
ORIGINAL ARTICLE

Identification of product definition patterns in mass
customization using a learning-based hybrid approach

Li Yu & Liya Wang & Jianbo Yu

Received: 19 December 2006 /Accepted: 4 July 2007 /Published online: 11 August 2007
Springer-Verlag London Limited 2007

Abstract Mass customization, which aims at satisfying
individual customer needs with near mass production
efficiency, has become a major trend in industry. Adopting
the mass customization paradigm, customer preferences
have a significant impact on the product design process.
Thus, it is important for companies to make proper decisions
in translating the voice of customers to product specifica-
tions. To facilitate this process, a learning-based hybrid
method named KBANN-DT is proposed, which combines
knowledge-based artificial neural network (KBANN) and
CART decision tree (DT). In this method, the KBANN
algorithm is applied to modeling the relationship between
customer needs and product specifications. With prior
domain theory, KBANN can provide a high generalization
performance even if the data set is small. Based on the
trained KBANN network, the CART DT algorithm is
employed to extract rules from it. To illustrate the effective-
ness of the proposed method, a case study in an elevator
company is reported. The results show that the proposed
method can be a promising tool for product definition.

Keywords Customer needs . Decision tree . Functional
requirements . Knowledge-based artificial neural network .

Mass customization . Product definition

1 Introduction

In the current scenario of globalization and strong compet-
itive environment, it has become imperative for companies

to satisfy a wide spectrum of customer demands within
limited products. To meet this challenge, companies pursue
a strategy of mass customization (MC), which makes the
identification and fulfillment of the wants and needs of
individual customers without sacrificing efficiency, effec-
tiveness, and low costs [1]. Accordingly, understanding
what customers really want is at the center of overall design
process for mass customization. However, customer needs
(CNs) are normally qualitative and tend to be imprecise and
ambiguous owing to their linguistic origin [2]. Furthermore,
customers and designers often hold different views to a
same product, which often leads to misunderstanding
between them. Therefore, it is demanding for a manufac-
turer to uncover customer preferences to be more compet-
itive in the ever-changing market.

Product definition (PD), to capture and understand
customer needs effectively and subsequently to transfer
them into design specifications, is one of the essential
premises for successful product design in today's compet-
itive global market [3]. During this phase, customers,
marketers and engineers work together to make proper
decisions in translating the voice of customers into product
specifications (e.g., specific functional requirements). In a
mass customization system, enterprises need to satisfy
diverse niches while maintaining near-mass production
efficiency [4]. To improve the commonality and modularity,
certain customer needs are often mapped into a “right”
product family (PF) and then detailed functional require-
ments (FRs) are derived from a functional perspective of
product family architecture (PFA) [5, 6]. Hence, product
definition involves two main stages. The first stage is to
identify product definition patterns. In this stage, the
mapping relationship between customer needs and product
families is investigated. The second one is called the
“refinement” process [7]. The key issue of this stage is to

Int J Adv Manuf Technol (2008) 38:1061–1074
DOI 10.1007/s00170-007-1152-3

L. Yu (*) : L. Wang : J. Yu
Department of Industrial Engineering and Management,
Shanghai Jiao Tong University,
Shanghai 200240, People’s Republic of China
e-mail: yuli_sjtu@163.com

transform specific customer needs into product specifica-
tions, which is a “zigzag” process [8] between customer
domain and functional domain.

Being the front end of the whole design process,
decisions made in the first stage of PD have great influence
on the cost and customer satisfaction. Although it is the key
to a successful design, this stage receives only limited
attention. During this stage, two major goals are pursued.
The first is the quality of decision: modeling the mapping
relationship between CNs and PFs with high accuracy. The
second is the reason of decision: provide engineers with
concise knowledge of customer preferences. This issue is as
important as, if not more important than the first one.
Nevertheless, these two goals are not easy to be fulfilled for
the following reasons:

(1) Customer needs are often fuzzy and imprecise;
(2) The mapping relationship between customer domain

and functional domain is often complicated nonlinear;
(3) Design knowledge of product definition incompletely

and implicitly exists in experts and historical database.

Various approaches and strategies for product definition
have been reported in literature. Jiao and Chen reviewed
research work carried out toward customer requirements
elicitation, analysis, and specification [9]. Quality function
deployment (QFD) is widely used in the early phase of
requirements and specifications, which links both market-
ing and engineering [10, 11]. By means of house of quality,
QFD has become a way to translate the voice of customers
into design specifications. To capture the voice of custom-
ers, Chen [12] used a laddering technique in the elicitation
of customer requirements and used the ART2 neural
network in evaluation and market analysis. With adaptive
conjoint analysis, Du et al. proposed a systematic approach
to understand customer needs in product customization
[13]. Other analytical techniques, such as Kansei engineer-
ing [14], sorting technique [15], are useful for making
rational decisions in product design. However, these
methods assume that the product development process
starts from “a clean sheet of paper”, which may result in
long lead time and uncontrollable variety [5].

To take advantage of the wealth of customer requirement
information accumulated in existing products, many
researches investigate the mapping relationship between
customer needs and functional requirements with machine
leaning techniques [2]. On the basis of functional require-
ments classification, Jiao et al. [8] proposed a classification
tree algorithm to realize the mapping in product definition.
However, the classification tree algorithm is sensitive to the
splitting rule and the structure of the tree may be not be
appropriate or not very predictive. Chen et al. used neural
networks (NNs) to facilitate product definition in mass
customization [16]. Although NNs are capable of learning

complex nonlinear relationships and perform well with
missing or incomplete data [17], its architecture is viewed
as a black-box that is difficult to understand. To discover
knowledge from past sales and product records, Jiao et al. [18]
tried to find the relationship between customer needs and
product specifications with association rule mining tech-
niques. Related work by Shao et al. [19] used data mining
and rough set to tackle the relationship between customer
needs, product specifications, and configuration alternatives.

Most research mentioned above investigated product
definition based on either domain theory (a set of inference
rules with respect to customer preferences) or empirical
cases (historical database). However, it is a common scene
that both knowledge resources incompletely exist in a
company and have intersection or not. It is obvious that the
union of them is bigger than any single one. Thus, eliciting
design knowledge from both information resources, engi-
neers can better understand the relationship between
customer needs and design requirements.

In this paper, we describe a learning-based hybrid
method named KBANN-DT (knowledge-based artificial
neural network-decision tree) to facilitate the first stage of
product definition-identifying product definition patterns.
Integrating the merits of KBANN and classification tree,
this mechanism learns from the two knowledge resources.
With its help, designers can work out specific products by
referring to previous successful solutions instead of
attempting a completely new design. It is expected to
shorten the lead time of PD, especially in the current
knowledge-intensive environment.

