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Abstract The problem of permutation flowshop scheduling
is considered with the objective of minimizing the total
flowtime. We present a constructive heuristic and two
composite heuristics to solve the problem. The composite
heuristics combine the simulated annealing method of
Chakravarthy and Rajendran [Production Planning and
Control 10 (1999)], the constructive heuristic of Nawaz et
al. [Omega 11 (1983)] and the new heuristic. Computational
analysis is carried out with the benchmark problems of
Taillard [European Journal of Operational Research 64
(1993)]. The two composite heuristics produce better quality
solutions than those produced by the composite heuristics of
Liu and Reeves [European Journal of Operational Research
132 (2001)]. Statistical tests of significance are used to
substantiate the improvement in solution quality.
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1 Introduction

The problem of the assignment of times to a set of jobs for
processing through a series of machines has long received
the attention of researchers. A great deal of research has
been carried out in manufacturing scheduling. The practical
importance of such problems is great, as scheduling plays a

significant role in successful production planning and
control. A variety of scheduling algorithms have been
developed over the past several years to address different
production systems. Two common problems that frequently
appear in the scheduling literature are flowshop scheduling
and jobshop scheduling. In flowshop scheduling, it is
generally assumed that the jobs must be processed on the
machines in the same technological or machine order. In
jobshop scheduling, however, jobs are commonly processed
following different machine orders.

In the flowshop scheduling problem, n jobs are to be
processed on m machines. The order of the machines is
fixed. We assume that a machine processes one job at a
time and a job is processed on one machine at a time
without preemption. Let tp(i, j) denote the processing time
of job j on machine i, and tc (i, j) denote the completion
time of job j on machine i. Let Jj denote the j-th job and Mi

the i-th machine. The completion times of the jobs are
obtained as follows:

For i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n

tc M1; J1ð Þ ¼ tp M1; J1ð Þ
tc Mi; J1ð Þ ¼ tc Mi�1; J1ð Þ þ tp Mi; J1ð Þ
tc M1; Jj
� � ¼ tc M1; Jj�1

� �þ tp M1; Jj
� �

tcðMi; JjÞ ¼ max tc Mi�1; Jj
� �

; tc Mi; Jj�1

� �� �þ tp Mi; Jj
� �

The total flowtime is defined as the sum of completion
times of all the jobs in a schedule,

Pn
j¼1 tc Mm; J j

� �
. The

goal is to obtain the n-job sequence that minimizes the
total flowtime of jobs. The control of the total flowtime is
of great practical importance in today’s production control
departments, as a small total flowtime leads to stable or
even utilization of resources, a rapid turn-around of jobs
and minimization of work in process inventory [1, 2]. In
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this context it should be mentioned that a second major line
of research in flowshop scheduling involves designing
improved heuristics (e.g., [3, 4, 5, 6]) for minimizing the
makespan, which is defined as the completion time of the
last job, tc(Mm, Jn).

For n jobs, the search space (for makespan minimization
or total flow time minimization) consists of n! possible job
sequences (n! permutations of n distinct objects). The
problem of flowshop scheduling is NP-complete [7] and
exhaustive enumeration of all n! sequences is computation-
ally prohibitive. Therefore, heuristic approaches rather than
exact methods are the most suitable optimization methods to
solve scheduling problems involving a large number of jobs.

The terms sequence (schedule) and partial sequence
(partial schedule) will be used throughout this paper.
Suppose, for instance, that the problem involves six jobs-
labeled J1 through J6. Examples of complete sequences
(schedules) include {J2, J5, J1, J3, J6, J4} and {J1, J2, J3,
J4, J5, J6}. Again, {J2, J3, J5, J1} is a four-job partial
sequence for the same problem. The following are all
possible two-job partial sequences involving J1, J4 and J6:
{J4, J6}, {J6, J4}, {J1, J4}, {J4, J1}, {J1, J6}, and {J6, J1}.

Heuristics for solving flowshop scheduling problems can
be broadly divided into two categories: constructive heu-
ristics and improvement heuristics. A constructive heuristic
generates a schedule of jobs in a series of steps, starting first
with just a few jobs, adding new jobs to a partial schedule at
every step, and eventually arriving at the complete schedule.
An improvement heuristic, on the other hand, starts with a
(possibly low-quality) complete schedule and improves upon
it, by altering it at successive iterations of the algorithm. A
third category — a hybrid approach — is also possible,
where a mix of constructive and improvement techniques is
applied. Hybridization opens up myriad possibilities — two
(or more) heuristics (constructive and/or improvement) may
be combined in many ways, including combinations of
global search and local search algorithms.

