotes "the
sky"; (2) a property, ‘hasColorof’ denotes "has the color";
and (3) an object, ‘blue’ denotes "blue".

Table 2 Mapping rule definitions (modified from [2])

For Lyg={ 7(‘sky’ ‘hasColorof” ‘blue’)}, we can define a
predicate S(Lyg, 7(‘sky’ ‘hasColorof” ‘blue’)) . The pred-
icate S is evidently true because the RDF triplet, (‘sky’
‘hasColorof” ‘blue’) exist in Lygq. We often want to reflect
the weather changing situation, because the color of sky
must be changed due to the flexible weather condition.
When the current sky does not have its color of blue (e.g.,
the black cloud sweeps across the sky), we can reflect this
situation by firing a simple rule which is a one-to-one
mapping rule, where a class or property name can be
translated exactly to another class or property name. Of
course, it is available only when such exact translation
exists. Precisely, we need to translate ‘hasColorof’ to
“hasNotColorof” using the following rule m;.

my: S(Ly4, T(?x “hasColorOf’ 2y))—> S(L,s, drop(0)), S(Lyy, T(?x “hasNotColorOf’ 2y))

Note that m; can be read as stating that for any subject x
and object y, if L4 has a triplet (?x ‘hasColorof” ?y) , then
the triplet is dropped and the new triplet (?x ‘hasNotColorof”
?7y) is built. The drop(i) is a built-in procedure, meaning that
the i-th matched triplet needs to be dropped. The antecedent
of a mapping rule (e.g., S(Log, 7(?x hasColorOf ?y))) is
often called the body of the rule, and the consequence of a

Symbol Definition
7 (node, node,
node) ‘blue’).
L A set (i.e., knowledge base) of triplet predicates 7.

b (node, ..., node)
For example, drop(1,2, ..., n).

A predicate that represents an RDF triplet, where node:=?varname | ‘a literal’ | number. For example, 7(‘sky’ ‘hasColorof”

A built-in procedure, where node:=?varname | ‘a literal’ | number. It returns true when the procedure is invoked successfully.

A predicate of the form S(L, 7) or S(L,b) that is true if 7eL or b is invoked successfully in L.

M
M

A mapping scheme that consists of a set of mapping rules.
A mapping rule with the form: 7—T7", where T, 7" are sets of S predicates. The rule can be read as follows: If the left-hand

side matches (i.e., each ST is true), then for each S(L, 7) €7, add 7 to L, or for each S(L, b) €T invoke b.

@ Springer

204

Int J Adv Manuf Technol (2008) 39:199-210

mapping rule (e.g., S(Loig, drop(0)), S(Low, 7(?x “hasNotCo-
lorOf” ?y))) is often called the head of the rule.

Now, for m;, we can define a mapping scheme,
Mgynoie and denote the transformation procedure to
be MyynotBiue X Lola — Lnew, Where the transformation
takes MyNomiue and applies the fixed-point of mapping
rules to the source document L,4 and returns a new docu-
ment L. This transformation is illustrated in Fig. 4.

The same approach can be used for 1:1 mappings, and
extended to n:m mappings between two RDF documents.
Note that the head and body of the rule can contain multiple
predicates, and so a rule expressing n:m translation can be
defined. We will use a n:m mapping case in order to resolve
our part ordering motivating scenario. Also, the predicates
in the rules can include arithmetical operations and custom
built-in operations, so more complex mappings are allowed.

4 Interoperability using semantic rules

In our motivating scenario, we observed that OEM and T1
use different message ontologies, but their message
contents are very similar at a higher level. In reality, such
a case often happens because each of message ontologies is
designed differently based on each business partner’s best
practice. Nonetheless, we can accomplish the interopera-
bility between OEM and T1 using semantic translations,
especially sameAs and joinTo translations. In this section,
we will provide a concrete process to resolve these
translations by using the logic programming approach
discussed in Sect. 3.