This method can be divided into two steps. First,
knowledge-based artificial neural network (KBANN) [20]
is applied to modeling the mapping relationship in PD with
two knowledge resources, i.e., domain theory and empirical
cases. In this algorithm, the initial topology of the neural
network is determined by domain theory, which is then
refined through training. Many researches [21, 22] demon-
strates that KBANN generalizes better than the algorithms
that only utilize one of these information sources, such as
standard backpropagation, decision tree, EITHER, etc. It
can perform well when examples and domain theory are
insufficiently available. Table 1 shows the summarized
reasons of adopting the KBANN algorithm for product
definition. Then, with this algorithm, both information
resources that incompletely exist in a company can be
utilized to increase the quality of decisions. However, a
major subject of the criticisms is the unexplainable nature
of a trained KBANN network. Then, in the second step,
refined and comprehensible rules are needed to be extracted
from KBANN. Instead of using the MofN method proposed
by Towell [23], we use CART decision tree [24] to extract
rules as it is easier to understand and convert to IF...THEN
rules. It is similar to the ANN-DT algorithm proposed by

1062 Int J Adv Manuf Technol (2008) 38:1061–1074

Schmitz et al., which is able to extract rules from a neural
network [25, 26]. As the ANN-DT algorithm does not
depend on any assumptions with regard to the structure of
the neural network [25], it can be used to understand the
behavior of the trained KBANN network by means of
heuristic rules. With the extracted rules, design engineers
can better understand customer preferences.

The rest of this paper is organized as follows. In Sect. 2,
the framework of product definition based on KBANN-DT
is discussed. In Sect. 3, the construction of KBANN-DT is
illustrated. In Sect. 4, a case study of identifying product
definition patterns in an elevator design is presented with
the focus on its learning and interpreting ability. Finally in
Sect. 5, the main contribution of this paper is summarized
and future work is discussed.

2 Problem formulation

This research addresses the decision problems in the early
stage of product design, which begin with customer needs
and end with a set of functional requirements. It involves
zigzagging mapping process between customer domain and
functional domain with creative conceptualization [8]. In
practice, most new products evolve from existing products,
i.e., so-called variant design [18]. Following this opinion,
Fig. 1 illustrates the principle of product definition based on
the KBANN-DT method. In a company that pursues MC
strategy, FR patterns (including FR topology, FR classifi-
cation and FR templates) act as the base products to be
modified to meet specific customer needs [5]. In this way,
manufactures can make use of historical data, design
theory, product evolution paths, and feedback from cus-
tomers on current products. It maintains the integrity of the
product family and the continuity of the infrastructure,
thereby leveraging existing design and manufacturing
investments [2].

In the customer domain, customer needs can be
described as a set of features or attributes. Generally, Parato
analysis or factor analysis is used to identify the customer
requirement variables {CVp}, CVp=(cn1, cn2,..., cnI), p∈
{1, 2,..., P} where P is the total number of customers and I
is the number of customer features or attributes. Each
feature, cni∣∀i∈[1, 2,..., I], may take on one out of a finite

set of options, cni 2 cn1i ; cn
2
i ; . . . ; cn

Ji
i

� �
, where Ji denotes

the option number of the ith feature. Thus the requirement
information of a particular customer, CVp, can be depicted
by a vector of certain options of these features, for example,
CVp=(cn1

2, cn2
1,..., cnI

3), where cn1
2 refers to the second

option of feature cn1 that is chosen by the pth customer,
cn1

2 the first option of feature cn2, and cnI
3 the third option

of feature cnI. The customer domain is then characterized
by a set of vectors, ΩCV={CV1, CV2,..., CVp}.

From the functional perspective, a product family
contains a set of functional requirements and their topology.
It can be represented by a representative center vector and
variation ranges, i.e., FR template (FRT) [5, 8]. Usually,
fuzzy clustering analysis technique is used to cluster similar
functional requirements [18]. Then, a product family is
noted as a tuple: FRTk=μk, Δk, k∈{1, 2,..., K}, where K is
the total number of FR templates, μk is the center vector of
the kth FR template, and Δk is the variation range of the
vector μk. Here, μk=(μk

1, μk
2,..., μk

M), Δk=(δk
1, δk

2,...,
δk

M), where M is the number of product attributes (FRs),
μk

m∣∀m∈[1, 2,..., M] is the center value of the mth product
attribute, and δk

m∣∀m∈[1, 2,..., M] is the variation range of
the mth product attribute. The functional domain is then
characterized by a set of vector tuples ΩFRT={FRT1,
FRT2,..., FRTk}.

Based on the company’s sales records and product
documentation, customer transaction records (T) is defined
as: T∼{(CVq, FRTq)∣q=1, 2,..., Q} where CVq∈ΩCV,
FRTq∈ΩFRT and Q is the number of historical transaction
records. The underlining meaning of the coupled data, CVq

and FRTq, is the mapping relationship between customer
and functional domain. Hence, these transaction data are
used for the training in the KBANN-DT algorithm to obtain
the internal logic of the design process.

Domain theory, another knowledge resource in a
company, plays an important role throughout the whole
design process. In this research, domain theory of product
definition refers to the inference rules between CN
attributes and FR templates. In the form of a set of IF...
THEN rules, domain theory embodies the customer
preference to different product families. Taking computer
design as an example, inference rules can be: IF customer
requires a computer with high game performance and
advanced multimedia THEN P4 2.8G series computer is

Table 1 The rationale for adopting the KBANN algorithm for product definition

Product definition characteristic Corresponding reason for adopting KBANN

Cannot be represented by simple mathematical formula Can be used to modeling linear or nonlinear complex problems
Contains prior expert knowledge and historical database Combines symbolic and empirical learning techniques
Identifies customer preferences correctly Can achieve high accuracy
Holds prior expert knowledge that may be partially correct Is robust to domain theory
Holds limited historical cases Requires less data

Int J Adv Manuf Technol (2008) 38:1061–1074 1063

preferred; IF customer requires a computer with normal
game performance and basic multimedia THEN P4 1.8G
series computer is preferred.

Symbolic rules, the inference rules of PD, can be
incomplete or approximately correct. It is used for the
construction of a neural network. Hence, nodes distribution
and link weights of the network are specified based on the
initial knowledge of product definition. Then, more nodes
and links can be added for default rules. These newly added
units would allow the network to learn relations not
anticipated in the pre-existing symbolic rules. At last, the
network is trained with historical transaction records. It
enhances the performance of the network and makes it
reliable for product definition.