Examples of important constructive heuristics (with the
total flowtime minimization criterion) include Rajendran and
Chaudhuri [8], Rajendran [9], Rajendran and Ziegler [1],
Woo and Yim [10], Liu and Reeves [11] and Framinan and
Leisten [12]. Liu and Reeves [11] presented and empirically
analyzed what they called composite heuristics for total
flowtime minimization — a bunch of methods where the
result produced by a constructive heuristic is further refined
by some form of local search.

In this paper, we first propose a constructive heuristic
and then develop two composite heuristics that employ a
mix of our constructive heuristic, simulated annealing [13]
and the Nawaz-Enscore-Ham [3] algorithm. The remainder
of the paper is organized as follows: Sect. 2 provides a brief
review of related work; Sect. 3 presents the new construc-
tive heuristic that is used in the composite heuristics devel-

oped in Sect. 4. Section 5 analyzes empirical results of the
proposed schemes and other competing methods. Conclu-
sions are drawn in Sect. 6.

2 Relevant previous work

In the present paper we will need to refer to the following
two papers rather frequently: Nawaz et al. [3] (or NEH for
short) and Liu and Reeves [11] (or LR). A brief discussion
of the main contributions of these two papers is in order.

2.1 NEH heuristic

The NEH algorithm [3] minimizes makespan, not flowtime.
However, our constructive heuristic H (Sect. 3) draws
inspiration from NEH. Despite the existence of a plethora
of flowshop scheduling heuristics for minimizing make-
span, NEH continues to be one of the best constructive
heuristics because of its simplicity, solution quality and
time complexity. In NEH, an initial schedule of jobs —
termed the “seed” schedule — is developed by arranging
jobs in the descending order of total processing time on all
machines. The first two jobs are picked from the seed
sequence and the best two-job partial sequence is selected.
Inserting the other (unscheduled) jobs from the seed
sequence one by one at all possible positions of the current
best partial schedule, complete schedules are generated.
Finally, the best n-job schedule among the generated
schedules is selected.

2.2 Composite heuristics of Liu and Reeves

Liu and Reeves [11] proposed a new constructive heuristic
that uses a specially designed index function to choose
which job from the list of unscheduled jobs is to be selected
to be appended to the already scheduled jobs. The index
function consists of the weighted sum of two parts: the total
machine idle time and the artificial total flow time. They
compared four versions of their new constructive heuristic,
namely H(1), H(2), H(n/10) and H(n) (n being the number
of jobs) with those of Wang et al. [14], Ho [15], Rajendran
and Ziegler [1], and Woo and Yim [10]. Three versions of
the constructive heuristic, H(1), H(n/10), H(n), were then
combined with six different local search methods to build a
set of composite heuristics. Three variants each of two
neighborhood schemes, forward pairwise exchange and
backward pairwise exchange, were used in the local search.
Thus 3×6 = 18 types of composite heuristics were
obtained. It was empirically shown that the composite
heuristics are more effective than the constructive heuristics
on Taillard’s [16] benchmark problems, but at the cost of
additional computation time.
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3 A constructive heuristic

The proposed heuristic, H, builds the n-job sequence incre-
mentally, and is therefore a constructive method. It uses the
idea of generating partial schedules based on the principle
of job insertion of NEH. What leads to its improved
performance is its use of a group of promising partial solu-
tions at each stage (i.e., as each new job is added to the
sequence). An outline of the method is given below:

1. For each job j, find the total processing time Tj which is
given by Tj ¼

Pm
i¼1 tp i; jð Þ; j ¼ 1; 2; :::; n

2. Sort the n jobs on ascending order of their total
processing times.

3. Set k=2.
Take the first two jobs from the sorted list. Find the two
2-job partial sequences and consider the better as the
current sequence.

4. Update k=k + 1.
The k-th job on the sorted list is inserted into k possible
positions in the (k-1)-job current sequence, generating k,
k-job partial sequences. Select the best (with respect to
total flowtime) k-job partial sequence from among those
k sequences and set that as the current sequence. Next,
each job (except the k-th job of the sorted list) from the k-
job current sequence is placed, one by one, into the (k-1)
positions of the current sequence. As a result, the (k-1)
jobs of the current sequence produce (k-1)2 partial
sequences. Thus the total number of k-job partial
sequences in this step is k+(k-1)2. Determine the best
(with respect to the total flowtime) k-job sequence among
them and treat it as the current sequence.

