Int J Adv Manuf Technol (2008) 38:143-153
DOI 10.1007/s00170-007-1069-x

ORIGINAL ARTICLE

Optimization of flexible process planning

by genetic programming

X. Y. Li-X. Y. Shao - L. Gao

Received: 15 November 2006 / Accepted: 27 April 2007 /Published online: 31 May 2007

© Springer-Verlag London Limited 2007

Abstract The traditional manufacturing system research
literature generally assumed that there was only one
feasible process plan for each job. This implied that there
was no flexibility considered in the process plan. But, in the
modern manufacturing system, most jobs may have a large
number of flexible process plans. So, flexible process plans
selection in a manufacturing environment has become a
crucial problem. In this paper, a new method using an
evolutionary algorithm, called genetic programming (GP),
is presented to optimize flexible process planning. The
flexible process plans and the mathematical model of
flexible process planning have been described, and a
network representation is adopted to describe the flexibility
of process plans. To satisfy GP, it is very important to
convert the network to a tree. The efficient genetic
representations and operator schemes also have been
considered. Case studies have been used to test the
algorithm, and the comparison has been made for this
approach and genetic algorithm (GA), which is another
popular evolutionary approach to indicate the adaptability
and superiority of the GP-based approach. The experimen-
tal results show that the proposed method ispromising and
very effective in the optimization research of flexible
process planning.

Keywords Flexible process planning -
Process plans selection - Genetic programming (GP) -
Optimization

X. Y. Li+ X. Y. Shao - L. Gao (5)

The State Key Laboratory of Digital Manufacturing
Equipment and Technology,

Huazhong University of Science and Technology,
Wuhan, Hubei, China

e-mail: gaoliang@mail.hust.edu.cn

1 Introduction

A process plan specifies what raw materials or components
are needed to produce a product, and what processes and
operations are necessary to transform those raw materials
into the final product. It is the bridge between product
design and manufacturing. The outcome of process plan-
ning is the information for manufacturing processes and
their parameters, and the identification of the machines
tools, and fixtures required to perform those processes.
Generally, the traditional manufacturing system research
literature assumed that there was only one feasible process
plan for each job. This implied that there was no flexibility
possible in the process plan. But, in the modern manufac-
turing system, most jobs may have a large number of
flexible process plans. So, flexible process plan selection in
a manufacturing environment has become a crucial prob-
lem. Because it has a vital impact on manufacturing system
performance, several researchers have examined the flexi-
ble process plans selection problem in recent years. Sormaz
and Khoshnevis [1] describe a methodology for generation
of alternative process plans in the integrated manufacturing
environment. This procedure includes selection of alterna-
tive machining processed, clustering and sequencing of
machining processes, and generation of a process plan
network. Kusiak and Finke [2] developed a model to select
a set of process plans with minimum cost of removing
material and minimum number of machine tools and other
equipments. Bhaskaran and Kumar [3] formalized the
selection of process plans with the objective of minimizing
the total processing time and the total steps of processing.
Lee and Huy [4] presented a new methodology for flexible
operation planning using the Petri net which was used as
a unified framework for both operation planning and
plan representation. Ranaweera and Kamal [5] presented a

@ Springer

144

Int J Adv Manuf Technol (2008) 38:143—-153

technique for evaluating processing plans generated by a
cooperative intelligent image analysis framework, and this
system was able to rank multiple processing plans. Seo and
Egbelu [6] used tabu search to select a plan based on
product mix and production volume. Usher and John [7]
used genetic algorithms to determine optimal, or near-
optimal, operation sequences for parts of varying complex-
ity. Tiwari [8] used genetic algorithm to obtain a set of
process plans for a given set of parts and production
volume. Rocha and Ramos [9] used genetic algorithm
approach to generate the sequence of operations and to
select the machine and tools that minimize some criteria.
Dereli and Filiz [10] introduced the GA-based optimization
modules of a process planning system called optimized
process planning system for prismatic parts (OPPS-PRI).
Most of these approaches proposed the models to optimize
flexible process plans. Moreover, few of them used
evolutionary algorithms, and none of them used genetic
programming. But evolutionary algorithm is becoming a
useful, promising method for solving complex and dynamic
problems [11]. This paper presents a new methodology
which uses genetic programming that can optimize flexible
process planning effectively.

