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Abstract In this paper, we consider the machining condition
optimization models presented in earlier studies. Finding
the optimal combination of machining conditions within
the constraints is a difficult task. Hence, in earlier studies
standard optimization methods are used. The non-linear
nature of the objective function, and the constraints that need
to be satisfied makes it difficult to use the standard opti-
mization methods for the solution. In this paper, we present a
real coded genetic algorithm (RCGA), to find the optimal
combination of machining conditions. We present various
issues related to real coded genetic algorithm such as
solution representation, crossover operators, and repair
algorithm in detail. We also present the results obtained for
these models using real coded genetic algorithm and discuss
the advantages of using real coded genetic algorithm for
these problems. From the results obtained, we conclude that
real coded genetic algorithm is reliable and accurate for
solving the machining condition optimization models.
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1 Introduction

Process planning is an important issue in the modern com-
petitive manufacturing environment. A good process plan
will reduce the cost of manufacture and thus increase the
profits of the organization. With the availability of modern
computers and information technology, the process planning
activity can be computerized. This is known as computer
aided process planning (CAPP) in the area of manufacturing.

In this study, we consider the problem of obtaining
optimal combination of machining conditions (parameters)
that forms an important part in computer aided process
planning. This problem is a non-linear constrained optimi-
zation problem. The objective function in this problem is
that of minimizing the cost of production. In general, the
constraints are the physical machining parameters, such as
the cutting speed, feed rates, depth of cut, cutting force,
cutting power, tool life, temperature, surface finish, surface
roughness and horse power. The constraints depend on the
type of machining operation used in the manufacturing
process. In earlier studies [1–10], different machining models
are presented as non-linear constrained optimization prob-
lems. In these studies standard constrained optimization
methods are used to obtain the solution. We will discuss
these models in detail later in this paper.

In this paper, we present a real coded genetic algorithm
(RCGA) to find the optimal combination of machining
conditions. In our study, we consider five machining con-
dition optimization models presented in [1]. Finding the
optimal combination of machining conditions within the
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constraints is a difficult task. Hence, in earlier studies
standard optimization methods are used. The non-linear
nature of the objective function, and the constraints that
need to be satisfied makes it difficult to use the optimiza-
tion methods for the solution.

Genetic algorithms (GA) is a well-known search algorithm
that mimic the evolution in nature. In the initial studies on
genetic algorithms [11–14], the decision variables (or
solutions) are represented as binary strings. The disadvantage
with this binary string representation for real valued
optimization problems is that the length of the chromosome
increases with the number of decision variables and in turn
affects the efficiency and convergence of the genetic
algorithm. In genetic algorithm it is possible to use the real
value representation for decision variables instead of binary
string representation. Genetic algorithms using real value
representation for solutions are called real coded genetic
algorithms (RCGA). This type of solution representation is
also known as floating-point representation, real number
representation, or continuous representation. It is shown in
[14] that for numerical optimization problems, floating point
representation of solutions performs better than binary
representation because they are more precise, more consis-
tent, and lead to faster convergence. There is an increasing
interest in solving real-world optimization problems using
real coded genetic algorithms [15–22]. The physical con-
straints in the real-world optimization problem, restricts the
search space and the feasible regions may be disjointed. Real
coded genetic algorithms are population based search
algorithms and are the same as binary coded genetic algo-
rithms except for the fact that the solution is represented as
real numbers. The algorithm starts with a population of
solutions and these solutions are improved in each generation
by means of selection, crossover (recombination), and muta-
tion (if necessary) as in binary coded genetic algorithms. It is
shown in [16] that the binary coded genetic algorithm does
not offer the same reliability and accuracy as the real coded
genetic algorithm. It is also shown that the binary coded
genetic algorithm requires higher computation time than the
real coded genetic algorithm. Various issues related to solving
constrained optimization problems using real coded genetic
algorithms are presented in [18–20]. In real coded genetic
algorithms crossover operator (recombination operator) is
regarded as the main search operator. The crossover operator
directs the search toward the neighborhood of the parents.
There are many type of crossovers operators presented in
earlier studies. An extensive study of different crossover
operators is presented in [21]. A matlab based genetic
algorithm for function optimization is discussed in [22].

Contributions of this paper In this paper, we consider the
machining condition optimization models presented in earlier
studies. We obtain the optimal machining parameters using a

real coded genetic algorithm. We present various issues
related to real coded genetic algorithm such as solution
representation, crossover operators, repair algorithm in detail.
We also present the results obtained for these models using real
coded genetic algorithm and discuss the advantages of using
real coded genetic algorithm to these problems.

2 Mathematical model

In this section, we first describe the mathematical model
presented in earlier studies.