5. If k=n, accept the current sequence as the final solution
and stop. Otherwise go to Step 4.

4 Two composite heuristics

We propose two composite heuristics, H-1 and H-2, by
hybridizing (i) Chakravarthy and Rajendran’s [13] version
of simulated annealing (SA), (ii) the constructive heuristic
H presented in the previous section, and (iii) the classic
NEH algorithm [3].

First, the sorted sequence of jobs (based on the ascending
order of their total processing times on all machines) is used
as the initial (start) sequence for the SA algorithm. The
solution generated by the SA is then used as the initial
sequence for H-1 or H-2. The SA generates a neighboring
sequence from a given sequence by the adjacent interchange
scheme [13]. The key parameters for SA used in this paper
are given in Table 1 (these are the same as the values used
in the Chakravarthy-Rajendran paper [13], except for the
initial and final temperatures which were 475 and 20,

respectively, in that paper; the temperatures are changed in
the present study to allow more trial sequences to be
generated).

Each of the composite heuristics H-1 and H-2 starts with
a sequence produced by the SA and then improves upon it
in several iterations. In each of these iterations, NEH is
invoked, followed by H. The number of iterations was
empirically chosen as five, as a quick-and-dirty compro-
mise between solution quality and the time to find the
solution (no attempt was made to find the optimal number
of iterations). H-1 and H-2 are similar, differing mainly in
how, in each iteration, the output of the NEH algorithm is
(or is not) fed as input to H. The pseudocode of H-1 and H-2
is given below. In the pseudocode, a sequence is better than
another if the total flowtime of the former is less than that of
the latter. For H-1, inside the main loop the sequence
produced by NEH is unconditionally used as the start
sequence of H (the idea is to allow for the possibility of
generating a good solution in future from a not-so-promising
current solution). (Recall from Sect. 3 that in the pseudo-
code for H the first two steps were needed to create the
initial sequence of jobs. When used within H-1 or H-2, the
code for H would need to be slightly modified: the output
of the first two steps in the pseudocode for H is to be
replaced with the given sequence, best-so-far-sequence.)
For H-2, however, the start sequence of H (inside the loop)
is the better of NEH’s solution and SA’s solution.

Composite heuristic #1 (H-1):
best-so-far-sequence SA’s sequence;
do 5 times
{
current-best-sequence best-so-far-sequence;
execute NEH using best-so-far-sequence as the initial

sequence;
best-so-far-sequence NEH’s sequence;
execute H using best-so-far-sequence as the initial

sequence;
if
H’s sequence is better than the better of current-best-

sequence and best-so-far-sequence

Table 1 Parameter settings for the SA

Parameter Description Value

T0 Initial temperature 675
Tf Final temperature 1
Fr_cnt Freeze counter 5
Total Total number of moves at a particular

temperature
4n

Per Percentage of accepted moves 15
rf Temperature reduction factor 0.9
Accept Number of accepted moves at a particular

temperature
n
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then
best-so-far-sequence H’s sequence;
else
best-so-far-sequence better of NEH’s sequence

and H’s sequence;
}
output best-so-far-sequence;
Composite heuristic #2 (H-2):
best-so-far-sequence SA’s sequence;
do 5 times
{
current-best-sequence best-so-far-sequence;
execute NEH using best-so-far-sequence as the initial

sequence;
if
NEH’s sequence is better than best-so-far-sequence
then
best-so-far-sequence NEH’s sequence;
execute H using best-so-far-sequence as the initial

sequence;
if
H’s sequence is better than best-so-far-sequence
then
best-so-far-sequence H’s sequence;

if best-so-far-sequence is the same as current-best-
sequence (i.e., if neither NEH nor H produced a sequence
better than current-best-sequence)

then
best-so-far-sequence better of NEH’s sequence

and H’s sequence;
}
output best-so-far-sequence;

5 Experimental results

Three algorithms — the Chakravarthy-Rajendran [13],
simulated annealing-based approach (SA) and the compos-
ite heuristics H-1 and H-2 — were run on nine different
problem sizes (n=20, 50, 100 and m=5, 10, 20) from
Taillard’s [16] benchmarks. For each problem size, ten
independent instances were created following Taillard’s
function unif() and time seeds [16]. Thus there are 90
problem instances each of which corresponds to a new tp
matrix.