These symbolic rules that reflect the mapping relation-
ship in PD can be extracted from design engineers in a
company. It is achieved by the following steps. At first, the
statements of PD extracted are grouped into different
categories based on the CN features they reflected. Similar
statements are merged into a single statement. The
simplified statements are then transformed into a set of

hierarchically structured IF...THEN inference rules required
by the symbolic module of KBANN.

Following these points, the proposed method aims to
study the mapping relationship in PD from the above two
knowledge resources. In general, product definition of
variant design is performed by the following procedures.

Firstly, historical transaction records and domain theory
are accumulated in a knowledge base.

Secondly, a knowledge-based neural network is con-
structed. This procedure converts the inference rules into a
neural network, which is used as a starting point for
incremental learning. The input nodes of the neural network
correspond to attributes of customer needs. The hidden
nodes are decided by the hierarchical structure of symbolic
rules, whereas the output nodes correspond to final
conclusions of rules, i.e., product families.

Thirdly, customer transaction records are used as the
training set for the knowledge-based neural network. As
these historical data embodies the mapping relationship of
customer needs and product families, the network is able to
identify product definition patterns at a high accuracy. When

Fig. 1 Product definition based
on the KBANN-DT method

1064 Int J Adv Manuf Technol (2008) 38:1061–1074

a customer presents his requirement for a product, the
requirement is fed to the network and designers can locate
a suitable product family by the output of the network.

Fourthly, a rule extraction algorithm is performed to
understand the behavior of the knowledge-based neural
network. It is helpful for understanding the decisions made
by the network.

Finally, on the basis of the located product family
(coupled FR pattern) and the rules extracted from the
trained KBANN network, design engineers are able to work
out product specifications with less effort and shorter time.
In this way, new product specifications can be developed
based on the existing product families to meet various
customer requirements, which can improve commonality
and modularity of these products.

3 The KBANN-DT method

Identifying product definition patterns is a crucial step
because design information is incomplete and design
knowledge is minimal at the beginning of product defini-
tion. Generally speaking, design knowledge can be divided
into two types. One is company’s sales records and product
documentation, i.e., database of empirical cases; the other is
domain theory, from which initial symbolic rules can be
obtained. To make full use of the wealth of a company, both
should be utilized during this stage.

The general diagram of the KBANN-DT approach is
presented in Fig. 2. It is comprised of two steps. The first
step is quite similar to the method presented by Towell [20]:
the KBANN algorithm. Its structure is constructed with
symbolic rules and then is refined by training. After training,
KBANN can map different customer needs into
corresponding FR templates. However, neural learning in
KBANN ignores the symbolic meaning of the initial network
[20]. That is, determining exactly why this trained KBANN
network makes a particular decision is still a daunting task.

Many researchers have shown that useful rules can be
extracted from a trained neural network [27, 28]. In this

paper, we use a method of extracting a decision tree from
input data generated from a trained neural network [25, 29].
The decision tree algorithm is one of data mining technologies
with several advantages:

(1) It executes fast
(2) It can handle a high number of records in a high

number of fields with predictable response times
(3) It can be better understood and easily be translated

into IF...THEN rules.

For many cases, a decision tree extracted from the input
data generated from a trained neural network has a higher
generalization ability than doing it from the original
training data set [25, 29]. Then, the proposed method is
expected to extract a decision tree with higher accuracy,
i.e., achieving better rules. These rules can help design
engineers grasp the knowledge acquired by KBANN and
then make proper decisions to meet various customer
requirements. Also, these rules can be used to enrich
domain theory that improves the generalization of the
KBANN.

Therefore, the method is able to capture the high
accuracy of KBANN and the comprehensibility of the
decision tree. It is important to emphasize here that this
method can not take the place of engineers’ creative work.
However, it does alleviate the engineer’s burden in the
refinement process of product definition, which is often a
tedious, time-consuming, and error-prone process. The
detailed description of this method is discussed as below.

For convenience in demonstrating the KBANN-DT
method, the following assumptions are made:

(1) Historical transaction data is stored in database
(2) Domain theory exists in design engineers.

3.1 KBANN

Knowledge-based artificial neural network (KBANN),
combining empirical and symbolic learning techniques, is
a learning-based hybrid intelligent system that is built on

Fig. 2 The KBANN-DT
method

Int J Adv Manuf Technol (2008) 38:1061–1074 1065

the top of connectionist learning techniques [20]. It maps
problem-specific “domain theories”, represented in propo-
sitional logic, into a neural network (NN) and then refines
this reformulated knowledge using backpropagation. The
combination of both techniques performs better than either
method alone, as the strengths of one method make up for
the weaknesses of the other [30]. The superiority of
KBANN is demonstrated in many fields, such as disease
diagnosis [21], time series analysis [31], and customer
relation management [32].

The process of KBANN consists of two steps. The first
is a “rule translation” algorithm that maps the structure of
an approximately correct domain theory into a neural
network structure. The domain theory of product definition
is derived from engineers. Originally they do not know the
topology of the neural network. Following the rules-to-
network algorithm of Towell and Shavlik [20], designers
can construct the initial topology of a neural network. It
prevents the network from learning from scratch. Then, the
defined network is trained using the backpropagation
learning algorithm. It refines the knowledge embedded in
the network topology. The approach taken by KBANN is
outlined in Table 2.

3.2 Construction of KBANN

3.2.1 Inputs, outputs, and initial neural network topology

In this paper, KBANN is used to model the mapping
relationship between customer needs and functional re-
quirement templates. Hence, the inputs of KBANN are
customer needs and the outputs of KBANN are the coupled
functional requirement templates, as well as the initial
topology of KBANN as decided by domain theory.

Transform inputs It is well known that the performance of a
neural network mainly depends upon the input features
selected for its training [33]. In this research, the customer
needs used as inputs are core needs from high-end customer

segments [34]. To obtain what customers really want,
Blecker proposed an advisory system to elicit customers'
objective needs in mass customization [35]. Then, customer
needs can be represented by a set of vectors {CVp}, CVp=
(cn1, cn2,..., cnI).

The features of CN vectors, i.e., cni can be either
numerical or nominal. In this research, numerical data is the
data measured or identified on a numerical scale. An
example is car/max speed (km/h) has values: 100, 150, and
200. Nominal data is the data that refers to named
categories whose order is arbitrary. An example is car/color
has values: white, red, blue and yellow.