Model.1 This model is used in multi-pass turning opera-
tion of mild steel work-piece using a carbide tool
presented in [4] and considered in [1] and [3].
The objective in this model is to minimize the
production cost in dollars/piece. The objective
function is:

Min: Cost ¼ n � 3141:59V�1f �1d�1 þ 2:879
�10�8V 4f 0:75d�0:025 þ 10

� �
ð1Þ

In the above equation, n is the number of passes and d is
the depth of cut. The allowable range for d is 1.20≤d≤
2.75 mm. The results for n=2 and d=2.5 are given in [1]
and [3]. For comparing the results obtained from real coded
genetic algorithm with earlier studies, we also use n=2 and
d=2.5. Hence, the two decision variables are V the cutting
speed and f the feed rates. The allowable range for V and f
are given as:

50 � V � 400m=min ð2Þ

0:30 � f � 0:75mm=rev ð3Þ

There are four physical constraints in this model. These
constraints are on cutting force (Fc), cutting power (Pc),
tool life (TL), and temperature (T). These constraints are
Fc≤85 kg, Pc≤2.25 kW, 25≤TL≤45 min and T≤1000°C.
These constraints are functions of V and f and the functional
relationships are:

Fc ¼ 28:10V 0:07 � 0:525V 0:5
� �

d

� f 1:59þ 0:946
1þ x

1� xð Þ2 þ x
n o0:5

8><
>:

9>=
>; ð4Þ

Pc ¼ 0:746FcV

4500
ð5Þ
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TL ¼ 60
1010

V 5f 1:75d0:75

� �
ð6Þ

T ¼ 132V 0:4f 0:2d0:105 ð7Þ
where x ¼ V

142 exp 2:21fð Þ� �2
:

Model.2 This model is used for the single pass turning
operation presented in [5] and considered in [1]
and [3]. The objective in this model is to
minimize the production cost in dollars/piece.
The objective function is:

Min: Cost ¼ 1:25V�1f �1 þ 1:8

� 10�8V 3f 0:16 þ 0:2 ð8Þ

There are three physical constraints in this model. These
constraints are on surface finish (SF), feed rate (f ), and the
horse power (HP). These constraints are SF≤100 μin, f≤
0.01 in/rev, and HP≤2hp. These constraints are functions of
cutting speed (V ) and feed rate (f ) and the functional
relationships are:

SF ¼ 1:36� 108V�1:52f 1:004 ð9Þ

f � 0:01 ð10Þ

HP ¼ 3:58V 0:91f 0:78 ð11Þ

Model.3 This model is used for single pass turning of a
medium carbon steel workpiece using a carbide
tool presented in [6] and considered in [1] and
[3]. The objective in this model is to minimize
the production cost in dollars/piece. The objec-
tive function is:

Min: Cost ¼ 452V�1f �1 þ 10�5V 2:33f 0:4 ð12Þ

There are two physical constraints in this model. These
constraints are on cutting power (Pc) and surface finish
(Ra). These constraints are Pc≤5.5, and Ra≤2 μm. These
constraints are functions of cutting speed (V) and feed rate
(f ) and the functional relationships are:

Pc ¼ 10:6� 10�2Vf 0:83 ð13Þ

Ra ¼ 2:2� 104V�1:52f ð14Þ

Model.4 This model is used for single pass turning
presented in [7] and considered in [1] and [3].
The objective in this model is to minimize the

production cost in dollars/piece. The objective
function is:

Min: Cost ¼ 1:2566V�1f �1 þ 1:77

� 10�8V 3f 0:16 þ 0:2 ð15Þ

There are three physical constraints in this model. These
constraints are on feed rate (f ), surface finish (SF), and
horse power (HP). These constraints are f≤0.1 in/rev, HP≤
4 hp, and SF≤50 μin. These constraints are functions of
cutting speed (V ) and feed rate (f ) and the functional
relationships are:

HP ¼ 2:39V 0:91f 0:78d0:75 ð16Þ

SF ¼ 204:62� 106V�1:52f 1:004d0:25 ð17Þ

In the earlier study [1], the value of depth of cut (d) is
used as 0.2 in. In our study also, we use the same value as it
is convenient for comparison of results.
Model.5 This model is used in multi-pass turning opera-

tion of a medium carbon tool presented in [8]
and considered in [1] and [3]. The objective in
this model is to minimize the production cost in
yens/piece. The objective function is:

Min: Cost ¼
Xn
i¼1

3927V�1
i f �1

i þ 1:95
�10�8V 2:88

i f �1
i exp 5:884fið Þd�1:117

i
þ60

8<
:

9=
;

ð18Þ

In the above equation, n is the number of passes and di is
the depth of cut. The sum of depths of cut of the n passes
used to remove the total depth A of material and soP

n
i¼1di ¼ A. The allowable ranges for feed rates (f ),

cutting speeds (V ), and depth of cut d are given as:

0:001 � f � 5:6mm=rev ð19Þ

14:13 � V � 1005:3m=min ð20Þ

0 � d � Amm ð21Þ

There are four physical constraints in this model. These
constraints are on cutting force (Fc), stable cutting regions
related to cutting surface, surface roughness (Hmax), and
power consumption (Pc). These constraints are Fc≤170 kg,
fV2≥2230.5, 0.356 f 2≤Hmax (Hmax ranges from 0.01 to
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0.06 mm), and Pc=7.5 kW. These constraints are functions
of V and f and the functional relationships are:

Fc ¼ 290:73V�0:1013f 0:725d ð22Þ

Pc ¼ FcV

4896
ð23Þ

In the earlier study [1], this model is solved for removing
a depth of 2 mm and a surface roughness of Hmax=
0.006 mm. In our study also, we use the same values as it is
convenient for comparison of results.