H-1, H-2, and the SA were coded in C and run on a
Pentium 4, 256 MB, 2.8 GHz PC. The proposed methods
are compared with the SA and also with the composite

Table 2 ARPD and MPD with respect to the best solution

LR SA H - 1 H - 2

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD
20 5 0.8221 2.1664 10.009 20.6709 0.0363 0.2166 0.3880 1.2870

10 0.8788 1.4155 7.0631 12.1770 0.0894 0.4686 0.1244 0.6071
20 0.5019 1.3648 5.4958 8.1720 0.1445 0.6791 0.2393 1.0163

50 5 0.3471 0.7628 12.0162 16.8939 0.2799 0.6291 0.1133 0.5348
10 1.0401 1.9278 13.2673 18.2166 0.7358 3.8323 0.2979 0.9899
20 0.8644 2.2664 10.2807 12.6283 0.1403 0.5337 0.2247 1.2021

100 5 0.1501 0.4289 10.1281 14.3219 0.1332 0.4488 0.1513 0.3452
10 0.2421 0.9840 12.3532 12.8329 0.1312 0.5494 0.1785 0.6693
20 0.8412 2.1420 11.2089 14.0005 0.2273 0.9957 0.1121 0.4492

Table 3 Number of cases where best solutions were found and the average (over 10 instances) total flowtime

n m LR H-1 H-2

No. of best solutions Mean flowtime No. of best solutions Mean flowtime No. of best solutions Mean flowtime

20 5 1 14123 7 14012 5 14046
10 0 20290 7 20133 6 20139
20 2 33315 6 33198 6 33227

50 5 3 67443 1 67396 6 67285
10 1 88425 3 88145 6 87757
20 0 124869 6 123981 4 124086

100 5 4 243228 3 243267 3 243232
10 3 295772 3 295397 4 295532
20 2 387303 5 384528 6 384971
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heuristics of Liu and Reeves [11]. We did not code the LR
heuristics; we used the results published in [11] for our
comparative analysis. No single composite heuristic of Liu
and Reeves [11] performs best for all the problems in the
benchmarks, and in that paper more than one composite
heuristic have been shown to produce the best flowtimes in
several cases. Therefore, in the present paper, we use the
phrase “the composite heuristics of Liu and Reeves” to
mean any of the Liu-Reeves composite heuristics that
produced the best solution for a particular problem instance.
Specifically, the LR flowtimes used in Tables 2, 3, 4, 5 and
6 of the present paper are obtained from the “Best sol.
found” column in Table 6 of [11].

Table 2 compares the four methods using the following
performance measures: average relative percentage devia-
tion (ARPD) and the maximum percentage deviation
(MPD). The ARPD and MPD are defined as follows (TFT

stands for total flowtime of jobs, and H represents the
heuristic):

ARPD ¼ 100

10

X10
i¼1

TFTH;i � BestTFTi

BestTFTi

� �

MPD ¼ max i
TFTH;i � BestTFTi

BestTFTi

� �
� 100

Clearly, the best possible performance corresponds to both
ARPD and MPD being zero. The “best TFT” used in the
ARPD and MPD calculations is the best among the four
solutions. Table 2 shows that the proposed heuristics out-
perform LR for almost all problem sets. However, for 100
jobs and 5 machines, the performance of H-1 and H-2 is
marginally inferior to LR. Table 2 shows that the SA is the

Table 4 Comparison of total flow times for different heuristics (LR = Liu & Reeves (2001), SA = Simulated annealing (Chakravarthy &
Rajendran, 1999), H-1 = proposed heuristic 1, H-2 = proposed heuristic 2). The benchmark problems (number of jobs = 20) are due to Taillard
(1993)

n m LR SA H-1 Difference t H-2 Difference t

Mean Std. dev. Mean Std. dev.

20 5 14226 15014 14046 110.8 95.95 3.65 14046 58.6 125.82 1.47
15446 16331 15263 15395
13676 16153 13415 13386
15750 16706 15567 15731
13633 14493 13633 13618
13265 14987 13139 13223
13774 14853 13628 13628
13968 14886 13973 13973
14456 16218 14452 14638
13036 14300 13006 13006

20 10 21207 22860 21009 157.8 56.25 8.87 20911 151.3 91.23 5.24
22927 24302 22824 22848
20072 20700 19979 19979
18857 20588 18776 18890
18939 21059 18817 18773
19608 20510 19439 19402
18723 19637 18479 18500
20504 21580 20303 20303
20561 21511 20348 20433
21506 22722 21352 21352