GP is one of the evolutionary algorithms (EA) [12]. In
GP, a computer program is often represented as a tree (a
program tree) [13], where the internal nodes correspond to
a set of functions used in the program and the external
nodes (terminals) indicate variables and constants used as
the input of functions. Manufacturing optimization has been
a major application field for evolutionary computation
methods [14]. But it has rarely been the subject of genetic
programming research [15, 16]. One of the possible reasons
for the lack of GP applications in manufacturing optimiza-
tion is the difficulty of evolving a direct permutation
through GP. Now a new methodology which uses genetic
programming that can effectively optimize flexible process
plans.

The remainder of this paper is organized as follows.
Section 2 introduces flexible process planning. GP is briefly
reviewed in Sect. 3. GP for flexible process planning is de-
scribed in Sect. 4. Case studies and discussion are reported in
Sect. 5. The last section is the conclusion.

2 Flexible process planning

2.1 Flexible process plans

There are three types of flexibility considered in flexible
process planning [17] [18]: operation flexibility, sequencing
flexibility and processing flexibility [19]. Operation flexi-

bility [20], which is also called routing flexibility [21],
relates to the possibility of performing one operation on

@ Springer

alternative machines, with possibly distinct processing time
and cost. Sequencing flexibility is decided by the possibil-
ity of interchanging the sequence of the required operations.
Processing flexibility is determined by the possibility of
processing the same manufacturing feature with alternative
operations or sequences of operations. Better performance
in some criteria (e.g., production time) can be obtained by
the consideration of these flexibilities [20].

Figure 1 shows an example part which consists of three
manufacturing features. And the technical specifications
for the part have been defined in Table 1. This part has
three types of flexibility. From the Table 1, it can be found
that every operation can be processed on alternative ma-
chines with distinct process time (Operl can be processed
on M1 and M2 with different processing time), the manu-
facturing sequence of feature 1 and feature 3 can be inter-
changed (Operl and Operl0 can be interchanged), and in
the second column of Table 1, every feature has alternative
operations (feature 1 has 4 alternative operations, feature 2
has 4 alternative operations, and feature 3 has 3 alternative
operations).

2.2 Representation of flexible process plans

There are many methods used to describe the three types of
flexibility [22], such as Petri-net [4], AND/OR graphs and
network. And, a network representation proposed by Sormaz
[1], Kim [20] and Ho [23] is used here. There are three node
types in the network: starting node, intermediate node and
ending node [20]. The starting node and the ending node,
which are dummy ones, indicate the start and the end of the
manufacturing process of a job. An intermediate node rep-
resents an operation, which contains the alternative machines
that can perform the operation and the processing time
required for the operation according to the machines. The
arrows connecting the nodes represent the precedence

Fig. 1 The example part

Int J Adv Manuf Technol (2008) 38:143-153

145

Table 1 The technical specifications for the part

Features Alternative Alternative Working time for each
operations machines alternative machine (s)
F1 Turning M1, M2 41, 38
(Operl)
Fl1 Turning M3, M4 92, 96
(Operl1)
Fl1 Turning MS, M6 20, 23
(Oper12)
Fine turning M1, M2 65, 70
(Oper13)
F1 Turning M5, M6 20, 23
(Operl2)
Grinding M7, M9 68, 72
(Operl14)
F2 Drilling M2, M4 20, 22
(Oper3)
Reaming M1, M2, M5 35, 29, 36
(Oper4)
Boring M2, M3, M4 50, 45, 50
(Oper9)
F2 Drilling M2, M3, M4 25, 20, 27
(Oper6)
Reaming M7, M8 54, 50
(Oper7)
Boring M2, M3, M4 50, 45, 50
(Oper9)
F2 Reaming M5, M6 80, 76
(Oper8)
Boring M2, M3, M4 50, 45, 50
(Oper9)
F2 Reaming M7, M8, M9 50, 56, 52
(Operl5)
F3 Turning M5, M7 75,70
(Oper2)
F3 Milling M9, M10 49, 47
(Oper?)
F3 Milling M9, M10 70, 73
(Oper10)

between them. OR relationships are used to describe the
processing flexibility that the same manufacturing feature
can be performed by different process procedures. If the
links following a node are connected by an OR connector, it
only need to traverse one of the OR-links (the links
connected by the OR-connector are called OR-links). OR-
link path is an operation path that begins at an OR-link and
ends as it merges with the other paths, and its end is denoted
by a JOIN-connector. For the links that are not connected by
OR-connectors, all of them must be visited [20]. Based on
the technical specifications and precedence constraints, the
flexible process plans of the part can be converted to the
network.