3 Real coded genetic algorithm

Genetic algorithms differ from conventional optimization
methods in the following ways:

1. Genetic algorithms work with a coding of parameter set
and not the parameters themselves.

2. Genetic algorithms search from a population of solution
points instead of a single solution point.

3. Genetic algorithms uses fitness function information
and does not use derivatives or auxiliary knowledge in
their search for optimal/best solution.

4. Genetic algorithms use probabilistic transition rules, i.e.,
randomized operators and not deterministic rules for
information exchange among the strings.

The construction of a real-coded genetic algorithm for
the machining condition optimization problems described
in the earlier section involves the following issues: solution
representation, population initialization, selection function,
design of genetic operators, fitness function and termination
criterion. Now, we will describe these issues involved in
applying real-coded genetic algorithm to our machining
condition optimization problems (Model.1–Model.5).

Solution representation The most common solution repre-
sentation in genetic algorithms is binary representation. In
fact, for the machining condition optimization problems,
earlier studies [1, 2] used a binary representation for the
decision variables. It is shown in an earlier study [16] that a
natural representation of solutions is more efficient and pro-
duces better results. The advantages of real coded genetic
algorithm (or real representation) are:

– The binary coding of decision variables discretizes the
solution space as a set of decision points, but the
decision variables are continuous in the solution space.
This preassigned set of decision points may result in
local optimum.

– The length of the chromosome in the binary represen-
tation is another major disadvantage. The length of the
chromosome increases exponentially with the required
accuracy. This will affect the efficiency of the genetic
algorithm. In the earlier studies [1, 2], the decision
variables are encoded as 32 bit and 12 bit binary num-
bers, respectively.

– The mapping between solution space and binary space
creates problems for the crossover operator used in
genetic algorithms. In the discrete variable case, the
genetic operators may produce invalid offsprings.

In this paper, the solution is represented as a string of
real numbers. The number elements in the string is the
number of decision variables. The number of decision
variables for Models.1–4 are two namely cutting speed (V)
and feed rate (f ). For Model.5 the number of decision
variables are four and they are cutting speed (V), feed rate
(f ), and depth of cut d1, d2 in two passes. A valid string
(solution representation) in our problems should satisfy the
corresponding constraints for the models. This should be
kept in mind while generating the initial population of
solutions and design of genetic operators.

Initial population As mentioned earlier, genetic algorithms
searches many solutions in the search space in parallel. This
is due to the fact that the genetic algorithms search from a
population of solution points rather than a single solution
point. The method of generating initial population affects
the convergence of the problem. The size of initial popu-
lation is problem dependent. One way of generating initial
population is to generate randomly in the intervals for the
decision variables. Because of the constraints, we may
generate invalid solutions. We can design a repair algorithm
to make the invalid solutions to valid solutions. Another
way is to preprocess the constraints and obtain the initial
population. By preprocessing we mean obtaining the initial
population from feasible regions. We will explain the popu-
lation initialization for our models in the Appendix in detail.

Selection function In genetic algorithms, selection of sol-
utions from the existing population (solutions) to produce
new solutions for the next generation plays an important role.
In literature [11–14] there are several selection schemes
such as roulette wheel selection and its extensions, scaling
techniques, tournament, elitist models, and ranking meth-
ods are presented. In our study we have used roulette wheel
selection method.

Genetic operators Genetic operators such as crossover and
mutation provide the basic search mechanism in binary
coded genetic algorithms. In real coded genetic algorithms
crossover operator (recombination operator) is regarded as
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the main search operator. The crossover operator directs the
search toward the neighborhood of the parents. The
crossover operation is a method of sharing information
between two solutions to the problem. Many researchers
have focussed their attention in designing effective cross-
over operators for real coded genetic algorithms [21]. We
will discuss below some of the crossover operators used in
real coded genetic algorithms.

Two point crossover (TPX) Let C1 and C2 are the two
solutions selected for crossover operations. The solutions
are of length M, when the number of decision variables are
M. This operator first select two crossover points randomly
i, j and i<j.