4.1 SameAs 1:1 translation

There is a name mismatch between OEM and TI. As
shown in Fig. 5, requestTime of OEM and creation-
DataTime of T1 have the same content Wed Mar 14
21:51:18 PDT 2007, while their element names are
different (requestTime # creationDataTime). This case can

Fig. 4 RDF graph transforma-

be addressed using sameAs 1:1 translation, because it is a
mapping between two semantically identical elements.

Since our logic programming-based transformation
requires interoperating documents to be represented in
RDF, we first need to lift the OEMs XML document into
the corresponding OEMs RDF document using the trans-
formation mechanism introduced in Sect. 2.4. Figure 6a
shows the RDF document which is transformed from
requestTime element of the OEM XML document by using
the XML to RDF transformation mechanism.

Since OEMs RDF document is ready as a source, we can
constitute Logy, such that it consists of triplets extracted
from the OEMs RDF document. We also build a mapping
schema Mg eas, that has the following rules:

my: S(Logy, T(?x ‘http://www.oem.com/OEMPartOrder_requestTime PROP’ 2y))—> S (Logu,

drop(0)), S(Logy, (?x ‘http://www.tl.com/T1lPartOrder CreationDataTime PROP’' ?y))

my: S(Logw, T (?x “http://www.oem.com/OEMPartOrder_requestTime’ ?y))—> S(Logum,
drop(0)), S(Logm, T (?x ‘http://www.tl.com/T1PartOrder_ creationDataTime’ ?y))

mz: S(Logm, T(?x ‘http://www.oem.com/OEMPartOrder requestTime_sValue’ ?y))—>

drop (0), S(Logm, drop(0)), S(Logm, T (2x
‘http://www.tl.com/T1lPartOrder creationDataTime sValue’ ?y))

After the conversion, that is, Mgmeas X Lopm — Lt1, We
can obtain the Tls RDF document as shown in Fig. 6b.
Using the RDF to XML transformation mechanism [15],
we can lower the RDF Fig. 6b into XML and then we can
finally create Tls XML document, meaning that sameAs
1:1 translation described in Fig. 5 is accomplished.

4.2 JoinTo semantic relation

Besides the name mismatch discussed in Sect. 4.1, there is
a structural (granularity) mismatch between OEM and T1.
As shown in Fig. 7, part/name of T1 has its content which
must be built by concatenating contents of both sender and
part/name of OEM. Therefore, it can be called a case of 2:1
mappings. Similar to the sameAs case, we can lift sender
and part/name of OEM XML to the corresponding RDF
document as shown in Fig. 8a. We already named this case

Lrlew

hasNotColorof

blue

) Lo
tion by MskyNotBluc X Lold g o
Lnew
hasColorof
blue
]WskyNotBlue
»
Ll
drop(0)

@ Springer

blue

(?x ‘hasNotColorOf’ ?y)

Int J Adv Manuf Technol (2008) 39:199-210

205

<OEMPartOrder >
<requestTime>

Fig. 5 SameAs semantic rela-
tionship between OEM and T1

sameAs <T1PartOrder >

Wed Mar 14 21:51:18 PDT 2007

</requestTime>
</OEMPartOrder >

to be joinTo 2:1 mapping, because two elements are joined
to one element.

For the OEMs RDF document, we can constitute Logym
(of course, it is different from Logym in the previous
section). We also build a mapping schema Mjqin1o, Whereby
some of the mapping rules are the following:

my: S(Logy, T (?x ‘http://www.oem.com/OEMPartOrder part PROP’ 2y))—> S (Logu,
drop(0)), S(Logy., (?x ‘http://www.tl.com/T1lPartOrder_part PROP’ ?y)]

my: S(Logy, (?x ‘http://www.oem.com/OEMPartOrder part’ ?y))—S(Logy, drop(0))
S(Logy, T(?x ‘http://www.tl.com/T1PartOrder_part’ ?y))

mj: S(Logy, T(?x ‘http://www.oem.com/OEMPartOrder_part_name_PROP’ ?y))—>S (Logy,
drop(0)), S(Logm, (?x ‘http://www.tl.com/TlPartOrder_part_name_PROP’ ?y))

my: S (Logy, T(?x ‘http://www.oem.com/OEMPartOrder_part_name’ 2y))—> S (Logy,
drop(0)), S(Logy, (?x ‘http://www.tl.com/T1_part_name’ ?y))

ms: S(Logy, T(?x ‘http://www.oem.com/OEMPartOrder sender svalue’ ?y)),
S(Logy, (?i ‘http://www.oem.com/OEMPartOrder part_name_sValue’ ?3)),

