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Abstract An improved iterated greedy algorithm (IIGA) is
proposed in this paper to solve the no-wait flow shop
scheduling problem with the objective to minimize the
makespan. In the proposed IIGA, firstly, a speed-up method
for the insert neighborhood is developed to evaluate the
whole insert neighborhood of a single solution with (n−1)2

neighbors in time O(n2), where n is the number of jobs;
secondly, an improved Nawaz-Enscore-Ham (NEH) heuris-
tic is presented for constructing solutions in the initial stage
and searching process; thirdly, a simple local search
algorithm based on the speed-up method is incorporated
into the iterated greedy algorithm to perform exploitation.
The computational results based on some well-known
benchmarks show that the proposed IIGA can obtain results
better than those from some existing approaches in the
literature.
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1 Introduction

Production scheduling plays a key role in the manufactur-
ing systems of enterprises for maintaining a competitive
position in fast-changing markets, so it is very important to
develop effective, efficient, and advanced manufacturing
and scheduling technologies and approaches [1–8]. In this
paper, the no-wait flow shop scheduling problem with
makespan criterion is considered, which has important
applications in different industries, including chemical
processing [9], food processing [10], concrete ware pro-
duction [11], and pharmaceutical processing [12]. In the no-
wait flow shop, the processing of each job has to be
continuous. That is, once a job is started on the first machine,
it has to be processed through all machines without any
interruption. Therefore, when needed, the start of a job on the
first machine must be delayed in order to meet the no-wait
requirement. The no-wait condition ensures that any no-wait
schedule must be a permutation schedule, and it is well known
that the no-wait flow shop scheduling problem with more than
two machines is strongly NP-hard [13]. Therefore, only
small-sized instances of the no-wait flow shop scheduling
problem can be solved optimally within a reasonable
computational time using exact algorithms. As the problem
size increases, the computational time of the exact methods
grows exponentially. On the other hand, heuristic algorithms
have generally acceptable time and memory requirements to
obtain a near-optimal or optimal solution. In the past few
decades, most research focused on developing heuristic
algorithms. These solution techniques can be broadly
classified into two groups, referred to as constructive
methods [9, 14–16] and metaheuristics, including simulated
annealing (SA) [17], genetic algorithm (GA) [17], hybrid
GA and SA (GASA) [18], variable neighborhood search
(VNS) [18], descending search (DS) [19], tabu search (TS)
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[19], hybrid particle swarm optimization (HPSO) [5], and
discrete particle swarm optimization (DPSO) [2]. A compre-
hensive survey on the no-wait flow shop scheduling problem
can be found in [10].

As a very simple and powerful metaheuristic, the iterated
greedy algorithm (IGA) has been proved to be highly
effective when compared to the state-of-the-art methods for
the permutation flow shop scheduling problem [20]. In
IGA, a greedy constructive heuristic is repeatedly applied to
an incumbent solution, and an acceptance criterion is
employed to decide whether the newly constructed solution
will replace the incumbent solution after the construction
phase. Due to the simple concept and easy implementation,
IGA was successfully applied to the set covering [21, 22]
and flow shop scheduling problems [20]. To the best of our
knowledge, however, there is no work published on dealing
with the no-wait flow shop scheduling problem using IGA.
In this paper, an improved IGA (IIGA) is proposed for the
no-wait flow scheduling problem with makespan criterion.
In the proposed IIGA, a speed-up method for the insert
neighborhood is developed to evaluate the whole insert
neighborhood of a single solution with (n−1)2 neighbors in
time O(n2), where n is the number of jobs. The well known
Nawaz-Enscore-Ham (NEH) heuristic [23] and its modified
variant are employed to construct new solutions, and a local
search based on the speed-up method is applied to perform
exploitation and a simple SA-like acceptance criterion is
employed to accept new solutions.

The rest of the paper is organized as follows. In Sect. 2,
the no-wait flow shop scheduling problem is introduced. In
Sect. 3, the speed-up method for the insert neighborhood is
proposed. In Sect. 4, the proposed IIGA is presented in
detail. The computational results and comparisons are
provided in Sect. 5. Finally, we end the paper with some
conclusions in Sect. 6.