C1 ¼ c11; c
1
2; � � � ; c1i ; c1iþ1; � � � ; c1j ; c1jþ1; � � � ; c1M

n o
ð24Þ

C2 ¼ c21; c
2
2; � � � ; c2i ; c2iþ1; � � � ; c2j ; c2jþ1; � � � ; c2M

n o
ð25Þ

Two new solutions H1 and H2 are obtained as

H1 ¼ c11; c
1
2; � � � ; c2i ; c2iþ1; � � � ; c2j ; c1jþ1; � � � ; c1M

n o
ð26Þ

H2 ¼ c21; c
2
2; � � � ; c1i ; c1iþ1; � � � ; c1j ; c2jþ1; � � � ; c2M

n o
ð27Þ

Simple crossover (SCX) Here only one crossover point i is
selected randomly and the second crossover point is M.
Two new solutions H1 and H2 are obtained as

H1 ¼ c11; c
1
2; � � � ; c2i ; c2iþ1; � � � ; c2M

� � ð28Þ

H2 ¼ c21; c
2
2; � � � ; c1i ; c1iþ1; � � � ; c1M

� � ð29Þ

Uniform crossover (UCX) This operator first select two
crossover points randomly i and j. Two new solutions H1

and H2 are obtained as

H1 ¼ c11; c
1
2; � � � ; c2i ; c1iþ1; � � � ; c2j ; c1jþ1; � � � ; c1M

n o
ð30Þ

H2 ¼ c21; c
2
2; � � � ; c1i ; c2iþ1; � � � ; c1j ; c2jþ1; � � � ; c2M

n o
ð31Þ

Arithmetical crossover Two new solutions H1 and H2 are
obtained as

H1 ¼ h11; h
1
2; � � � ; h1i ; h1iþ1; � � � ; h1j ; h1jþ1; � � � ; h1M

n o
ð32Þ

H2 ¼ h21; h
2
2; � � � ; h2i ; h2iþ1; � � � ; h2j ; h2jþ1; � � � ; h2M

n o
ð33Þ

where h1i and h2i are

h1i ¼ lc1i þ 1� lð Þc2i ð34Þ

h2i ¼ lc2i þ 1� lð Þc1i ð35Þ
where λ ∈ [0,1].

Geometrical crossover Two new solutions H1 and H2 are
obtained as

H1 ¼ h11; h
1
2; � � � ; h1i ; h1iþ1; � � � ; h1j ; h1jþ1; � � � ; h1M

n o
ð36Þ

H2 ¼ h21; h
2
2; � � � ; h2i ; h2iþ1; � � � ; h2j ; h2jþ1; � � � ; h2M

n o
ð37Þ

where h1i and h2i are

h1i ¼ c1
w

i � c2 1�wð Þ
i ð38Þ

h2i ¼ c2
w

i � c1 1�wð Þ
i ð39Þ

where w ∈ [0,1].

BLX-α crossover Two new solutionsH1 and H2 are obtained
as

H1 ¼ h11; h
1
2; � � � ; h1i ; h1iþ1; � � � ; h1j ; h1jþ1; � � � ; h1M

n o
ð40Þ

H2 ¼ h21; h
2
2; � � � ; h2i ; h2iþ1; � � � ; h2j ; h2jþ1; � � � ; h2M

n o
ð41Þ

where h1i and h2i are randomly chosen from the interval
Cmin � Ia; Cmax þ Ia½ �, where
Cmax ¼ Max c1i ; c

2
i

� � ð42Þ

Cmin ¼ Min c1i ; c
2
i

� � ð43Þ

I ¼ Cmax � Cmin ð44Þ

The above crossover operators are able to do exploration
and exploitation. Exploration is that they generate addi-
tional diversity and exploitation is to use the current
diversity to produce better offsprings. We will explain
these above crossovers, and the exploration and exploita-
tion in detail (for our machining condition optimization)
with a numerical example in the Appendix.
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Mutation operators are used to introduce diversity in the
population. We present the mutation operation used in our
study.

Heuristic mutation Let C1 be the solution selected for
mutation operation.

C1 ¼ c11; c
1
2; � � � ; c1i ; c1iþ1; � � � ; c1j ; c1jþ1; � � � ; c1M

n o
ð45Þ

In this operator, a single mutation point is randomly selected.
The offspring produced in this operation is H1 and is

H1 ¼ C1 þ hmld ð46Þ
where ηm is the mutation rate, −1≤λ≤1, and δ is I/2, where I
is given in BLX-α crossover.