S (Logy, hypenconcat (?y 23 ?2z))—> S(Logy, drop(0,1)), S(Logy, (?i
‘http://www.tl.com/T1l part name sValue’ ?z))

P <creationDataTime>
Wed Mar 14 21:51:18 PDT 2007
</fcreationDataTime>
</T1PartOrder >

Note that the body of ms has hypenconcat (?y ?7j ?z),
which is a custom built-in procedure. It aims to concatenate
7y and ?j through dash (-), and assign the concatenated new
content to ?z. In our case, OEM and Gear ASM are
concatenated, and then OEM-Gear ASM becomes the
object (value) with respect to the element of http:/www.
tl.com/T1 part name sValue through this procedure. After
the conversion, that is, Mjointo X Loem — Lri, We can
obtain the T1s RDF document as shown in the Fig. 8b. We
can lower the RDF of Fig. 8b into XML and then create
T1s XML document. This implies that joinTo 2:1 mapping
is achieved.

5 Implementation and suggestion of a scalable
interoperability framework

In this section, we present our demonstrator and how the
fundamental knowledge introduced in Sects. 2, 3, 4 became
integrated to implement our demonstrator. In addition, we

<rdf:RDF xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmins="http://www.oem.com/">
<OEMPartOrder>

< OEMPartOrder _requestTime_PROP>
< OEMPartOrder _ requestTime >
< OEMPartOrder _ requestTime _sValue>
Wed Mar 14 21:51:18 PDT 2007
</ OEMPartOrder _ requestTime _sValue>
</ OEMPartOrder _ requestTime >
</ OEMPartOrder _ requestTime _PROP>
</ OEMPartOrder >
</rdf:RDF>

b
<rdf:RDF
ns#">

<rdf:Description rdf:nodeID="A0">
<rdf:type rdf:resource="http://www.t1l.com/T1PartOrder" />
<T1PartOrder_creationDataTime_PROP rdf:nodeID="A1" />
</rdf:Description>
<rdf:Description rdf:nodeID="A1">
<rdf:type rdf:resource=" http://www.tl.com/ T1PartOrder _creationDataTime" />
< T1PartOrder _creationDataTime_sValue>
Wed Mar 14 21:51:18 PDT 2007
</ T1PartOrder _creationDataTime_sValue>
</rdf:Description>
</rdf:RDF>

Fig. 6 RDF transformation of XML messages for OEM and T1. a RDF transformation of requestTime element in ODM. b RDF transformation
of creationdataTime element in T1

xmins="http://www.tl.com/" xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-

@ Springer

http://www.t1.com/T1_part_name_sValue
http://www.t1.com/T1_part_name_sValue

206 Int J Adv Manuf Technol (2008) 39:199-210

<OEMPartOrder > <T1PartOrder > . .
. <part> suggest a scalable interoperability framework to address
OEM jonla »(cname> high implementation complexity that developers would
</sender> OEM-Gear ASM . : 3 .
s . encounter when trying to achieve large-scale interoperabil-
</name>
</part> ity in real world applications.
Gear ASM </T1PartOrder >
</name>

5.1 Implementation

<part>
</OEMPartOrder >
Fig. 7 joinTo semantic relationship between OEM and T1 We have implemented a demonstrator that enables OEM
and T1 to realize interoperability using semantic rules
between them. For the reasoning engine in support of the
logic programming-based RDF message translation, we
have used the Jena package [11] that can directly process