Figure 2 shows the example part’s (see Fig. 1) flexible
process plans network which is converted from the

technical specifications shown in Table 1, and this network
will be used in Sect. 5. In this network, paths {11}, {12,
13} and {12, 14} are three OR-link paths. An OR-link path
can of course contain the other OR-link paths, e.g., paths
{6, 7} and {8}.

2.3 Mathematical model of flexible process planning

In this paper, the optimization objective of the flexible
process planning problem is to minimize the production
time (contains working time and transmission time).

In solving this problem, the following assumptions are
made [20]:

(1) Each machine can handle only one job at a time.

(2) All machines are available at time zero.

(3) After a job is processed on a machine, it is imme-
diately transported to the next machine on its process,
and the transmission time among machines is constant.

Starting node
Number of operation
Alternative OR1
e [(9
71 ,2} {9,10}
[41,38] [70,73]

Processing %RN OR4

time
O] [i
{5,7} {9,10} @

[75,70] [49,47)] vt
ORr3 [20,23]
. (34}
3 @ [92,96] ORS
{24} {2,3.4}
[20,22] | (252027
: : [ég’gc}s] @ @
: ’ T (1,2} 7.9}
{1,2,5} {7.8} [68,72]
[35,29,36}

{2.3.4)
[50,45,50]

Ending node

Fig. 2 Flexible process plans network

@ Springer

146

Int J Adv Manuf Technol (2008) 38:143—-153

(4) The different operations of one job can not be pro-
cessed simultaneously.

Based on these assumptions, the mathematical model of
flexible process planning is described as follows:

The notations used to explain the model are described
below:

N the total number of jobs;

G, the total number of flexible process
plans of the ith job;

0l the jth operation in the /th flexible
process plan of the ith job;

P, the number of operations in the /th
flexible process plan of the ith job;

k the alternative machine corresponding
to 0y}

TW(, j, I, k) the working time of operation o,; on the

kth alternative machine;
the starting time of operation o;; on the
kth alternative machine;
TTG, 1, (j, k), the transmission time between the k;th

783, j, 1, k)

(j+ 1, k)) alternative machine of the o;; and the
koth alternative machine of the o;; + 1y;
TP(i) the production time of the ith job;

The objective function is

Py Py—1
J=1 J=1
ic [lvN]vf € [lvPilLl € [17Gl}

(1)

Each machine can handle only one job at a time. This is
the constraint of machine.

TS(i7j27lak)_TS(i?jlvlak) >TW(i7j|7lvk) (2)

i€ [lvN]vjlij € [I,Pil]vl € [LGJ

The different operations of one job cannot be processed
simultaneously. This is the constraint of different processes
for one job.

TS(ia (]+ I)Ja k2) - TS(ivja lv kl) > TW(ivja lv kl) (3)

i€ [l,N],je[l,Py),l€]l,G

The objective function is Eq. (1), and the two constraints
are in Egs. (2) and (3).

@ Springer

3 Brief review of GP

Genetic programming (GP) was introduced by Koza [24,
25] as a method for using natural selection and genetics as a
basis for automatically creating computer programs.

For a given problem, the work steps of GP are then
given as follows:

Step 1: Initialize population randomly generated computer
programs (trees).

Step 2: Evaluate all population.

Step 3: Produce a new generation population:

(1) Reproduction
Reproduce some excellent individuals and delete
the same number of inferior individuals.

(2) Crossover
According to the user-defined probabilistic, some
individuals are selected to be crossovered. For each
two selected trees in a pair, a crossover point is
chosen randomly and two offspring (trees) are
produced from the pair in terms of the crossover
operation and are placed into the new generation.

(3) Mutation
According to the user-defined probabilistic, some
individuals are selected to be mutated. For each
selected tree, a mutation point is randomly chosen,
and one offspring (tree) is produced from the
selected one in terms of the mutation operation
and is placed into the new generation.

Step 4: Do steps 2 and 3 cyclically until terminating
condition satisfied.

There are a number of issues to be considered in a GP
system [12]:

(1) Definitions of functions and terminals to be used in the
trees generated.

(2) Definition of a fitness function for evaluating trees and
the way those trees are evaluated.

(3) Generation of the initial population.

(4) Selection strategies for trees to be included in next
generation population.

(5) How reproduction, crossover and mutation operations are
carried out and how often these operations are performed.