Then, these CN features are transformed into the inputs
for KBANN.

For a numerical CN feature, each feature is assigned to
one input unit of KBANN. Its options are normalized into
the range of [0, 1] following Eq. (1). In Eq. (1), cnjii denotes
the ith CN attribute that takes the jith option (each option
corresponds to a numerical value), cnjii * denotes the
normalized CN attribute cnjii , and Ji denotes the option
number of the ith CN attribute.

cnjii * ¼
cnjii � min

1�ji�Ji
cnjii

� �

max
1�ji�Ji

cnjii
� �� min

1�ji�Ji
cnjii

� � : ð1Þ

For a nominal CN feature, each of its options is assigned
to one input unit of KBANN. The corresponding input value
is set to 1, if one option is required by a customer. Otherwise,
the input value is set to 0. For example, if CN feature car/
color has three options: red, blue and black, then three input
units: Color-is-red, color-is-blue, color-is-black, will be
created. When a customer requires a red car, the values for
the three input units can be: 1 0 0. As a particular case, if a
nominal feature has only two options, both are assigned to
only one input unit. The input value is set to 1, if one option
is chosen. Otherwise, the input value is set to 0.

Outputs As the outputs of KBANN, each node corresponds to
a product family, which can be denoted as a tuple: FRTk=(μk,
Δk). Therefore, there is K output nodes as the design space
of function domain is ΩFRT={FRT1, FRT2,..., FRTK}.

Initial neural network topology In this process, a symbolic
knowledge encoding procedure is taken to translate domain
theory (in the form of inference rules) into a network of
threshold neurons using rules-to-network algorithm [20].
The procedure of constructing the initial topology of a
KBANN is listed in Table 3. Towell’s KBANN module
only processes elementary production rules (IF...THEN
rules) of order 0. Osorio and Amy extend it to accept the
production rules of 0+ [36]. The rule forms can be seen in
Table 4.

Table 2 The learning procedure of KBANN

Framework Description

Given -A list of features to describe examples
-An approximately correct domain theory with a set of
rules

-A set of examples
Procedure -Map the domain theory structure into a neural network

structure
-Train the knowledge-based network with the classified
examples

-After training, the neural network can classify future
examples

1066 Int J Adv Manuf Technol (2008) 38:1061–1074

Correspondingly, Fig. 3 illustrates the mapping method
between rules and neural networks with some simple
examples. In Fig. 3, B is the bias of a node and p can be
any constant value. The initial weights of the links can be W
or -W, where W is a positive value that is set empirically [20].
More precisely, Fig. 3a is an example for conjunctive rules.
The link weight is set to W for a positive antecedent or -W
for a negated antecedent. The bias on the consequent node
(node corresponding to the rule’s consequent) is set to (β-0.5)
W, where β is the number of antecedents of an translated
rule. Similarly, for disjunctive rules (see Fig. 3b), the link
weights are set to W and the bias on the consequent node is
set to 0.5W. As for the inequality (“>” or “<”), the link
weight is set to W or -W, whereas the bias of the consequent
node is set to W*p or -W*p, respectively (see Fig. 3c and d).
For complex rules, they can be decomposed into a set of
simple rules and then mapped into a network [20].

Therefore, the resulting network is constructed with the
rules. Before learning, the activation of the networks leads to
the same results (outputs) as those obtained with the rules.

3.2.2 Neural network training

Once domain theory is translated into the initial topology of
a neural network, KBANN is trained with historical
transaction records. Using the backpropagation algorithm
[37], KBANN refines its network via adjusting its link
weights. To improve the performance in both training time

and generalization, we use the cross-entropy error function-
Eq. (2)-rather than the standard error function [20]. In Eq.
(2), ai is the activation of output unit i, di is the desired
activation for unit i, and n is the number of output units.

Error ¼ �
Xn

i¼1

1� dið Þ* log2 1� aið Þ þ di* log2 aið Þ½ � ð2Þ

The training set for the neural network is T∼{(CVq,
FRTq)∣q=1, 2,..., Q}, which can be obtained from the
company’s sales records and product documentation.
Through training, domain theory is revised and embodied
in the links and weights of the neural network. Thus, the
KBANN augments its network to learn concepts not
provided by the initial rules.

3.3 Rule extraction from the trained KNANN network

After the construction of KBANN, the following step is to
extract design knowledge from it. The extracted rules can
help engineers comprehend the mapping relationship
between CNs and FRs and scheme out suitable product
specifications.

Here, the trained KBANN network is denoted as N°. The
original data used for training KBANN is denoted as T∼
{(CVq, FRTq)∣q=1, 2,..., Q}. And the detailed procedures
of rule extraction are illustrated as follows:

(1) New artificial data sets are generated. Initially, each
feature vector CVq in the original train set T is fed to
the trained KBANN network N°, and then a class label
FRTq

α is derived from the output of N°. Note that
FRTq

α may not be identical to the original output, i.e.,
FRTq. By combining CVq and FRTq

α, a new data set
Tα∼{(CVq, FRTq

α)∣q=1, 2,..., Q} is generated.
(2) To enrich the resource for rule induction, more data is

generated randomly. It is accomplished by randomly
sampling the input (CN) space, and computing the
target values for these sampled points by means of the
trained KBANN network N°. For each randomly
generated input vector CVl

β, if it is fed to N°, a
functional requirement template FRTl

β is the output
from the network, l∈{1, 2,..., L}, where L is the
number of the new data set that is generated. By
combining CVl

β and FRTl
β, the additional training

Table 3 The procedure of constructing the initial topology of a KBANN

Step Description

1 Rewrite rules to eliminate disjuncts
2 Map rule structure into a neural network
3 Add important features not specified in mapping
4 Add hidden units to the neural network
5 Label units in the KBANN according to their level
6 Add links not specified by translation between all units in

topologically-contiguous levels.
7 Perturb the network by adding near-zero random numbers to

all link weights and biases.

Table 4 Different rule forms

Rule type Description

Rules of order 0 Form IF <Condition> (True/False) AND/OR <Condition> (True/False)...THEN <Conclusion>
Example IF B is False AND C is True THEN A

Rules of order 0+ Form IF <Feature> <Operator> <Value> AND/OR <Feature> <Operator> <Feature>...THEN <Conclusion>
Example IF B Greater Than 1.0 OR C Less Than 2.0 THEN A

Int J Adv Manuf Technol (2008) 38:1061–1074 1067

data Tβ∼{(CVq
β, FRTl

β)∣l=1, 2,..., L} is generated.
The size of Tβ, L, is determined by experiments.
Subsequently, both data sets are united as one set
denoted by Tγ=Tα∪Tβ, which is used as the train data
for a decision tree algorithm.