Non-uniform mutation Let C1 be the solution selected for
mutation operation. In C1, let the element selected for
mutation be ci. The offspring generated is H1 and is

H1 ¼ c11; c
1
2; � � � ; c1

0
i ; c

1
iþ1; � � � ; c1j ; c1jþ1; � � � ; c1M

n o
ð47Þ

In the above expression, the value of c1
0

i is randomly
selected from the two possibilities given below.

c1
0

i ¼ c1i þΔ t; c1Ui � c1i
� � ð48Þ

c1
0

i ¼ c1i �Δ t; c1i � c1Li
� � ð49Þ

where c1Ui and c1Li are upper bound and lower bound for the
element c1i . This mutation operator is a function of the
generation in which it operates. In the initial generations (t
is small), this operator searches the space uniformly and
searches the space locally at later generations (t is large).
This function Δ(t, dx) is

Δ t; dxð Þ ¼ dx:r: 1� t=Tð Þd ð50Þ
where r is a random number from the interval [0.1], T is the
maximum number of generations, and d is a parameter deter-
mining the degree of dependency (usually assumed as 2).

Fitness function Fitness is the driving force in genetic
algorithms. The only information used in the execution of
genetic algorithms is the observed value of fitness of the
solution present in the population. The objective in our
machining condition optimization problem is to determine
the decision variables such that the production cost is a
minimum. The calculation of fitness is easy. The string
(solution representation) gives the value of decision variables.
Once the value of decision variables are known the cost can
obtained from the objective function. Since, the genetic

algorithm maximizes the fitness function, the fitness (F) is
defined as

F ¼ � minimum Costf g ð51Þ

The decision variables in the string may violate the
constraints for the given problem (solution is infeasible). In
that case, first the repair algorithm is applied to the solution
and then evaluates the fitness. Another method of handling
the constraints violation is based on a penalty function. In
this method, the fitness is

F ¼ � minimum Costf g þ r
XK
i¼1

gi xð Þf
( )

ð52Þ

In the above expression, K is the number of constraints
and gi(x) is whether the constraint i is satisfied or not. If the
constraint i is satisfied then gi(x) is zero and if the constraint
i is not satisfied then gi(x) is one. The penalty parameter (r)
is a large value. In this way, the infeasible solutions are
assigned a very large objective function value.

Termination criteria In genetic algorithms, the evolution
process continues until a termination criterion is satisfied.
The most frequently used termination criteria are popula-
tion convergence criteria and a specified maximum number
of generations. In this study, a specified maximum number
of generations is used as termination criterion.

4 Results and discussions

The real-coded genetic algorithm for obtaining the optimal
machining conditions is done on a Pentium-IV machine.
The real-coded genetic algorithm used the following
parameters: Sc crossover probability 0.25, Sm mutation
probability 0.1, roulette wheel selection, the maximum
number of generation is 1000, and the population size is 50.
The following steps are carried out in real-coded genetic
algorithm for obtaining the optimal machining conditions
for all the models presented earlier.

Step 1. Initialization: An initial population of solutions
of size N (N=50) is generated using population
initialization.

Step 2. Evaluation: The fitness of each solution is
calculated according to the fitness function. The
fitness function is negative of the objective
function (minimum cost) for the given solution.

Step 3. Selection: Perform selection using roulette wheel
selection, to select solutions for genetic operations.
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Step 4. Genetic operations: Perform crossover and muta-
tion operations based on probability of crossover
and mutation. Here we may get more solutions than
the population size (N). Perform reproduction oper-
ation using elitist strategy to obtain N best solutions.

Step 5. Repeat the steps 2, 3, and 4 until the algorithm
converges.

We can see that the real-coded genetic algorithm uses the
survival of fittest strategy by passing the good solutions to
the next generation of solutions, and combining different
solutions to explore new solutions. In this manner, the
algorithm converges to the optimal solution. An analysis of
convergence for real-coded genetic algorithm is discussed
in [23]. We now present the numerical results obtained for
the machining models presented in the earlier section.

The results obtained using real-coded genetic algorithm
for Model.1 is shown in Table 1. For comparing the results
obtained from real coded genetic algorithm with earlier
studies, we also use n=2 and d=2.5. Hence, the two decision
variables are V the cutting speed and f the feed rates. The
optimal values of cutting speed V* and feed rate f * are
shown in Table 1. We also present the results obtained in
earlier studies using different optimization algorithms for

this model. The convergence of real-coded genetic algo-
rithm for Model.1 is shown in Fig. 1.

In the above results for Model.1, given in Table 1,
generalized reduced gradient method does not find the
optimal solution. The values of V (151.55) and f (0.375)
given in [3] are not feasible solutions. This can be easily
verified, because the tool life constraint is violated. The tool
life constraint is 25≤TL≤45. With these values of V
(151.55) and f (0.375) the value of TL=21.0069.

The results obtained using real-coded genetic algorithm
for Model.2 to Model.5 are shown in Tables 2, 3, 4, and 5
respectively, along with the results obtained in earlier studies.

The advantage with real-coded genetic algorithms is
that it starts with solutions generated randomly and
modify the solutions in successive generations, and upon
termination we obtain the optimal solution. For Model.1,
we have the real-coded genetic algorithm with three
types of crossovers. The crossovers used are average
crossover, arithmetical crossover with λ=0.25, and
geometric crossover with λ=0.25. The real coded genetic
algorithm for each model is run 100 times (runs) with
these three crossover methods. The results obtained for
each crossover after 100 times (runs) is shown in Table 6
and feasible values in Table 7.