20 20 34119 36233 34202 117.3 179.70 2.06 34284 88.1 209.52 1.33
31918 34249 31996 32026
34552 35845 34479 34479
32159 33762 31726 31902
34990 36331 34840 34605
32734 35369 32788 32697
33449 34937 33053 33053
32611 33322 32470 32800
34084 35540 33961 33961
32537 34068 32465 32465
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poorest among the four approaches; this is not unexpected,
since the SA, unlike the other three methods, is not a
composite procedure. The goal of the present study is not to
compare SA with the proposed heuristics. The SA was run
(for a time much shorter than the time for H-1 or H-2) just
to produce a sequence that can be subsequently used as the
initial sequence for both H-1 and H-2. The SA solutions
shown in Tables 2, 4, 5 and 6 are the ones that were used as
the initial solutions in H-1 and H-2.

Table 3 shows the success rate of the different methods.
For each problem instance, the best of the solutions found
by LR, H-1 and H-2 is marked as the “best” for that
instance, and then the number of the “bests” found by a
given algorithm for each 10-instance set is noted. This
number provides a measure of the success rate of a given
algorithm on a given problem. Note that it is possible for
more than one method to find the same “best” for a given
instance. Table 3 also shows the mean of the 10 flowtimes

(not all of which are the “best”) for each problem size. Both
the proposed heuristics are superior to LR for all problem
sizes except n=100, m=5.

Tables 4, 5 and 6 present empirical results of total
flowtimes for each of the ten instances of each problem,
obtained by LR, SA, H-1 and H-2. The data in these tables
show that the proposed heuristic H-1 performs better than
LR in 66 instances out of 90. H-2 is better than LR in 68
instances out of 90. If the combined result of H-1 and H-2
is considered, the performance improves to 74 instances out
of 90 (82.22%).

Tables 4, 5 and 6 also show results of statistical tests of
significance for two separate cases (LR versus H-1 and LR
versus H-2). Note that the phrase “LR versus H-1” really
means “the best algorithm from among the bunch of
algorithms collectively called LR versus H-1”. (The
algorithms that we here call LR may even include heuristics
not attributed to Liu-Reeves: there are six “Woo” entries in

Table 5 Comparison of total flow times for different heuristics (LR = Liu & Reeves (2001), SA = simulated annealing (Chakravarthy &
Rajendran, 1999), H-1=proposed heuristic 1, H-2=proposed heuristic 2)

n m LR SA H-1 Difference t H-2 Difference t

Mean Std. dev. Mean Std. dev.

50 5 65663 73273 65788 7.0 263.94 0.08 65837 158.2 241.53 2.07
68664 75706 69096 68848
64378 73262 64436 64178
69795 77043 69561 69371
70841 79000 70649 70340
68084 74296 68051 67911
67186 74032 67285 67073
65582 73522 65625 65625
63968 71190 63731 63555
70273 81523 69741 70114

50 10 88770 100734 89257 280.3 1168.49 0.75 89538 668.3 646.88 3.27
85600 93909 84634 83981
82456 93404 81213 81462
89356 99892 88408 88368
88482 97870 89194 88226
89602 99528 91982 88587
91422 102477 90842 90353
89549 100699 89308 88849
88230 102826 86981 87842
90787 99552 89632 90365

50 20 129095 139659 128469 888.3 742.44 3.78 128741 783.0 884.50 2.80
122094 135740 120610 121269
121379 132529 118931 118689
124083 133752 124323 123663
122158 133542 121652 121786
124061 137626 123331 123428
126363 139601 125529 127038
126317 140434 125080 124688
125318 135399 124241 124363
127823 137056 127642 127196

The benchmark problems (number of jobs=50) are due to Taillard (1993)
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Table 6 in [11].) Each test suite gives us 10 pairs of flowtime
values and we thus have a paired comparison. For each test
suite, the mean and the standard deviation of the ten
differences in flowtimes are obtained. The difference in each
instance is obtained by subtracting the flowtime of the pro-
posed scheme from that of LR. We now test the hypothesis
that the population corresponding to the differences has
mean, μ, zero. Specifically, we test the (null) hypothesis μ=0
against the alternative μ>0. We assume that the flowtime
difference is a normal random variable, and choose the
significance level α=0.5. If the hypothesis is true, the
random variable

t ¼
ffiffiffiffi
N

p X � m0

S

has a t-distribution with N - 1 degrees of freedom, where N =
sample size, X = sample mean, S = sample standard
deviation, and μ0=0 [17]. The critical value c is obtained

from the relation probability ( t>c) = α=0.05. From the
standard tables of t-distribution, we have for nine degrees
of freedom c=1.83. For example, the first statistical test
(LR versus H-1) in Table 4 corresponds to N=10, μ0=0,