(6) Criteria for terminating the evolution process and the way
to check if the terminating conditions are satisfied.

(7) Return of the final results.

4 GP for flexible process planning

Using GP for flexible process planning has some advan-
tages. GP provides a mathematical representation of the

Int J Adv Manuf Technol (2008) 38:143-153

147

Flexible process plans

I

Initialize population

I

Gen=0

I

Evaluate
(Fitness function)

GP operator
Reproduction
Crossover
Mutation

Gen = Gen+1

No
erminate condition satisfied?

Near optimal process plan

Fig. 3 Flow chart of GP

flexible process plans. Now, it is described that how GP can
be used to optimize flexible process planning.

4.1 The flow chart of proposed method

Figure 3 shows the flow chart of the proposed method (GP
for flexible process planning). First, CAPP system gives the
flexible process plans. And then, the search begins with an
initial population. The individual consists of two parts. One
part is represented by the sequence of operations and the set
of machines used to accomplish the operation, the other one
is composed by discrimination value. The detailed descrip-
tion of individual will be given in Sect. 4.2. The rest steps
of the method are the same as the common GP.

Fig. 4 How to convert network to tree

©) ©)
12,4} 2,34} {2.4} (234
[20,22] [25.20.27) @ [20,22] [25.20.27] @
¥ L {5,6} | Convert network ¥ Y {5,6}
@ @ [80,76] to tree @ @ [80,76]
{12550 {7.8} 11,25 17,8}
[35.29.36) [54,50] [35,2036) | | [54.50]
OIN2/JOIN3
Y Y Y
ONICINIO.
{2,3,4} 12,34} {2,3,4} 12,34}
[50.45.50] [50,45,50] | | [50.45.50] [50,45.50]

4.2 Convert network to tree, encoding and decoding
4.2.1 Convert network to tree

From Fig. 2, it is known that flexible process plans can be
represented as a network. And in GP, the individual is often
represented as a tree (see Sect. 3). So, the key of the pro-
posed method is how to convert network to tree.

In order to convert network to tree, a method has been
presented. The first step of this method is deleting the
ending-nodeof the network, and the second step is dis-
entwining JOIN-connector. The last step is adding the
latter intermediate nodes which are linked by the JOIN-
connector to the end point of each OR-link linked by the
JOIN-connector. And then, the network has been con-
verted to tree.

A part network of job (see Fig. 2) has been taken as
an example to explain how to convert network to tree (see
Fig. 4). The procedure is as follows:

Step 1: Delete the ending-node.
Step 2: Disentwine JOIN2-connector and JOIN3-connector.
Step 3: Add operation 9 (the latter intermediate node is

linked by the JOIN2-connector and JOIN3-con-
nector) to the end point of path {3, 4}, {6, 7} and
{8} (the OR-links which are linked by the JOIN2-
connector and JOIN3-connector) respectively.

4.2.2 Encoding and decoding

GP uses the tree hierarchy frame to express problems. Each
tree within a member produces one output. A tree which is
made up of nodes can be classified to two sets: the function
set and the terminal set. The function node is the method,

@ Springer

148

Int J Adv Manuf Technol (2008) 38:143—-153

and the terminal node is the value of the problem. Each
node has zero or more inputs and uses those inputs to create
its output. A node can have any number of inputs. The
terminal can also be thought of as zero-argument function.
Input features and any constants are represented by terminal
nodes. A node with one or more inputs is a function; its
output is dependent on its inputs. For instance, addition,
subtraction, multiplication and division all are functions.
In this paper, each tree of each individual is generated by
the function set F= {switch-case, link} and terminal set T=
{discrimination value, gene}. Switch-case is the conditional
expression; and link, which links the nodes together, is a
user-defined function, and its output is a list. It includes the
nodes which are linked by this function. The sequence of
the string is from top to bottom. The discrimination value
encodes OR-connectors as the decimal integer. It is in
concert with the switch-case function to decide which OR-
link will be chosen. A gene is a structure and made up of
two parts. The first number is the operation. It can be all the
operations of a job, even those may not be performed
because of alternative operation procedures. The second
one is alternative machine. It is the ith element of which
represents the machine on which the operation corresponding
to the ith element of part I is processed. The encoding

Discrimination value @

Number of operation

Alternative machines @ @

Gene

)
@®
ooy
®®
(o)

scheme of a tree is a list that has two parts: part I is made up
of genes, and part Il is made up of discrimination values.