As the KBANN algorithm usually has strong general-
ization ability [20], some bad ingredients of T, such as the
noise, can be depressed by the process of KBANN.
Therefore, the new data set Tγ is considered to be better
than the original data set T for rule induction.
(3) Based on the new data set Tγ, a decision tree algorithm

is used to extract rules. It can be obtained by means of
rule induction algorithms such as ID3, C4.5, or CART
[25]. In this research, classification and regression tree

(CART) [24], a widely applied standard decision tree
algorithm, is used for rule induction to understand
the neural network. The splitting criterion chosen by
the CART algorithm is Gini’s diversity index [38]. The
variant of CART used in this paper made use of
minimal error complexity pruning with ten-fold cross-
validation estimates.

4 Case study

During the product definition phase in an elevator compa-
ny, the KBANN-DT method is employed to facilitate the
translation of a prioritized set of customer requirements into
a set of functional requirements. Increasing demands for
various elevators push manufacturers to increase product
diversity while maximizing internal commonality. They
develop new elevators by refining the existing elevators to
meet different customer needs within a short time and low
cost. In this research, the company had conducted extensive
market researches and derived the data of customer
expressions of various functionality related to elevators.
These data have been collected from market surveys and
analyzed based on natural language processing. Another
resource of design knowledge, symbolic rules, is derived
from design engineers with the method proposed in Sect.
3.2.1. As a result, two knowledge resources are utilized to
modeling the relationship between customer needs and
elevator specifications. Although this method cannot take
the place of design engineers’ creative work, it does help
design engineers realize what customers really want or what

Table 5 Customer needs

CN feature Option NN Code

cn1 Description Type

cn1 Location Nominal Hotel L1 1,0
Office L2 1,0
Mall L3 1,0
Hospital L4 1,0
Residence L5 1,0

Application Nominal Passenger A1 1,0
Cargo A2 1,0
Service A3 1,0
Tour A4 1,0
Medical service A5 1,0
Firefighters’ service A6 1,0
Passenger-cargo A7 1,0

cn3 Speed m/s Numerical 0.5,1.0,1.5,1.75,2.0,2.5,3.0 SP 0,0.2,0.4,0.5,0.6,0.8,1
cn4 Floors Numerical 2,3,...,40 MS 0,0.026,...1
cn5 Car capacity(Kg)a Numerical 320,400,...,5000 WE 0,0.017,...,1
cn6 Decoration Nominal luxury,regular DE 1,0

a Car capacity can also be represented by the number of passengers, e.g., 13 person=900 Kg, 15 person=1000 Kg.

Fig. 3 The mapping method between rules and neural networks

1068 Int J Adv Manuf Technol (2008) 38:1061–1074

product can keep high customer satisfaction with the least
loss of commonality.

Investigation and analysis on the elevator market shows
that the main concerns of CNs can be summarized into six
categories as described in Table 5. In this table, cni∣∀i∈[1,
2, ..., 6] denotes each CN feature for elevators. For
example, cn1 (i.e., “location”) means where an elevator is
installed, cn4 (i.e., “floors”) means the stops of an elevator,
etc. Among these six features, designers can find that the
‘location’ ‘application’ and ‘decoration’ are of nominal
type, while all the rest are numerical variables. The column
“option” provides the options of each CN feature, the
column “NN” refers to the KBANN’s input nodes (see
Fig. 4) corresponding to the options in the column “option”,
and the column “code” offers the numerical form of each
option for KBANN. The numbers in the column “NN” and
“code” are achieved following the transforming method
mentioned in Sect. 3.2.1 (1).

Correspondingly, the company developed seven product
families to meet different market segments. As listed in

Table 6, each product family is characterized by nine
specifications from the functional perspective. In this
research, only the elevators with machine room are
investigated. Indeed, the machine-room-less elevators can
also be managed in a similar way.

Then, sales records containing customer needs and their
related FR templates are taken as the train set. As illustrated
in Table 7, there are 272 transaction records in the case
study, i.e., T∼{(CVq, FRTq)∣q=1, 2,..., 272}, where CVq

contains six customer attributes from Table 5 and FRTq can
be any one of the seven FR templates in Table 6. The first
column of Table 7 is the customer serial number and the
following columns are customer needs and related solutions
(FR templates).

As another knowledge resource, initial symbolic rules
that are derived from the experts are summarized in
Table 8. Hence, domain theory is represented as a set of
production rules. There are a total of six rules for KBANN.
Each rule states the relationship between CNs and FR
templates. Rule 1 means, for example, if the application of a

Fig. 4 The topology of KBANN

Table 6 FR templates and relative functional requirements

FR Template Functional requirement

Load (kg) Speed
(m/s)

Max
floor

Max
height (m)

Door opening
width (mm)

Car area
(m2)

Motor
power (KW)

Door
opening type

Motor
control

FRT1 center value 1000 1.42 24 80 1100 3.45 13 Side or center VVVF
variation range 0 1∼1.75 0 0 0 0 11∼15 0 0

FRT2 center value 2071 0.57 10 30 As specified As specified 15.14 Up-down VWF
variation range 1000∼3000 0.5∼1 0 0 0 0 11∼18 0 0

FRT3 center value 3083 0.83 10 30 As specified As specified 23.5 Up-down VWF
variation range 2000∼5000 0.5∼1 0 0 0 0 18∼28 0 0

FRT4 center value 573 1.33 20.31 71 800 1.45 7.92 Center VVVF
variation range 320∼700 1∼1.75 16∼24 60∼80 0 0.9∼1.75 4.5∼11 0 0

FRT5 center value 900 1.25 21.71 74 871 2.35 10.54 Center VVVF
variation range 750∼1350 1∼1.75 16∼24 60∼80 800∼1100 1.89∼3.42 7.5∼15 0 0

FRT6 center value 967 1.85 29.33 87 900 2.41 16.17 Center VVVF
variation range 900∼1000 1.5∼2.5 24∼40 80∼100 0 2.16∼2.76 13∼22 0 0

FRT7 center value 1483 1.67 31.47 84 1100 3.40 21 Center VVVF
variation range 135∼1600 1∼2.5 24∼40 75∼100 0 3∼3.89 15∼30 0 0

Int J Adv Manuf Technol (2008) 38:1061–1074 1069

customized elevator is ‘medical service’ then the
corresponding elevator can be developed on the basis of
FRT1. From another point of view, it means that the
functional requirements in FRT1 can satisfy the market
segment of ‘medical service elevator’. Obviously, these
rules are not enough for the designers as they can only
identify less than half of the existing examples.