Table 6 Comparison of total flow times for different heuristics (LR = Liu & Reeves (2001), SA = simulated annealing (Chakravarthy &
Rajendran, 1999), H-1 = proposed heuristic 1, H-2 = proposed heuristic 2)

n m LR SA H-1 Difference t H-2 Difference t

Mean Std. dev. Mean Std. dev.

100 5 256789 287594 257444 −38.9 689.01 −0.18 256409 −4.3 436.50 −0.03
245609 274501 246145 245935
241013 266587 240976 240675
231365 252729 230377 231013
244016 270662 244877 243783
235793 257817 236150 236607
243741 271694 243806 243806
235171 267917 234353 234787
251291 283093 251885 251885
247491 270922 246655 247422

100 10 306375 337234 305696 375.8 1303.75 0.91 306692 242.0 1284.11 0.60
280928 316073 281272 281422
296927 335293 296856 296598
309607 341298 309428 308577
291731 329427 291728 291728
276751 316874 277283 277297
288199 320648 286251 287345
296130 334357 297757 298112
312175 348804 309133 309239
298901 330834 298562 298308

100 20 383865 418032 375815 2775.8 2846.67 3.08 375815 2332.5 3497.06 2.11
383976 436450 382849 384800
383779 416032 380334 380798
384854 428088 384583 382863
383802 422639 379477 379477
387962 423331 382711 381754
384839 425737 386101 388671
397264 443856 397634 397634
387831 428415 384442 386567
394861 430781 391329 391329

The benchmark problems (number of jobs = 100) are due to Taillard (1993)

Table 7 Average (over 10 instances) computation time consumed by
H-1 or H-2 for a single instance

n m CPU time (seconds)

20 5 0.2
10 0.4
20 0.86

50 5 6
10 12
20 25

100 5 99
10 197
20 156
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X=110.8, S=95.95, and the sample t ¼ ffiffiffiffiffi
10

p
110:8� 0ð Þ=

95:95 ¼ 3:65. Since t >1.83, we conclude that the differ-
ence is statistically significant. From Tables 4, 5 and 6 we
see that in most of the cases, H-1 or H-2 or both are
statistically significantly better than LR. There is only one
case (n=100, m=5) where the mean difference is negative
for both H-1 and H-2, but even in this case LR is not
statistically significantly better than our approach.

To provide an idea of the amount of time involved in the
computation, Table 7 shows the execution time for a single
instance of the problem (obtained as the average of ten
independent instances). No attempt at refining or optimizing
the code was made, and debugging, print and other
statements were not deleted. The times for H-1 and H-2
were approximately the same. For 100 jobs and 20 machines
(the last row in Table 7), the main loop was executed only
two times, instead of five (hence the relatively shorter
time). As can be seen from the pseudocode for H-1 and H-2,
the major part of both of these algorithms is spent in the
outermost loop, and the NEH algorithm accounts for a
substantial part of the loop cost. The experiments reported
here used the original NEH algorithm which is known to
have a time complexity of O(mn3). A better variant of
NEH, such as Taillard’s [18] improvement of NEH that
runs in O(mn2) time, would result in significant savings in
the run time.

6 Conclusion

Two composite heuristics for the minimization of total
flowtime in permutation flowshop scheduling problems
have been presented in this paper. Computational experi-
ments on standard benchmark problems have been carried
out. The composite heuristics have been shown to produce
results that meet or beat, in a statistically meaningful way,
those produced by the composite heuristics of Liu and
Reeves [11]. This study shows that composite (or hybrid)
heuristics are an attractive alternative to the more traditional
simple heuristics for flowshop problems, especially when
the solution quality is of prime concern. A downside of
complicated composite procedures is the larger computation
times. However, with computationally efficient versions of
the basic algorithms that build the composite method, the
run time of composite procedures can be brought down to
acceptable levels.

A difference between the proposed algorithms and the
composite heuristics of [11] is that the latter approach is

rather problem specific in the sense that no single heuristic
produced high-quality solutions for all the test problems,
whereas either of the two composite heuristics presented in
this paper performed very well on almost all the problems
in the testbed.
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