Figure 5 shows an example individual of job (see Fig. 1).
Taking gene (2, 5) for example, 2 is the operation of the
job, and 5 is the alternative machine, which corresponds to
the operation 2. The encoding scheme of this individual is
shown in Fig. 5. Part I is made up of 19 genes; part II is
made up of five discrimination values.

The encoding is directly decoded. The selection of the
OR-link paths which contain operations and the
corresponding machines is decided by the interpretation of
part II of the individuals’ encoding scheme. And then the
orders appearing in the resulting part I are interpreted as an
operation sequence and the corresponding machining
sequence for the job. In the above encoding example, the
operation sequence together with the corresponding ma-
chining sequence is (1, 1)-(5, 9)-(6, 3)-(7, 8)-(9, 2).

4.3 Initial population and fitness evaluation
4.3.1 Initial population

In order to operate evolutionary algorithm, an initial pop-
ulation is needed. The generation of the initial population

Conditional expression

Userdefined function

Link

Part L:(1,1)-(2,5)-(3,2)-(4,5)-(9,3)-(5,9)-(6,3)-(7,8)-(9,2)-(8,5)-(9:4)-(10,9)-(11,3)-(15,7)-(12,5)-(13,1)-(15,8)-(14,9)-(15,9)
Part 11:(1)-(2)-(1)-(1)-(1)

Fig. 5 A tree of individual

@ Springer

Int J Adv Manuf Technol (2008) 38:143-153

149

in GP is usually done randomly. But when generating the
individuals for an initial population of flexible process
planning, feasible operation sequence in a process plan
has to be taken into account. Feasible operation sequence
means that the order of elements in the used encoding does
not break constraints on precedence relations of operations
[20]. As mentioned above, a method was proposed to
generate a random and feasible individual.
The procedure of the method is as follows:

Step 1: The part I of the initial individual contains all the
alternative operations, and the sequence of oper-
ations is fixed.

Parent 1

Fig. 6 Subtree exchange crossover

Step 2:

Step 3:

The second number of part I is created by randomly
assigning a machine in the set of machines which
can perform the operation placed at the corre-
sponding position in part I.

The part II of the initial individual, which rep-
resents OR-link paths, is initiated by randomly
generating a decimal integer for each component
of this part. The selection area of each discrimina-
tion value is decided by the number of OR-link
paths which are controlled by this value. For ex-
ample, if it has three OR-link paths, the selection
area of the discrimination value is the random
decimal integer in [1, 3].

Parent 2

@ Springer

150

Int J Adv Manuf Technol (2008) 38:143—-153

4.3.2 Fitness evaluation

The objective of the flexible process planning problem is to
minimize the production time (contains working time and
transmission time) for the given problem. Adjusted fitness
has been used as the objective. It can be calculated from the
following:

1
i, 1) = 4
max (i) = s 4)
S the size of population;
M the maximal generation;
t 1, 2, 3,...M generations;
TP(i, t) the production time of ith job in the 7th

generation (see Eq. (1));

The fitness function is calculated for each individual in
the population as described in Eq. (4).

4.4 GP operators

It is important to employ good operators that can effectively
deal with the problem and efficiently lead to excellent
individuals residing in the population. The GP operators
can generally be divided into three classes: reproduction,
crossover and mutation. And in each class, a large number
of operators have been developed [26].

4.4.1 Reproduction

Tournament selection scheme with a user-defined repro-
duction probabilistic was used for reproduction operation.
In tournament selection, a number of individuals are
selected at random (dependent on the tournament size,

Parent

Fig. 7 Point mutation

@ Springer

typically between 2 and 7) from the population and the
individual with the best fitness is chosen for reproduction.
The tournament selection approach allows a tradeoff to be
made between exploration and exploitation of the gene pool
[26]. This scheme can modify the selection pressure by
changing the tournament size.

This scheme has two working steps:

Step 1: Select user-defined tournament size individuals
from the population randomly to compose a group.
Step 2: Copy the best member of the group (the one with

the best fitness value) to the following generation,
and then applying the tournament selection
scheme to the remaining individuals.