<rdf:RDF xmlIns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins="http://www.oem.com/">
<OEMPartOrder>
< OEMPartOrder_sender_PROP>
< OEMPartOrder_sender>
< OEMPartOrder_sender_sValue>
OEM
</ OEMPartOrder_sender_sValue>
</ OEMPartOrder_sender>
</ OEMPartOrder_sender_PROP>
< OEMPartOrder_part_ PROP>
< OEMPartOrder_part>
< OEMPartOrder_part_name_PROP>
< OEMPartOrder_part_name>
< OEMPartOrder_part_name_sValue>
Gear ASM
</ OEMPartOrder_part_name_sValue >
</ OEMPartOrder_part_name >
</ OEMPartOrder_part_name_PROP >
</ OEMPartOrder_part>
</ OEMPartOrder_part_PROP>
</ OEMPartOrder >
</rdf:RDF>

<rdf:RDF xmlIns="http://www.tl.com/" xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#">
<rdf:Description rdf:nodeID="A0">
<rdf:type rdf:resource="http://www.tl.com/T1PartOrder" />
<T1PartOrder_part_PROP rdf:nodelD="A1" />
</rdf:Description>
<rdf:Description rdf:nodeIlD="A1">
<rdf:type rdf:resource=" http://www.tl.com/ Ti1PartOrder_part" />
< T1PartOrder_part_name_PROP rdf:nodelD="A2"/>
</rdf:Description>
<rdf:Description rdf:nodeIlD="A2">
<rdf:type rdf:resource=" http://www.tl.com/ T1PartOrder_part_name" />
< TiPartOrder_part_name_sValue> OEM-Gear ASM
< TiPartOrder_part_name_sValue>
</rdf:Description>
</rdf:RDF>
Fig. 8 RDF transformation of XML messages for OEM and T1. a RDF transformation of sender and part/name elements in OEM. b RDF
transformation of part/name element in T1

@ Springer

Int J Adv Manuf Technol (2008) 39:199-210

207

and reason our forward chaining pattern matching rules.
Since we anticipate the expansion of our system so as to
encompass additional business partners in the future, we
have architected our demonstrator based on a gateway
approach. It indicates that we have developed a semantic
gateway in the middle between OEM and T1 systems,
which aims to maintain mapping rules in Jena, and to
translate messages between partners on request. For the
real-time message transaction, we have adopted a Web
service based SOA architecture, so that each system is
designed to send or receive messages using the SOAP
standard. Figure 9 illustrates the overview of message flow
between OEM and T1. All three systems (OEM, Semantic
Gateway, T1) were implemented in JAVA 1.5, and were
deployed as Web applications on a Tomcat. Each system
has its own java servlet page (JSP) for providing human
interface as GUL

A detailed step-by-step description on the message flow
is as follows:

1. OEM generates a part ordering XML message in its
proprietary format, and wraps the message with a
SOAP envelope. The SOAP-wrapped message is
delivered to a Semantic Gateway through the Web.

2. The Semantic Gateway receives the SOAP message
from OEM and extracts its SOAP body, that is, the
original OEMs part ordering XML message.

3. Semantic Gateway lifts the original OEMs part order-
ing XML message to a corresponding RDF document

Fig. 9 Overview of the message

EM
flow between OEM and T1 1) [0]

according to the XML to RDF transformation mecha-
nism explained in Sect. 2.4.

4. Semantic Gateway, equipped with the Jena package,
fires predefined mapping rules, and translates OEMs
RDF document to T1s RDF document.

5. Semantic Gateway lowers T1s RDF document into the
corresponding XML file, which is now understandable
by T1.

6. Semantic Gateway wraps the resultant XML file into a
SOAP envelope, and sends the SOAP-wrapped mes-
sage to T1.

7. Finally, Tls Web service receives the SOAP message,
and extracts the payload which is the T1-understandable
part ordering XML file.

Figure 10 shows JSP-based GUIs for OEM, T1, and
Semantic Gateway that constitute our demonstrator. The
OEM GUI allows the user to place an order by completing
the part ordering form, and the T1 GUI allows the user to
monitor the history of ordering messages received from
customers like OEM. Semantic Gateway keeps track of
each step of document conversion flow from when a
SOAP-wrapped message arrives to when the corresponding
SOAP-wrapped message leaves. In other words, Semantic
Gateway records all the documents generated during the
transformation process including the original OEMs SOAP-
wrapped message, the OEMs RDF document, the T1s RDF
document, and the T1-understandable XML document that
is the final outcome of this semantic transformation.