Table 1 Optimal machining conditions Model.1

Parameter Simulated
annealing

Continuous simulated
annealing

Genetic
algorithm

Generalized reduced
gradient

Real-coded genetic
algorithm

V * 148.215 148.219 147.710 151.55 147.925
f * 0.3617 0.3617 0.3614 0.375 0.3616
Min Cost 79.544 79.542 79.569 – 79.554

Fig. 1 Convergence of real-
coded genetic algorithm for
Model.1

890 Int J Adv Manuf Technol (2008) 38:884–895



5 Discussions

Now, we will discuss various issues in applying real-coded
genetic algorithm to machining condition optimization
problem.

We have presented many types of crossover and
mutation operators. Each crossover operator produces two
new solutions and each mutation operator produce one new
solution. It is natural to ask which crossover and mutation
operator is to be used for solution. In fact, the type of
crossover and mutation operator to be used depends on a
particular problem. It is observed in real-coded genetic
algorithms, that one type crossover that performs well for a
problem may not perform well for a different problem.
Even in the same problem, one type of crossover may
perform well in earlier stages of the problem and may not
perform well in the later stages of the same problem. This
fact has been brought out in no free lunch theorem,
presented in [24]. Because of this, it is suggested in [21]
to apply different crossover operators simultaneously on the
population for practical situations. The advantage is that the
search becomes faster and the computation time is reduced.
Our interest is to show the applicability of real-coded
genetic algorithm to the machining condition optimization
problem, and so we have used only one type of crossover in
our study. We have shown the performance of different
crossover types for Model.1 in Table 6.

It is possible in some of the crossover operators to obtain
more than two new solutions. In our study, we deal with
crossover operators that need only two parents and produce
two solutions. In our study, in the average crossover, we
obtain only one offspring. Hence, we use the better solution
from one of the parents as another solution for next
generation.

The crossover operators described above are able to
produce exploration and exploitation. Exploration generate

additional diversity and exploitation generate better solutions.
The average and geometric crossovers are exploitative cross-
overs when λ ∈ [0,1]. When λ<0 or λ>1 produces
exploration. BLX-α crossover is explorative crossover. We
will explain further about exploration and exploitation, with
a numerical example in the Appendix. The computation time
for average, arithmetical and geometric crossover are 1.541,
1.652, and 1.584 s on PentiumIV 3.4 GHz machine.

The number function evaluations or the number of
solutions generated in our approach can be obtained as
follows: Let N be the size of initial population, Sc is the
probability of crossover, Sm is the probability of mutation,
and T is the maximum number of generation. Then the
number of solutions generated is N � Sc � T þ N � Sm � T .
In our studies, we have used 1000 as the maximum number
of generations, but we observe that the optimal solution is
reached around the 600 generation. The results presented in
Tables 1, 2, 3, 4, and 5 show that this real coded genetic
algorithm perform very well for the machining condition
optimization models. The number of function evaluation for
Models.1 to 5, (with Sc=0.25, Sm=0.1, N=50 and T=1000)
in one simulation run are 14036, 11412, 14057, 14090 and
14128, respectively.

From the results shown in Tables 1, 2, 3, 4, and 5, we
see that all the methods are able to obtain solution very
close to the optimal result given by continuous simulated
annealing. Our interest in this paper is to study the per-
formance of real coded genetic algorithm in terms of
crossover rate, mutation rate, and number of function
evaluations. We can see that the results obtained by real
coded genetic algorithm performs well for all the models.

We have also conducted a study with different crossover
and mutation rates for Model.1. The results (the value of
objective function) are shown in Table 8. From Table 8, we
can see that for this problem the crossover rate of 0.3 and
mutation rate of 0.1 gives the best result.

Table 2 Optimal machining conditions Model.2

Parameter Simulated
annealing

Continuous simulated
annealing

Genetic
algorithm

Generalized reduced
gradient

Real-coded genetic
algorithm

V * 143.908 143.9140 145.068 143.90 143.9037
f * 0.001439 0.001439 0.001423 0.0014 0.001439
Min Cost 6.2550 6.2551 6.2758 6.26 6.255718

Table 3 Optimal machining conditions Model.3

Parameter Simulated
annealing

Continuous simulated
annealing

Genetic
algorithm

Generalized reduced
gradient

Real-coded genetic
algorithm

V * 174.394 174.2229 174.399 174.38 174.4137
f * 0.2321 0.2321 0.2321 0.232 0.232066
Min Cost 12.097 12.096 12.099 12.10 12.09861
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6 Conclusions

The non-linear constrained optimization problem of obtain-
ing optimal combination of machining conditions (parame-
ters) is considered. A real coded genetic algorithm (RCGA)
to find the optimal combination of machining conditions is
presented. Five machining condition optimization models
presented in an earlier study are solved using the real coded
genetic algorithm. It is shown in Tables 1, 2, 3, 4, and 5 that
our real coded genetic algorithm is able to obtain the
optimal machining parameters. From the results shown in
Tables 1, 2, 3, 4, and 5, we conclude that real coded genetic
algorithm is reliable and accurate for solving the machining
condition optimization models. Various issues related to
this approach are discussed.
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Appendix

In this appendix, we will explain various issues related to
real-coded genetic algorithm in detail. We use the machining
condition optimization models presented to explain various
issues.