4.4.2 Crossover

Subtree exchange crossover has been used as the crossover
operator here, and fitness-proportion selection scheme with
a user-defined crossover probabilistic was used for cross-
over operation. Subtree exchange crossover can generate
feasible children individuals that satisfy precedence restric-
tions and avoid duplication or omission of operations as
follows. The cut point is chosen randomly in the tree, and the
subtree before the cut point in one parent (parent 1) is passed
on to the same position as in the offspring (child 1). The other
part of the offspring (child 1) is made up of the subtree
after the cut point in the other parent (parent 2). The other
offspring (child 2) is made up of the subtree before the cut
point in one parent (parent 2) and the subtree after the cut
point in the other parent (parent 1). An example of the cross-
over is presented in Fig. 6. The cut point is marked with “@”.
The crossover operator produces feasible trees since both
parents are feasible and offspring are created without
violating the feasibility of the parents.

Int J Adv Manuf Technol (2008) 38:143-153

151

Table 2 The transmission time between the machines

Table 4 Experiment results

Machine 1 2 3 4 5 6 7 8 9 10
code

1 0 5 8 12 15 4 6 10 13 18
2 5 0 3 7 10 6 4 6 10 13
3 8 3 0 4 7 10 6 4 6 10
4 12 7 4 0 3 14 10 6 4 6
5 15 10 7 3 0 18 12 10 6 4
6 4 6 10 14 18 0 5 8 12 15
7 6 4 6 10 12 5 3 7 10
8 10 6 4 6 10 8 3 0 4 8
9 13 10 6 4 6 12 4 0 4
10 18 13 10 6 4 15 10 8 4 0

4.4.3 Mutation

Point mutation has been used as the mutation operator here,
and random selection scheme with a user-defined mutation
probabilistic was used for mutation operation. Each of the
selected individuals is mutated as follows. First, the point
mutation scheme is applied in order to change the
alternative machine represented in the gene (see Fig. 5) of
tree. A gene is randomly chosen from the selected
individual. Then, the second element of gene is mutated
by altering the machine number to another one of the
alternative machines at random. Second, the other mutation
is carried out to alter the OR-link path. This is associated
with part II of encoding scheme of tree. A discrimination
value is randomly chosen from the selected individual.
Then, it is mutated by changing its value in the selection
area randomly. In the example depicted in Fig. 7, mutation
point is marked with “@”. Gene (5, 9) has changed into (5, 10),
and the selected discrimination value has changed from 1 to 2.

5 Case studies and discussion

Some experiments have been conducted to measure the
adaptability and superiority of the proposed GP approach.

Table 3 The GP and GA parameters

Parameters GP GA
Jobl Job2 Job1l Job2
The size of the population, S 400 400 400 400
Total number of generations, M 30 30 60 60
Probability of reproduction 0.05 0.05 0.05 0.05
operation, p,
Probability of crossover 0.50 0.50 0.50 0.50

operation, p,.
Probability of mutation operation, p,, 0.05 0.05 0.05 0.05
Tournament size, b 2 2 2 2

Job BIF MPAF CPU time (s)
1 0.00467289 0.00444361 113.6
2 0.00444444 0.00437222 130.9

And, the algorithm has been compare with genetic algo-
rithm (GA), which is another popular heuristic algorithm.
The performance of the approach is satisfactory from the
experiments and comparison.

5.1 Implementation and testing

For doing the experiments of the proposed approach, two
jobs with flexible process plans have been generated. Job 1
has been given in Figs. 1 and 2, and job 2 is changed from
job 1 by assuming the second machine is broken in the
current shop status. It has ten machines on the shop floor.
The code of the machine in job 2 is the same as the code of
machine in job 1. The transmission time (the time units is
the same as processing time in Fig. 2) between the
machines is given in Table 2. The objective is to solve the
optimization of flexible process plans with the maximum
objective function (i, t) (Eq. (4)). The GP parameters for
the two jobs are given in Table 3. The terminating condition is
reaching the maximum generation. The GP is coded in C++,
and implemented on a PC (Pentium (R) 4, CPU 2.40 GHz).

The experiments are carried out for the objective:
minimizing the production time (see Sect. 4.3.2). The
experimental results (fitness is the adjusted fitness) of the 2
jobs, which include the best individual’s fitness (BIF), the
maximum population’s average fitness (MPAF), and CPU
time are reported in the Table 4.

From the experimental results which are shown in Table
4, the best process plan of each job has been shown in
Table 5. And, Fig. 8 illustrates convergence curves of GP
for the 2 jobs. The curves show the search capability and
evolution speed of this algorithm.