Consequently, the initial topology of KBANN is
constructed following the seven steps listed in Table 3.
Firstly, the six symbolic rules listed in Table 8 are directly
mapped into the original structure of a network. Using the
translation method described in Sect. 3.2.1 (3), a four-layer
network is constructed (see the nodes and links with
continuous lines in Fig. 4). It has 16 inputs and 7 outputs
for the CN features and FR templates separately.
Corresponding to the six rules, it has 11 nodes in the first
hidden layer and 6 nodes in the second hidden layer. In this
research, we set the continuous link weights equal to 1 (i.e.,
w=1). Then, according to the experiments, additional nodes
and links (dash-and-dot ones in Fig. 4) are added to the
network at expert-specified levels. It enables the network to
learn knowledge not specified with the initial six rules.
Based on our experiments, 2 nodes in the first hidden layer
and 6 nodes in the second hidden layer are added to the
network. Links are subsequently added to make the
network fully connected between layers. The weight values
of these links are equal to small random values.

Therefore, the resulting network is a four-layer full-
connected neural network with topology: 16-13-12-7. The
network in Fig. 4 is not a full-connected neural network as
many of the dash-and-dot links are omitted for a better
observation of the continuous links.

The developed KBANN is then trained by the adapted
backpropagation procedure for learning and revision of rules
until it identifies the training patterns at a high accuracy. As
shown in Table 9, the transaction records from Table 7 is
transformed into the inputs and outputs for KBANN.

To evaluate the performance of KBANN with a small
number of training data, we compare the results by
KBANN with those by two neural networks constructed
without domain theory. One, denoted as Sta-ANN, is a
standard three layer neural network. It has 16 inputs and 7
outputs separately corresponding to the CNs and FRTs of
elevators. To specify the hidden nodes, we experiment with
different ANN topologies: 16-x-7∣∀x∈[1, 2, 3, ..., 30]
where x is the number of hidden nodes. Their performances
are evaluated with the same training/test data from the
elevator transaction records. The ANN with 16 hidden
nodes performs as well as, or better than, all other ANNs
with different hidden nodes. Then, the topology of Sta-
ANN is set to: 16-16-7. The other, denoted as Str-ANN, has
the same structure as KBANN: 16-13-12-7. However, its
link weights and biases are not set using prior knowledge as
KBANN. In fact, its link weights and biases randomly

Table 7 Transaction records of CNs-FRT

C Location Application Speed (m/s) Floors Car capacity (Kg) Decoration FRT

1 Mall Medical service 1.5 10 1000 Regular FRT1
2 Mall Passenger 1.75 21 1350 Regular FRT7
3 Office Cargo 2.5 14 2000 Regular FRT2
4 Mall Cargo 2.5 36 2000 Regular FRT2
5 Residence Passenger 1 12 900 Regular FRT5
6 Mall Passenger 2.5 24 1350 Regular FRT7
7 Hotel Passenger 1.5 14 1000 Luxury FRT5
8 Mall Passenger 1 13 900 Luxury FRT6
...
272 Residence Passenger-cargo 1 14 4000 Regular FRT3

Table 8 Initial symbolic rules

Rule Rule content

1. IF Application=Medical service THEN FRT1
2. IF Application=Firefighters’ service AND Car capacity<1300 THEN FRT6
3. IF (Application=Cargo OR Application=Passenger-cargo) AND Car capacity<2500 THEN FRT2
4. IF (Application=Cargo OR Application=Passenger-cargo) AND Car capacity>2500 THEN FRT3
5. IF (Location=Hotel OR Location=Mall) AND (Application=Passenger OR Application=Tour) AND Floors<11 THEN FRT5
6. IF Car capacity>1300 AND Application≠Medical service THEN FRT7

1070 Int J Adv Manuf Technol (2008) 38:1061–1074

distribute around zero as a classical ANN. This network
brings forward whether the structure of KBANN is
responsible for its strength, i.e., if the structure of KBANN
is better suited to learning in the elevator case than a
standard neural network. Both networks are full connected
neural networks trained using backpropagation algorithm
[37]. Since learning from data alone, we expect the
performance of each network to be inferior to that of
KBANN, given the same number of training samples.

Then, the three neural networks are evaluated with the
elevator data set, i.e., 272 samples listed in Table 9. In one
trial, a certain number of samples, denoted as train-set-size,
are randomly selected from the data set as the training
samples. The remaining samples are used as testing
samples. Each neural network is then trained and tested
10 times. Its average result is recorded as the final result. In
this research, we run the trials over the three networks with
train-set-size ranging from 10 to 250 (i.e., training/test data
is 10/262, 30/242, 50/222... or 250/22). The average results
are shown in Figs. 5 and 6.

Figure 5 shows the average error rate of the KBANN,
Sta-ANN and Str-ANN, with train-set-size ranging from 10
to 250. The results are divided in three intervals as follows:

(1) Train-set-size>230 In this interval, the three networks
have a similar performance. All of them can achieve a
high accuracy because there are a lot of examples for
learning.

(2) 80< train-set-size≤230 As train-set-size decreases, the
performance gap between KBANN and the other two
networks becomes obvious.

(3) Train-set-size≤80 All of the three networks could not
perform well as the train-set-size is too small for
learning.

Simultaneously, the corresponding standard deviation
(STD) of the three networks with different train-set-size
can be seen in Fig. 6. It is obvious that the STD of KBANN
is the smallest across different train-set-size. From the
comparison, we can see that the KBANN algorithm is more
stable and robust than the other two networks.

The comparisons show that the KBANN network
consistently outperforms the other two networks regardless
of the train-set-size. KBANN can identify product defini-
tion patterns at a relative high accuracy, even if the training
data becomes small (as the interval (2) of Fig. 5). It
indicates that the symbolic rules embodied in KBANN
improve its performance. Rather than from symbolic rules
or transaction data only, the power of KBANN comes from
both knowledge resources. Thus the KBANN network is
able to learn design knowledge from the symbolic rules and
historical data to improve the quality of the decisions made
in the early stage of elevator design.