2 The no-wait flow shop scheduling problem

The no-wait flow shop scheduling problem can be described
as follows. Each of n jobs from the set J={1, 2,..., n} will be
sequenced through m machines (k=1, 2,..., m). Job j∈J has a
sequence of m operations (oj1, oj2,..., ojm). Operation ojk
corresponds to the processing of job j on machine k during
an uninterrupted processing time p(j, k). At any time, each
machine can process at most one job and each job can be
processed on at most one machine. To follow the no-wait
restriction, the completion time of operation ojk must be
equal to the earliest start time of operation oj, k+1 for k=1,
2,..., m−1. In other words, there must be no waiting time
between the processing of any consecutive operations of
each of the n jobs. The problem is, then, to find a schedule
such that the processing order of the jobs is the same on each

machine and the maximum completion time, so called
makespan, is minimized.

Suppose that the job permutation π={π1, π2,..., πn}
represents the schedule of jobs to be processed. Let d(πj−1,
πj) be the minimum delay restricted on the first machine
between the start of jobs πj−1 and πj by the no-wait
constraint when job πj is directly processed after job πj−1,
and let Cj−1, j(πj, m) denote the makespan of jobs πj−1 and
πj in the 2/m/P/Cmax problem. Since the makespan for 2/m/
no-wait P/C and 2/m/P/Cmax is the same, and in the no-wait
flow shop scheduling problem the difference between the
completion time of a job’s last operation and the starting
time of its first operation is equal to the sum of its operation
times on all machines [19], d(πj−1, πj) can be computed as
follows:

d pj�1; pj
� � ¼ Cj�1; j pj; m

� ��Xm
k¼1

p pj; k
� �

for j ¼ 2; . . . ; n

ð1Þ

Then, the makespan of the job permutation π={π1, π2,...,
πn} can be given by:

Cmax pð Þ ¼
Xn
j¼2

d pj�1; pj
� �þXm

k¼1

p pn; kð Þ ð2Þ

Therefore, the no-wait flow shop scheduling problem
with makespan criterion is to find a permutation π* in the
set of all permutations Π such that:

Cmax π�ð Þ � Cmax πð Þ; 8π 2 Π ð3Þ

The complexity of calculation with Eq. 1 is O(m), and
that with Eq. 2 is O(mn). For a no-wait flow shop with n
jobs, since all of the possible pairs of d(πj−1, πj) is no more

than n(n−1), and the number of
Pm
k¼1

p pj; k
� �

is no more

than n, they can be computed in advance to be used in the
evaulation of a permutation. Thus, the complexity of Eq. 2
is reduced to O(n).

3 Speed-up method

Two different kinds of neighborhoods for a permutation π
of jobs, i.e., insertion and swap, are widely used in the
literature. However, from the literature [19] and our
previous experience, it is found that the swap neighbor-
hood is not better than the insert neighborhood for
efficiently obtaining permutations with better quality. For
this reason, only the insert neighborhood is considered in
this paper. The insert neighborhood of a permutation π is
defined by considering all possible insert moves v(j, k), j,
k∈{1, 2,..., n} by removing a job of π from its original
position j and inserting it into position k (k∉{j, j−1}).
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Thus, the move v(j, k) generates a permutation π′ from π
in the following way:

p0 ¼ p1; :::; pj�1; pjþ1; :::; pk ; pj; pkþ1; :::; pn
� �

if j < k
ð4Þ

p0 ¼ p1; :::; pk�1; pj; pkþ1; :::; pj; pjþ1; :::; pn
� �

if j > k
ð5Þ

Based on the similarity of π′ and π, a shortcut to
calculate the makespan of π′ can be given as follows:

Step 1: Let π″={π1″, π2″,..., πn−1″} be a partial permuta-
tion generated by removing job πj from permuta-
tion π, and T(πj) be the total processing time of
job πj. As seen in Fig. 1, the makespan of the
partial permutation π″ can be obtained as:

Cmax π00ð Þ ¼ Cmax πð Þ � d πj; π2

� �
if j ¼ 1 ð6Þ

Cmax π00ð Þ ¼ Cmax πð Þ � d πj�1; πj

� �� T πj

� �
þ T πj�1

� �
if j ¼ n ð7Þ

Cmax π00ð Þ ¼ Cmax πð Þ � d πj�1; πj

� �� d πj; πjþ1

� �
þ d πj�1; πjþ1

� �
if 1 < j < n ð8Þ

Step 2: As seen in Fig. 2, the makespan of permutation π′
generated by inserting πj into position k (k∉{j, j−
1}) of π″ can be calculated as:

Cmax π0ð Þ ¼ Cmax π00ð Þ þ d πj; π
0 0
k

� �
if k ¼ 1 ð9Þ

Cmax π0ð Þ ¼ Cmax

�
π00

�
þ d π

0 0
k�1; πj

� �
� T π

0 0
k�1

� �

þ T πj

� �
if k ¼ n ð10Þ

Cmax π0ð Þ ¼ Cmax π00ð Þ þ d π
0 0
k�1; πj

� �
þ d πj; π

0 0
k

� �

� d π
0 0
k�1; π

0 0
k

� �
if 1 < k < n ð11Þ

All of these steps can be executed in time O(1) and the
number of neighbors in the insert neighborhood is (n−1)2.

So, the complexity is O(n2) to evaluate the whole insert
neighborhood of a single solution.

4 The improved iterated greedy algorithm

The iterated greedy algorithm (IGA) is a simple and
effective metaheuristic that iteratively applies constructive
heuristics to the current search solution [20]. Once a

Fig. 1 Calculating the makespan after removing a job
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constructed solution has been generated, an acceptance
criterion is used to decide which solution will be reserved
in the next iteration. Here, we will propose an improved
IGA (IIGA) after introducing some main elements.

4.1 Initial solution and construction phase

It is concluded that the NEH heuristic [23] is the best
constructive method for the permutation flow shop sched-
uling problem for a wide variety of instances [24, 25]. The
procedure of the NEH heuristic can be described as follows:

Step 1: Sort the jobs according to the descending sums of
their processing times. Let the resulting sequence
be π={π1, π2,..., πn}.

Step 2: The first two jobs of π are taken and the two
possible sub-sequences of these two jobs are
evaluated. Then, the better sub-sequence is
selected as the current sequence.

Step 3: Repeat the previous steps until all jobs are
sequenced. Take job πj, j=3, 4,..., n and find the
best sub-schedule by placing it in all possible
positions of the sub-sequence of jobs that have
been already scheduled. The best sub-sequence is
selected for the next generation.

For the no-wait flow shop scheduling problem, Eq. 2 can
be easily adopted in the NEH heuristic to calculate the
makespan of a sequence. Because the NEH heuristic
evaluates a total of [n(n+1)/2]−1 schedules, the complexity
of the NEH heuristic is O(n3). By using the speed-up
method proposed in Sect. 3, the complexity of the NEH
heuristic will be reduced to O(n2).

In addition, we present a modified NEH heuristic
(named the M_NEH heuristic) by slightly modifying Step
2 and Step 3 of the NEH heuristic. The procedure of the
M_NEH heuristic is described as follows:

Step 1: Sort the jobs according to the descending sums of
their processing times. Let the resulting sequence
be π={π1, π2,..., πn}.

Step 2: The last two jobs from π are taken and the two
possible sub-schedules of these two jobs are
evaluated. Then, the better sub-sequence is select-
ed as the current sequence.

Step 3: Repeat the previous steps until all jobs are
sequenced. Take job πj, j=n−2, n−3,..., 1, and
find the best sub-schedule by placing it in all
possible positions of the sub-sequence of jobs that
are already scheduled. The best sub-sequence is
selected for the next generation.

We employ 31 benchmarks from [26–28] with different
sizes to compare the performances of NEH with M_NEH.
The results are listed in Tables 1 and 2, where the percent
relative deviation (PRD) is calculated as follows:

PRD ¼ Mi �Mrefð Þ � 100
Mref

ð12Þ

where Mi is the makespan obtained by NEH or M_NEH
and Mref is the optimal value or upper bound of each
instance [9].