From above experiment results which are shown in
Table 5, comparing job 1 with job 2, job 2 is changed from
job 1 by assuming the second machine is broken, the only
difference between them is the second machine is broken.
But the best process plans of them are completely different.
This reveals that an accident in shop floor can lead to the
best process plan changed completely. So, it becomes a

Table 5 Best process plan of each job

Job Best process plan Production time
1 (1, 22, -3, 2)-(4, 2-9, 3) 213
2 (10, 9)-(11, 3)-(15, 7) 224

@ Springer

152 Int J Adv Manuf Technol (2008) 38:143—-153
—m— Average Fitness —m— Average Fitness
* Best Fitness ® Best Fitness
0.00445
seesesesesesssa®tosee seeee
0.0046 seseee P R R R R R R R
eeee -n 0.00440
0.0044-l-.'. sesevee -
a-n ™ L 000435 e 000 ee -
0.0042 - /-l gunt
o 0.00430 e
0.0040 ~ / e
- M
, 00038 o . 0.00425 =
g J 2
£ 0.00356 4 / e 0.00420 4 /
[(i .
.
0.00415 o
0.0034 ./ -
0.0032 4 / 0.00410
-
0.0030 4 f.-. 0.00405
L]
000284 ® 0.00400
T T T T T T, T * T ¥ T T T T L} T b T
a 5 10 15 20 25 30 0 5 10 15 20 25 30
Generation Generation

Fig. 8 Convergence curves of GP

very important problem that how to optimize flexible
process planning to response to the current shop status
quickly. The method which is proposed in this paper used
genetic programming to optimize flexible process planning.
The experimental results of Table 4 and Fig. 8 show that
GP-based approach can reach good solutions in short time.
So, the GP-based approach is a promising method in solving
the optimization of flexible process planning problem. And
the results also show that the proposed method can reach near-
optimal solutions in the early stage of evolution. In order to
response to the current shop status, the proposed method can
select near optimal process plans quickly and effectively.

5.2 Comparison with GA
The algorithm has been compared with GA. The objective

of the experiments is minimizing the production time. The
GA is coded in C++, and implemented on the same PC with

—+— Average Fiteness
Best Fiteness

...... S, B masvusres

0.0048 =

0.0046

oooae]
0.0042
0.0040 -]
0.0038 - !

0.0036 -

Fitness

0.0034 -
o003z |
0.0030 I

00028 {4

0.0026

v T ¥ T v T v T Y T Y T
] 10 a0 40 50 60

Generation

Fitness

Fig. 9 The comparison between the convergence curves of GP and GA

@ Springer

GP. The GA parameters for the two jobs are given in Table 3,
and fitness-proportion selection scheme, single point cross-
over and point mutation have been used as the reproduc-
tion, crossover and mutation operators respectively.

Figure 9 illustrates convergence curves of the two algo-
rithms for two jobs. From the results of Fig. 9, it can be
observed that the two approaches can achieve good results.
The GP-based approach usually takes less time (less than 30
generations) to find optimal solutions, and the GA -based
approach is slower (nearly reach 60 generations) in finding
optimal solutions. The GP-based approach also can find
near-optimal solutions quicker than the GA- based approach.
So, when it is applied to large-scale problems in real world, it
is more suitable to reduce much computation time with a
little detriment of the solution quality.

Overall, the experiment results indicate that the GP-
based approach is a more acceptable optimization approach
of flexible process planning.

—=— Average Fiteness
GA + — Best Fiteness

s / / e —

0.00440 4 ,
0.00435

3 -
0.00430 _ae""
0.00425 Jeeess A | \\
- -

000420 A
0.00415 g
0.00410
0.00405

i
0.00400 -
0.00395
0.00380 4 -
0.00385 4+

0.00380 }———————————————————————
o 10 50 B0

Generation

Int J Adv Manuf Technol (2008) 38:143-153

153

6 Conclusion

A new approach using genetic programming (GP) is
proposed to optimize flexible process planning. The
flexible process plans and the mathematical model of
flexible process planning have been described, and a
network representation is adopted to describe the flexibility
of process plans. To satisfy GP, the network has been con-
verted to a tree. The efficient genetic representations and
operator schemes also have been considered. Case studies
have been used to test the algorithm, and the comparison
has been made for this approach and GA, which is another
popular evolutionary approach to indicate the adaptability
and superiority of the GP-based approach. The experimen-
tal results show that the proposed method is a promising
and very effective method in the optimization research of
flexible process planning.