XML SOAP|
OEMPartOrder
[Semantic Gateway]
@ 3) (5))
|Um\.rapping| | Lifting I | Lowering | |Wrappin9|
SOAP XML RDF RDF XML S_%PJ

4)

[T1]
XML
T1PartOrder

@ Springer

208

Int J Adv Manuf Technol (2008) 39:199-210

Fig. 10 GUIs for partners in the
demonstrator

G- e

OEM PartOrdering

Pat ID

Pt N [

Suppher [
Plast-Diock 2

o (g om Bt = [e

Pack ID "o - Achomason |

B P

2 G
i W & (En -8 -
[T1: PartOrdering]

Dhes & Teme docunemtiD PaiNasee PalD) Pl KasbanlD

OEM
understandable
XML message

5.2 Suggestion of a scalable interoperability framework

Although our demonstrator succeeded in showing how to
realize interoperability between heterogeneous business
partners, the interoperability scenario implemented by our
demonstrator is limited in scope. That is, only two partners
were involved in the scenario which may not be a realistic
scenario. Real world industry scenarios need to consider
multiple partners. However, the large scale of interopera-
bility implementation is often limited due to its high
complexity. For example, given a supply chain consisting
of n number of customers and » number of suppliers, if
each customer communicates with n suppliers using rule-
mapping adapters like our demonstrator, then the supply
chain requires nxn number of adapters in total. It is
manifest that such a system with complexity of n* is not
scalable because the complexity increases much faster than
n increases linearly.

In Sect. 2.2, we introduced the concept of ontology
reconciliation, and how the technique can reduce the
interoperability complexity by using reference ontologies in
a technology-agnostic level abstraction. In this section, we
describe the reference ontology (RO)-based semantic recon-
ciliation from the implementation perspective, especially
with the assumption that we accept the logic programming
based RDF transformation approach. Figure 11 illustrates the
RO-based framework, where all mappings among business
partners are expressed in terms of the reference ontology. In
other words, each partner has two sets of mapping rules such
as forward and backward mapping rule sets, where the
forward mapping rule set is used to transform partner’s
proprictary data scheme to a RO-conforming scheme.
Reversely, the backward mapping rule set aims to translate
the RO-conforming scheme to a partner’s proprietary data
scheme. This framework results in reduction of interopera-
bility complexity, because each partner needs only two sets
of mapping rules, where the interoperability complexity
becomes O(n). This implies that when a new partner wants

@ Springer

iR . (R
POT 2007 AsM A 1
[Semantic
Gateway|
. Bl ‘-....n-ﬁ,-..._-_. ’ ,. . :': Tl
§ S [et SOt . L B - e i
Semantic Message Transformation understandable
— XML message

now

T 8. Oiswl

RI¥

to enter a community, it just considers the interoperability
between itself and the community’s reference ontology. As a
result, the suggested framework can be effective and
efficient, when multiple business partners cooperate for
achieving their interoperability.

6 Related works

Several related works are found in the literature. Preist et al.
[19] presented a demonstrator system which applies
semantic Web-service technology to B2B integration,
focusing specifically on a logistics supply chain. Their
demonstration system is able to cope with all stages of the
service life cycle—discovery, service selection, and service
execution. The proposed demonstrator system allows a
requestor to discover logistics service providers, select
appropriate logistics services, coordinate the services to
form a composite service chain, and communicate with the
service providers using arbitrary protocols through dynamic
mediation.

Obitko and Marik [17] reported an approach of express-
ing mappings between ontologies, and using these map-
pings for communication between agents. They chose
several ontologies that describe transportation domain and

Customers Suppliers
~

g & Reference g

@ Ontology %

2 = -

n<

=0 =
L & = .
>& > Forwarding <] Backward

<Z < mapping rule set [—>mapping rule set
Fig. 11 RO-based framework for semantic reconciliation

Int J Adv Manuf Technol (2008) 39:199-210

209

created partial mappings between them. The mappings were
expressed as matching forward rules.