To have a good understanding of the decision making
process, a decision tree algorithm is used to elicit knowledge
from the fine tuned KBANN network. In this research, a
standard decision tree algorithm, CART, is employed to
generate binary decision trees. With the method proposed in
Sect. 3.3, decision trees can be obtained from KBANN as
illustrated in Fig. 7. Each leaf in the figure is labeled with a
FR template and each interior node is labeled with a test
build upon one attribute (CN). Likewise, each path in the
tree can be easily translated into a symbolic rule. For

Table 9 Transformed records for NN

C cn1 cn2 cn3 cn4 cn5 cn6 FRT

1 0 0 1 0 0 0 0 0 0 1 0 0 0.4 0.211 0.145 0 1 0 0 0 0 0 0
2 0 0 1 0 0 1 0 0 0 0 0 0 0.5 0.500 0.220 0 0 0 0 0 0 0 1
3 0 1 0 0 0 0 1 0 0 0 0 0 0.8 0.316 0.359 0 0 1 0 0 0 0 0
4 0 0 1 0 0 0 1 0 0 0 0 0 0.8 0.895 0.359 0 0 1 0 0 0 0 0
5 0 0 0 0 1 1 0 0 0 0 0 0 0.2 0.263 0.124 0 0 0 0 0 1 0 0
6 0 0 1 0 0 1 0 0 0 0 0 0 0.8 0.579 0.220 0 0 0 0 0 0 0 1
7 1 0 0 0 0 1 0 0 0 0 0 0 0.4 0.316 0.145 1 0 0 0 0 1 0 0
8 0 0 1 0 0 1 0 0 0 0 0 0 0.2 0.289 0.124 1 0 0 0 0 0 1 0
...
272 0 0 0 0 1 0 0 0 0 0 0 1 0.2 0.316 0.786 0 0 0 1 0 0 0 0

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(3) (2) (1)

A
v
e
ra

g
e
 e

rr
o
r

ra
te

Train-set-size

 Sta-NN

 Str-NN

 KBANN

Fig. 5 Performance of KBANN, Sta-ANN and Str-ANN for different
train-set-size

Int J Adv Manuf Technol (2008) 38:1061–1074 1071

example, a path from the root node to the node 8 (leaf) in
Fig. 7 can be translated as: IF Car capacity<1275 AND
Application≠Medical service AND Floors<10.5 THEN
FRT5 is chosen. Therefore, KBANN-DT is able to illustrate
internal logic between elevator families and customer needs.

The performance of KBANN-DT and CART-Ori is
compared on 272 samples from the elevator company. Here,
CART-Ori stands for developing a decision tree from the
original 272 samples with the standard CART algorithm. Ten-
fold cross validation [39] is performed on this case study.
Firstly, 272 samples are divided into ten subsets with similar
sizes (i.e., each has 27 or 28 samples). Secondly, each subset
is used in turn for testing while the remainder is used for
training. Thirdly, the whole procedure is repeated 10 times
and its average result is taken as the final result. In out

experiments, the number of additional training data Tβ is the
same as the original train set. After the experiment, the
average error rate and standard deviation rate of KBANN-DT
is 0.1707 and 0.0612, CART-Ori 0.2119 and 0.0666. The
result indicates that the generalization ability of KBANN-DT
is about 19% ((0.2119-0.1707)/0.2119=0.194) better than that
of CART-Ori on the elevator case. It also indicates that the
stabilization of KBANN-DT is about 8% ((0.0666-0.0612)/
0.0666=0.081) better than that of CART-Ori. These results
show that the KBANN-DT method can capture better design
knowledge from two knowledge resources, that is, the rules
derived from KBANN-DT are more reliable and accurate.

Through previous discussion and comparison to the
traditional machine leaning techniques (NN and CART), we
have found that the KBANN-DT method provides an
efficient and effective means to identify product definition
patterns. With this method, a company is able to make
proper decision at the very beginning of the design process.
When new customer needs arise, the company can locate
their corresponding elevator families with KBANN. Then,
design engineers work out product specifications with the
support of the extracted rules. For example, a new customer
needs appears, such as (mall, passenger, 1.75, 22, 1600,
regular), which can be transformed into an input vector (0 0
1 0 0 1 0 0 0 0 0 0 0.5 0.526 0.274 0). Through calculating
in KBANN, the last output node, FRT7, is activated. It is a
reasonable output as customer 2 and 6 (in Table 7), who
have similar CNs, also aim at FRT7. Then, designers can
derive product specifications from the center vector and
variation range of FRT7. The decision tree (Fig. 7) is used
to facilitate the design engineers to narrow down the
consideration set and derive a feasible solution quickly.

Fig. 7 An illustration of a
decision tree

Fig. 6 STD of KBANN, Sta-ANN and Str-ANN for different train-
set-size

1072 Int J Adv Manuf Technol (2008) 38:1061–1074

5 Conclusion

Catching the voice of customers and translating it into
product specifications is a crucial issue for a successful
product design. This paper proposed a learning-based hybrid
method to facilitate the product definition process. In this
method, a KBANN network is applied to modeling the
relationship between customer needs and FR templates. The
KBANN algorithm combines an inductive machine learning
algorithm and deductive method to learn from examples and
rules. The learning capability of KBANN improves the
accuracy of the decision activities in PD. Based on the
trained KBANN, a standard decision tree algorithm CART is
used to extract rules from it. The extracted rules provide
engineers with product design guidelines. To demonstrate
the effectiveness of the proposed method, a case of an
elevator design is conducted. The results show that the
proposed method can be a promising tool in PD.

Future work is required to improve the proposed method
in two aspects. The first is to efficiently utilize the extracted
knowledge to achieve product specifications. The second is
to combine manufacturing strategies and production tech-
nologies in the product definition stage.

Acknowledgement This research is supported by the National
Natural Science Foundation of China / Hong Kong Research Grants
Council (Grant No.70418013)/RGC Ref.: N-HKUST625/04; National
Natural Science Foundation of China (Grant No.70471022, Grant
No.70501021).
The authors would like to express their sincere thanks to the professor
Mitchell M. Tseng, Dr. Wang Shijin for their valuable advices.