From Tables 1 and 2, it can be seen that the performance
of the M_NEH heuristic is slightly better than that of the
NEH heuristic. Since M_NEH is of the same computational
complexity as NEH, therefore, M_NEH will be employed
to construct an initial sequence in IIGA. In addition, we
design a construction phase in IIGA, which consists of a
destruction procedure and a construction procedure. In the
destruction procedure, d jobs are randomly removed from

Fig. 2 Calculating the makespan after inserting job 3
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the incumbent sequence π, and the remaining jobs construct
a partial sequence π1. These d jobs construct another
sequence π2 in the order in which they were chosen. In the
construction procedure, the first job from π2 is taken and
Step 3 of NEH or M_NEH is randomly applied according a
certain probability p to decide which position of π1 should
be inserted. This procedure is repeated until π2 is empty. In
particular, a uniform random number r is generated
between 0 and 1. If r is less than p, then the NEH heuristic
is applied to generate a new solution; otherwise, M_NEH is
employed. Since the NEH and M_NEH heuristics use
different methods to construct the solutions, it is helpful to
enrich the constructing method and to avoid being trapped
in certain solutions by randomly applying NEH or M_NEH.

4.2 Local search

After the construction phase, a local search procedure based
on the insert neighborhood is applied to the constructed
solution to generate a new solution.

For the sake of simple and easy implementation, we use
a first-improvement type of pivoting rule outlined in Fig. 3.
In order to reduce the CPU time requirements, the speed-up
method presented in Sect. 3 is also applied.

4.3 Acceptance criterion

Inspired by the mechanism of simulated annealing (SA),
which is of the ability to probabilistically escape from local
optima, an SA-type of acceptance criterion is adopted. That
is, the improved solution π′ by local search is accepted with
a probability of exp fðCmax πð Þ � Cmax π0ð Þ

t Þg; where π is the
current solution and t is a control parameter that decreases
as the algorithm runs. In this paper, we set the initial
temperature as follows [29]:

t0 ¼

Pn
j¼1

Pm
k¼1

p j; kð Þ

10 � n � m � h ð13Þ

Moreover, an exponential cooling schedule is applied
(tk=λtk−1, 0<λ<1), which is often believed to be an
excellent cooling recipe, since it provides a rather good
compromise between a computationally fast schedule and
the ability to reach a low-energy state [30].

4.4 Procedure of the IIGA

The procedure of the IIGA is described as follows:

Step 1: Initialize the parameters and generate an initial
solution

Step 2: Apply the insert-based local search to improve the
initial solution

Step 3: Randomly apply NEH or M_NEH according to a
certain probability to construct a new solution
based on the current one

Step 4: Apply the insert-based local search to the con-
structed solution to generate a new solution

Step 5: Apply an acceptance criterion to decide whether
the new solution is accepted or not

Step 6: If a stopping criterion is met, then output the
solution found best-so-far; otherwise, go back to
Step 3.

Table 2 Comparison of the NEH and M_NEH heuristics with the
optimal solutions

Instance Optimum NEH M_NEH

Name M×J Cmax PRD PRD
Car01 5×11 8,142 0.00 2.85
Car02 4×13 8,242 0.62 0.30
Car03 5×12 8,866 1.05 0.00
Car04 4×14 9,195 9.07 3.58
Car05 4×10 9,159 6.62 2.65
Car06 9×8 9,690 0.00 2.22
Car07 7×7 7,705 2.57 2.43
Car08 8×8 9,372 0.36 0.36
Mean 2.54 1.8

Table 1 Comparison of the Nawaz-Enscore-Ham (NEH) and modified
NEH (M_NEH) heuristics with respect to the upper bounds provided by
RAJ [9]