Solution representation In real-coded genetic algorithms, the
solution represented as a string of real numbers. The number
elements in the string is the number of decision variables.
Consider Models.1–4. The length of the string is 2. The first
element is the cutting speed (V) and the second element is the
feed rate (f ). For example, C1 and C2 are the two solutions.

C1 ¼ c11; c
1
2

� �
C2 ¼ c21; c

2
2

� �

Population initialization One way of generating the initial
population is to generate randomly in the intervals for the
decision variables. For Model.1, the allowable range for V
and f are given as

50 � V � 400m=min

0:30 � f � 0:75mm=rev

So the elements in the solutions C1 and C2 are

50 � c11; c
2
1 � 400m=min

0:30 � c12; c
2
2 � 0:75mm=rev

For example, we may generate randomly these five
solutions: C1={156.5505,0.3435}, C2={354.7893,0.6572},
C3={127.8794,0.5584}, C4={247.4532,0.1583}, and C5=
{78.4532,0.4531}. A valid solution to Model.1 should
satisfy the constraints presented. Because of the constraints,
some or all the above may be invalid solutions. So we need
some sort of “repair algorithm”. Repair algorithm would
“repair” the solution and make it a valid solution [14].

Repair algorithm If a solution violates the constraints, then
either the value of V or f or both are increased or decreased
within the range and obtain a new solution. Check if the
new solution is a valid solution. In this manner, we can
obtain the initial population in which all the solutions are
valid solution. Otherwise, we can discard the invalid
solutions and generate solutions randomly in the intervals
for the decision variables.

Another way is to preprocess the constraints and obtain
the initial population. By preprocessing we mean obtaining
the initial population from feasible regions. For Model.1,
we know that the constraint on tool life (TL) is 25≤TL≤

Table 4 Optimal machining conditions Model.4

Parameter Simulated
annealing

Continuous simulated
annealing

Genetic
algorithm

Generalized reduced
gradient

Real-coded genetic
algorithm

V * 433.980 441.2849 434.398 433.60 433.5461
f * 0.003814 0.003908 0.003816 0.0038 0.003808
Min Cost 1.5526 1.5526 1.5533 1.553 1.552639

Table 5 Optimal machining conditions Model.5

Parameter Simulated
annealing

Continuous simulated
annealing

Genetic
algorithm

Generalized reduced
gradient

Real-coded genetic
algorithm

V * 216.013 216.0618 216.108 216.08 216.1428
f * 0.3886 0.3886 0.3879 0.388 0.388214
Min Cost 108.0332 108.0177 108.093 108.33 108.0049
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45 min. The tool life constraint is a function of V and f and
the functional relationship is:

TL ¼ 60
1010

V 5f 1:75d0:75

� �

In the above equation, we use the value of f from 0.30 to
0.75, for the value of TL=25, and TL=45. The values of V
obtained are shown in Table 7.

From this Table 7, for example, we can choose f=0.40
and choose V with in the range 127.2260 to 143.0969. Like
this, we can generate the initial population of solutions.
Note that for this Model.1, this is the only necessary
condition for the solution to be feasible because we are
using only one constraint. There are three other constraints
and so this is not a sufficient condition for the solution to be
feasible. We will explain this further by using Model.2.

Consider the Model.2 presented earlier. There are three
physical constraints in this model. These constraints are on
surface finish (SF), feed rate (f), and the horse power (HP).
These constraints are SF≤100 μin, f≤0.01 in/rev, and HP≤
2hp. These constraints are functions of cutting speed (V)
and feed rate (f) and the functional relationships are:

SF ¼ 1:36� 108V�1:52f 1:004

f � 0:01

HP ¼ 3:58V 0:91f 0:78

In the above equation, we use the value of f from 0.001
to 0.01, for the value of SF=100. Then, we use the value of
f from 0.001 to 0.01, for the value of HP=2.0. Using, these

we obtain the feasible region for obtaining the initial
population of solutions. The feasible region is shown in
Fig. 2. In Fig. 2, the feasible region is below the curve SF=
100 and above the curve HP=2.0. In a similar manner, we
obtain the feasible region for Model.3 and it is shown in
Fig. 3. In this figure, the feasible region is below the curve
Ra=2 and above the curve Pc=5.5. The value of f is from
0.001 to 0.4 in the X-axis.