References

1. Pine BJ (1993) Mass customization: the new frontier in business
competition. Harvard Business School Press, Boston MA

2. Tseng MM, Jiao J (1997) A variant approach to product definition
by recognizing functional requirement patterns. Comput Ind Eng
33(3–4):629–633

3. Pugh S, Gardiner KM (1991) Total design: integrated methods for
successful product engineering. Addison Wesley, Wokingham

4. Tseng MM, Jiao J (2001) Mass customization. In: Salvendy G
(ed) Handbook of industrial engineering, 3rd edn. Wiley, New
York, pp 684–709

5. Tseng MM, Jiao J (1998) Computer-aided requirement manage-
ment for product definition: a methodology and implementation.
Concurr Eng Res Appl 6(2):145–160

6. Du X, Jiao J (2001) Architecture of product family: fundamentals
and methodology. Concurr Eng Res Appl 9(4):309–325

7. Tseng MM, Du X (1998) Design by customers for mass custom-
ization products. CIRP Ann - Manuf Technol 47(1):103–106

8. Du X, Jiao J, Tseng MM (2003) Identifying customer need
patterns for customization and personalization. Integr Manuf Syst
14(5):387–396

9. Jiao J, Chen C-H (2006) Customer requirement management in
product development: a review of research issues. Concurr Eng
Res Appl 14(3):173–185

10. Wu H-H, Liao AYH, Wang P-C (2005) Using grey theory in
quality function deployment to analyse dynamic customer require-
ments. Int J Adv Manuf Technol 25(11–12):1241–1247

11. Wu H-H, Shieh J-I (2006) Using a Markov chain model in quality
function deployment to analyse customer requirements. Int J Adv
Manuf Technol 30(1–2):141–146

12. Chen C-H, Khoo LP, Yan W (2002) A strategy for acquiring
customer requirement patterns using laddering technique and
ART2 neural network. Adv Eng Inf 16(3):229–240

13. Du X, Jiao J, TsengMM (2006) Understanding customer satisfaction
in product customization. Int J AdvManuf Technol 31(3–4):396–406

14. Nagamachi M (2002) Kansei engineering in consumer product
design. Ergon Des 10(2):5–9

15. Yan W, Chen C-H, Shieh M-D (2006) Product concept generation
and selection using sorting technique and fuzzy c-means algo-
rithm. Comput Ind Eng 50(3):273–285

16. Chen Z, Wang L (2006) Product definition in mass customization
adopting neural network. Accepted by The 32nd Annual Confer-
ence of the IEEE Industrial Electronics Society, Paris, FRANCE,
7-10 November

17. Le Riche R, Gualandris D, Thomas JJ, Hemez F (2001) Neural
identification of non-linear dynamic structures. Sound Vibr 248
(2):247–265

18. Jiao J, Zhang Y (2005) Product portfolio identification based on
association rule mining. Comput Aided Des 37(2):149–172

19. Shao X-Y, Wang Z-H, Li P-G, Feng C-XJ (2006) Integrating data
mining and rough set for customer group-based discovery of
product configuration rules. Int J Prod Res 44(14):2789–2811

20. Towell GG, Shavlik JW (1994) Knowledge-based artificial neural
networks. Artif Intell 70(1–2):119–165

21. Sordo M, Buxton H, Watson D (2001) A hybrid approach to
breast cancer diagnosis. ftp://acl.icnet.uk/pub/PUBLICATIONS/
sordo/chapter2001.pdf

22. Li C, Xu J, Xue L (2001) Knowledge-based artificial neural network
models for finline. Int J Infrared Millim Waves 22(2):351–359

23. Towell GG, Shavlik JW (1993) Extracting refined rules from
knowledge-based neural network. Mach Learn 13(1):71–101

24. Breiman L (1993) Classification and regression trees. Chapman &
Hall, Boca Raton

25. Schmitz GPJ, Aldrich C, Gouws FS (1999) ANN-DT: an
algorithm for extraction of decision trees from artificial neural
networks. IEEE Trans Neural Netw 10(6):1392–1401

26. Boz O (2002) Extracting decision trees from trained neural networks.
In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp 456–461

27. Andrews R, Diederich J, Tickle AB (1995) Survey and critique of
techniques for extracting rules from trained artificial neural
networks. Knowl-Based Syst 8(6):373–384

28. Yao JT (2005) Knowledge extracted from trained neural networks -
What’s next? In: Proceedings of SPIE - The International Society
for Optical Engineering, vol 5812, Data mining, intrusion
detection, information assurance, and data networks security
2005, pp 151–157

29. Krishnan R, Sivakumar G, Bhattacharya P (1999) Extracting
decision trees from trained neural networks. Pattern Recogn 32
(12):1999–2009

30. Towell GG (1991) Symbolic knowledge and neural networks:
insertion, refinement and extraction. Ph.D. thesis, University of
Wisconsin, Madison

31. van Zyl J, Omlin CW (2001) Knowledge-based neural networks
for modelling time series. In: Proc 6th International Work-
Conference on artificial and natural neural networks: bio-inspired
applications of connectionism, pp 579–586

32. Haddawy P, Ha V, Restificar A, Geisler B (2004) Preference
elicitation via theory refinement. J Mach Learn Res 4(3):317–
337

Int J Adv Manuf Technol (2008) 38:1061–1074 1073

ftp://acl.icnet.uk/pub/PUBLICATIONS/sordo/chapter2001.pdf
ftp://acl.icnet.uk/pub/PUBLICATIONS/sordo/chapter2001.pdf

33. Srivastava L, Singh SN, Sharma J (1999) Knowledge-based
neural networks for voltage contingency selection and ranking.
IEE Proc. Gen Transm Distrib 146(6):649–656

34. Krishnan V, Gupta S (2001) Appropriateness and impact of
platform-based product development. Manag Sci 47(1):52–68

35. Blecker T, Abdelkafi N, Kreutler G, Friedrich G (2004) An
advisory system for customers’ objective needs elicitation in mass
customization. In: The 4th International ICSC Symposium on
Engineering of Intelligent Systems, University of Madeira,
Funchal, Portugal

36. Osorio FS, Amy B (1999) INSS: a hybrid system for constructive
machine learning. Neurocomputing 28:191–205

37. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal
representations by error propagation. Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition 1:318–362

38. Sen PK (2005) Gini diversity index, hamming distance, and curse
of dimensionality. Metron - Int J Stat LXIII(3):329–349

39. Zhou Z-H, Jiang Y (2003) Medical diagnosis with C4.5 Rule
preceded by artificial neural network ensemble. IEEE Trans Inf
Technol Biomed 7(1):37–42

1074 Int J Adv Manuf Technol (2008) 38:1061–1074

	Identification of product definition patterns in mass customization using a learning-based hybrid approach
	Abstract
	Introduction
	Problem formulation
	The KBANN-DT method
	KBANN
	Construction of KBANN
	Inputs, outputs, and initial neural network topology
	Neural network training

	Rule extraction from the trained KNANN network

	Case study
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