Instance RAJ NEH M_NEH

Name M×J Cmax PRD PRD
Rec01 5×20 1,590 −1.32 0.06
Rec03 5×20 1,457 1.30 −0.34
Rec05 5×20 1,637 −4.52 −3.24
Rec07 10×20 2,119 3.21 −0.80
Rec09 10×20 2,141 −1.31 1.03
Rec11 10×20 1,946 0.62 −1.64
Rec13 15×20 2,709 −0.15 −0.48
Rec15 15×20 2,691 −4.46 −4.12
Rec17 15×20 2,740 −4.27 −0.99
Rec19 10×30 3,157 −5.54 −3.39
Rec21 10×30 3,015 −1.46 −1.69
Rec23 10×30 3,030 −5.48 −5.64
Rec25 15×30 3,835 −2.27 −1.33
Rec27 15×30 3,655 −2.49 −2.93
Rec29 15×30 3,583 −4.16 −6.25
Rec31 10×50 4,631 −2.33 −3.58
Rec33 10×50 4,770 −0.46 −1.72
Rec35 10×50 4,718 −3.03 −3.20
Rec37 20×75 8,979 −6.75 −6.43
Rec39 20×75 9,158 −2.31 −2.05
Rec41 20×75 9,344 −3.70 −5.84
Hel1 10×100 780 −4.10 −4.23
Hel2 10×20 189 −1.06 −1.06
Mean −2.44 −2.6
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5 Computational results

The proposed IIGA was coded in C++ and run on an Intel
P4 3.0 GHz PC with 1 GB of memory. In total, 31
benchmarks taken from [26–28] were used for testing. The
parameters were set as follows: h=1.5, λ=0.999, d=min
(0.5n, 15), p=0.6, and the maximum number of generations
was set to 1,000. For each instance, 20 runs were
conducted, and each run was compared to the optimal
solutions or the upper bounds (denoted RAJ) [9]. The
average PRD over 20 runs is denoted by ARD and the
average CPU time until termination is denoted by TAVG.
They are listed in Tables 3 and 4. Moreover, the ARD was
computed as follows:

ARD ¼ 1

20

X20
i¼1

Mi �Mrefð Þ � 100
Mref

� �
ð14Þ

where Mi is the makespan generated by the proposed IIGA
in each run and Mref is the optimal value or upper bound of
the instance reported in [9]. Furthermore, the best relative
percent deviation (BRD), the worst relative percent devia-
tion (WRD), and the standard deviation (SD) are also
reported.

We compare the proposed IIGA with several existing
metaheuristics from the literature for the problem consid-
ered in this paper, including TS, TS+M, TS+MP from [19]
and DPSO from [2]. The BRD, ARD, WRD, SD, and TAVG
of each algorithm are listed in Tables 3 and 4.

The computational results presented in Table 3 show that
IIGA performs slightly better than TS, TS+M, TS+MP, and
DPSO in terms of the mean PRD value. In terms of the
CPU time requirements, IIGA is much faster than DPSO,
since the TAVG of IIGA is 0.07 s, while DPSO is 0.44 s.
Even though we employed a machine approximately 3.0
times (3000/1000=3.0) faster than the one used by
Grabowski and Pempera [19], we can see that IIGA is
faster than TS, TS+M, and TS+MP, as 0.07 s is much
shorter than 0.9/3, 0.9/3, and 1.3/3, respectively. Moreover,
IIGA is more robust than DPSO, since the mean SD
generated by IIGA is much smaller than that by DPSO. In
addition, Table 4 summarizes the results for the small
instances whose optimal solutions were obtained by the
branch and bound algorithm. These results confirm the
favorable performance of IIGA in terms of ARD values and
the CPU times as well. So, it can be concluded that the
proposed IIGA is more effective and efficient than TS, TS
+M, TS+MP, and DPSO for the no-wait flow shop
scheduling problem with makespan criterion.

Fig. 3 The local search
procedure
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6 Conclusions

To the best of our knowledge, this is the first report on the
application of an iterated greedy algorithm (IGA) to the no-
wait flow shop scheduling problem with makespan criteri-
on. We used the improved Nawaz-Enscore-Ham (NEH)
heuristic to generate an initial solution with a certain
quality, and employed the construction procedure based
on the NEH (or modified NEH, M_NEH) heuristic and the
simulated annealing (SA) type acceptance criterion to avoid
the search getting trapped in local minima. We then applied
the simple local search to stress local exploitation and
developed a speed-up technology on evaluating the insert
neighborhood solution to improve the efficiency. Compu-
tational results demonstrated the superiority of the proposed
improved iterated greedy algorithm (IIGA) in terms of
efficiency and effectiveness. The future work is to develop
an IGA for other kinds of combinatorial optimization
problems and to develop some multi-objective IGAs for
multi-objective scheduling problems.
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