When we generate the initial population of solutions
from the feasible regions, all the solutions in the population
are valid solution. This is because in Model.2 and Model.3
there are only two constraints and both these constraints are
considered, while obtaining the feasible regions.

Crossover operators Now, we will explain the working of
crossover operators presented earlier. For this purpose, we
consider Model.3. Let C1={200, 0.15} and C2={125,
0.10} are the two solutions selected for crossover oper-
ations. In this Model.3, there are only two decision
variables. Hence, two-point crossover, simple crossover,
and uniform crossover produces the following two
offsprings H1={200, 0.10}, and H2={125, 0.15}. We can
see that the offspring H1 is a valid solution but the offspring
H2 is not a valid solution. We can use the repair algorithm
for the second element f and make it a valid solution.

– Arithmetical crossover: Two new solutions H1 and H2

are obtained as H1={143.75, 0.1175}, and H2=
{181.25, 0.1375}, when the value of λ=0.25. When
the value of λ=0.40, the two new solutions H1 and H2

are obtained as H1={155, 0.12}, and H2={170, 0.13}.
It can be easily seen that when λ=0.5 arithmetical
crossover is averaging crossover and hence H1=H2=
{162.5, 0.125}.

Table 6 Results of each
crossover after 100 runs
for Model.1

Objective function Average crossover Arithmetical crossover Geometric crossover

Minimum 79.54832 79.55549 79.549
Maximum 80.02427 80.15685 79.98157
Average 79.6688 79.71637 79.69231
St-Deviation 0.100176 0.134369 0.094498

Table 7 Feasible values of V and f for Model.1

f TL=25 TL=45
VMax VMin

0.30 158.2555 140.7033
0.35 149.9434 133.3131
0.40 143.0969 127.2260
0.45 137.3178 122.0878
0.50 132.3463 117.6677
0.55 128.0042 113.8072
0.60 124.1647 110.3936
0.65 120.7346 107.3438
0.70 117.6432 104.5954
0.75 114.8365 102.0909

Table 8 Results with different crossover and mutation rates Model.1

Crossover
rate

Mutation rate

0.10 0.30 0.50 0.70 0.90

0.10 79.71164 79.68995 79.69732 79.73374 79.82544
0.30 79.67518 79.68099 79.68615 79.70361 79.83778
0.50 79.67692 79.68237 79.68961 79.69081 79.80294
0.70 79.69019 79.69938 79.68739 79.70938 79.81622
0.90 79.70469 79.69050 79.68043 79.71124 79.74657
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– Geometrical crossover: Two new solutions H1 and H2

are obtained as H1={140.5853, 0.1107}, and H2=
{177.8279, 0.1355}, when the value of w=0.25. When
the value of w=0.40, the two new solutions H1 and H2

are obtained as H1={150.8544, 0.1176}, and H2=
{165.7227, 0.1275}.

– BLX-α Crossover: Two new solutions H1 and H2 are
obtained as follows: We know that C1={200, 0.15} and
C2={125, 0.10} are the two solutions selected for
BLX-α crossover operations. Let α=0.30.

H1 ¼ h11; h
1
2

� �
H2 ¼ h21; h

2
2

� �

Cmax ¼ Max c11; c
2
1

� � ¼ Max 200; 125f g ¼ 200

Cmin ¼ Min c11; c
2
1

� � ¼ Min 200; 125f g ¼ 125

I ¼ Cmax � Cmin ¼ 200� 125 ¼ 75

where h11 and h21 are randomly chosen from the interval
Cmin � Ia; Cmax þ Ia½ �. This interval is [102.5, 222.5].
Similarly

Cmax ¼ Max c12; c
2
2

� � ¼ Max 0:15; 0:10f g ¼ 0:15

Cmin ¼ Min c12; c
2
2

� � ¼ Min 0:15; 10f g ¼ 0:10

I ¼ Cmax � Cmin ¼ 0:15� 0:10 ¼ 0:05

where h12 and h22 are randomly chosen from the interval
Cmin � Ia; Cmax þ Ia½ �. This interval is [0.085, 0.165].
The arithmetical and geometrical crossovers will pro-

duce exploitation when λ Z [0,1], and w Z [0,1].
Exploitation means the values of the offsprings lie with in
the range of the parents; i.e., the first decision variable will
be in the range [125, 200], and the second decision variable
will be in the range [0.10, 0.15]. When λ<0 or λ>1 in

arithmetical crossover, and w<0 or w>1 in geometrical
crossover produces exploration.

BLX-α Crossover is explorative crossover. Exploration
means the values of the offsprings does not lie with in the
range of the parents; i.e., when α=0.30, the first decision
variable will be in the range [102.5, 222.5], and the second
decision variable will be in the range [0.085, 0.165].
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