Michalowski et al. [14] presented a running application,
titled in Building Finder, that integrates satellite imagery,
geospatial data, and structured and semi-structured data
from various online data sources using semantic-Web
technologies. Users can query an integrated view of these
sources and request Building Finder to accurately superim-
pose buildings and streets obtained from various sources on
satellite imagery. Building Finder is a real example that
promises seamless integration of heterogeneous data from
distributed sources, letting agents perform sophisticated and
detailed data analysis.

ATHENA [1]—Advanced Technologies for interopera-
bility of Heterogeneous Enterprise Networks and their
Applications—is an integrated project sponsored by the
European Commission, aiming to make a major contribu-
tion to interoperability by identifying and meeting a set of
interrelated business, scientific & technical, and strategic
objectives. To deal with data interoperability, ATHENA is
working with semantic data transformation as a way to
translate information stored in different formats and
systems between different enterprises. In the services level,
ATHENA adopts the model-driven service oriented archi-
tecture to solve the problem of running different applica-
tions on different architectures.

Our approach is aligned with [1] and [2] in terms of
using the same RDF transformation approach by means of
the logic programming approach. In addition to the
approaches described in [1] and [2], we focus on several
additional issues important for the real-life application,
especially for manufacturing industries, including the
practical manufacturing industry scenario, the formal
introduction of the transformation mechanism, and the
SOA based implementation for run-time transformation.
We plan to extend our approach by encompassing agent and
semantic query techniques presented in [14] and [17], so
that our demonstrator can deal with anonymous business
partners on the fly, and search for the multiple heteroge-
neous distributed service information to accomplish the
concept of dynamic supply chain.

7 Conclusions

In this paper, we have presented a semantic mediation
approach that allows many heterogeneous business partners
to achieve seamless business transactions across organiza-
tional boundaries and, thus, could eventually realize
networked organizations. The semantic mediation approach
has been implemented by developing a demonstrator
system. The demonstrator itself is not of commercial
product quality, and yet we plan to enhance it to be more

secure and robust so that it can be deployed in a real world
enterprise network environment. Overall, we believe that
our demonstrator succeeded in demonstrating the feasibility
of our approach to resolve interoperability problems,
especially in the manufacturing domain. Based on lessons
learned from this project, we expect the use of semantic
mediation technologies to become critical to achieve
interoperability between heterogeneous manufacturing en-
terprise networks in the near future.

As future work, there are many directions for improving
our current work. We are currently applying our method to
more complicated but practical manufacturing operations,
such as electronic Kanban inventory management workflow
and engineering change order processing. We also focus on
addressing scalability issues for large scale interoperability.

Acknowledgements The authors would like to thank Pat Snack,
Nenad Ivezic, Boonserm Kulvatunyou, Marko Vujasinovic, Jaewook
Kim, Jungyub Woo, and all other researchers having worked for the
ATHENA (EU-FP6) B5.10, for stimulating and guiding this work.

References

1. Athena (2004) Athena, European integrated project. http://www.
athena-ip.org. Accessed 20 August 2007

2. Bowers S, Delcamre L (2000) Representing and transforming
model based information. Proceedings of the 4th European
conference on research and advanced technology for digital
library (ECDL-2000), Lisbon, Portugal, pp 5-18

3. Chalupsky H (2000) OntoMorph: a translation system for
symbolic knowledge. http://www.isi.edu/~hans/ontomorph/
presentation/ontomorph.html. Accessed 20 August 2007

4. Chinnici R et al (2006) Web services description language
(WSDL) version 2.0. http://www.w3.org/TR/wsdl20. Accessed
20 August 2007

5. Clark J (1999) XSL Transformations (XSLT) version 1.0. W3C
recommendation. http://www.w3c.org/TR/xslt. Accessed 20 Au-
gust 2007

6. Gartner (2002) Semantic web technologies take middleware to
the next level. http://www.gartner.com/DisplayDocument?
doc_cd=109295. Accessed 20 August 2007

7. Gudgin M et al (2003) SOAP version 1.2. http://www.w3.org/TR/
soapl2-partl. Accessed 20 August 2007

8. Hameed A, Preece A, Sleeman D (2003) Ontology reconciliation.
In: Staab S, Studer R (eds) Handbook on ontologies in
information systems. Springer, Berlin Heidelberg New York, pp
231-250

9. Horrocks 1, van Harmelen F, Patel-Schneider P (2001) Reference
description of the DAML+OIL ontology markup language. Lan-
guage specification. http://www.daml.org/2001/03/daml+oil-index.
html. Accessed 20 August 2007

10. Januszewski K, Monney E (2004) UDDI Spec TC. http://uddi.org/
pubs/uddi_v3.htm. Accessed 20 August 2007

11. Jena 2 (2007) A semantic web framework. http://www.hplLhp.
com/semweb/jena2.htm. Accessed 20 August 2007

12. Kotinurmi P (2005) Towards more intelligent business-to-business
integration with semantic web service technologies. Proceedings
of the CIMRU-DERI-HP research seminar, The Digital Enterprise
Research Institute, Galway, Ireland, pp 33-35

@ Springer

http://www.athena-ip.org
http://www.athena-ip.org
http://www.isi.edu/~hans/ontomorph/presentation/ontomorph.html
http://www.isi.edu/~hans/ontomorph/presentation/ontomorph.html
http://www.w3.org/TR/wsdl20
http://www.w3c.org/TR/xslt
http://www.gartner.com/DisplayDocument?doc_cd=109295
http://www.gartner.com/DisplayDocument?doc_cd=109295
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part1
http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/2001/03/daml+oil-index.html
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.hpl.hp.com/semweb/jena2.htm
http://www.hpl.hp.com/semweb/jena2.htm

210

Int J Adv Manuf Technol (2008) 39:199-210

13. Lassila O, Swick R (1999) Resource description framework
(RDF) model and syntax specification. W3C recommendation.
http://www.w3.0rg/TR/2000/CR-rdf-schema-20000327. Accessed
20 August 2007

14. Michalowski M, Ambite JL, Thakkar S, Tuchinda R,
Knoblock CA, Minton S (2004) Retrieving and semantically
integrating heterogenous data from the web. IEEE Intell Syst
19(3):72-79

15. Miletic I, Vujasinovic M, Ivezic N, Marjanovic Z (2007)
Enabling semantic mediation for business applications: XML-
RDF, RDF-XML and XSD-RDFS transformations. Proceedings
of the 3rd international conference on interoperability for
enterprise software and applications (IESA-07), Madeira Island,
Portugal

16. Madnick SE (1995) From VLDB to VMLDB (Very MANY Large
Data Bases): dealing with large-scale semantic heterogeneity.

@ Springer

17.

18.

19.

Proceedings of the 21st very large data base conference, Zurich,
pp 11-16

Obitko M, Marik V (2005) Integrating transportation ontologies
using semantic web languages. Proceedings of the 2nd interna-
tional conference on applications of holonic and multi-agent
systems, Copenhagen, Denmark, pp 99-110

Peer J (2003) A logic programming approach to RDF document
and query transformation. Proceedings of the workshop on
knowledge transformation for the semantic web at the 15th
European conference on artificial intelligence, Lyon, France, pp
115-121

Preist C, Esplugas-Cuadrado J, Battle S, Grimm S, Williams S
(2005) Automated business-to-business integration of a logistics
supply chain using semantic web services technology. Proceed-
ings of the 4th international semantic web conference, Galway,
Ireland, pp 987-1001

http://www.w3.org/TR/2000/CR-rdf-schema-20000327

	Manufacturing interoperability using a semantic mediation
	Abstract
	Introduction
	Survey of techniques for interoperability
	Web services and Service Oriented Architecture (SOA)
	Ontology reconciliation
	RDF transformation
	Transformation between XML and RDF

	Logic programming based RDF transformation
	Interoperability using semantic rules
	SameAs 1:1 translation
	JoinTo semantic relation

	Implementation and suggestion of a scalable interoperability framework
	Implementation
	Suggestion of a scalable interoperability framework

	Related works
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