Although the proposed algorithm in this paper can get
good results, testing other genetic operators (reproduction,
crossover and mutation) to enhance the efficiency of al-
gorithm is an important future work. With GP-based op-
timization approach developed in this work, it would be
possible to increase the efficiency of manufacturing system.
So, one future work is to use the proposed approach to the
practical manufacturing system. The increased use of this
approach will probably enhance the performances of future
process planning systems. Another future research direction
is to apply the proposed approach to the integrated envi-
ronment, such as the integration with scheduling system.

Acknowledgement This research work is supported by 973 National
Basic Research Program of China under Grant No.2004CB719405 and
863 High Technology Plan Foundation of China under Grant
No0.2006AA04Z131.

References

1. Sormaz D, Khoshnevis B (2003) Generation of alternative process
plans in integrated manufacturing systems. J Intell Manuf 14:509-526

2. Kusiak A, Finke G (1988) Selection of process plans in automated
manufacturing systems. IEEE J Robot Autom 4(4):397-402

3. Bhaskaran K (1990) Process plan selection. Int J Prod Res 28
(8):1527-1539

4. Lee KH, Jung MY (1994) Petri net application in flexible process
planning. Comput Ind Eng 27:505-508

5. Kamal R, Jagath S (2003) Processing plan selection algorithms for
a cooperative intelligent image analysis system. In: Proceedings of
the International Conference on Imaging Science, Systems and
Technology, pp 576582

6. Seo Y, Egbelu PJ (1996) Process plan selection based on product
mix and production volume. Int J Prod Res 34(9):2369-2655

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Usher JM, Bowden RO (1996) Application of genetic algorithms

to operation sequencing for use in computer-aided process
planning. Comput Ind Eng 30(4):999-1013

. Tiwari MK, Tiwari SK, Roy D, Vidyarthi NK, Kameshewaran S

(1999) A genetic algorithm based approach to solve process plan
selection problems. In: IEEE Proceedings of the Second Interna-
tional Conference on Intelligent Processing and Manufacturing of
Materials, 1:281-284

. Rocha J, Ramos C, Vale Z (1999) Process planning using a

genetic algorithm approach. In: IEEE Proceeding of International
Symposium on Assembly and Task Planning, pp 338-343

Dereli T, Filiz HI (1999) Optimisation of process planning
functions by genetic algorithms. Comput Ind Eng 36:281-308
Moriarty DE, Miikkulainen R (1997) Forming neural networks
through efficient and adaptive coevolution. Evol Comput 5:372-399
Kramer MD, Zhang D (2000) GAPS: a Genetic Programming
System. In: Proceedings of the 24th Annual International
Computer Software and Application Conference (IEEE COMP-
SAC), pp 614-619

Banzhaf W, Nordin P (1998) Genetic programming: an introduc-
tion. Morgan Kaufmann Publishers, Inc., San Francisco CA
Dimopoulos C, Zalzala AMS (2001) Investigating the use of
genetic programming for a classic one-machine scheduling
problem. Adv Eng Softw 32:489—-498

Garces PJ, Schoenefeld DA, Wainwright RL (1996) Solving
facility layout problems using genetic programming. In: Proceed-
ings of the Ist Annual Conference on Genetic Programming 11
(4):182-190

McKay BM, Willis MJ, Hiden HG, Montague GA, Barton GW
(1996) Identification of industrial processes using genetic
programming. In: Proceeding of the Conference on Identification
in Engineering Systems, 1996 11 (5):510-519

Hutchinson GK, Flughoeft KAP (1994) Flexible process plans:
their value in flexible automation systems. Int J Prod Res 32
(3):707-719

Saygin C, Kilic SE (1999) Integrating flexible process plans with
scheduling in flexible manufacturing systems. Int J Adv Manuf
Technol 15:268-280

Benjaafar S, Ramakrishnan R (1996) Modeling, Measurement and
evaluation of sequencing flexibility in manufacturing systems. Int
J Prod Res 34:1195-1220

Kim YK, Park K, Ko J (2003) A symbiotic evolutionary algorithm
for the integration of process planning and job shop scheduling.
Comput Oper Res 30:1151-1171

Lin YJ, Solberg JJ (1991) Effectiveness of flexible routing
control. Int J Flex Manuf Syst 3:189-211

Catron AB, Ray SR (1991) ALPS-A Language for Process
Specification. Int J] Comput Integr Manuf 4:105-113

Ho YC, Moodie CL (1996) Solving cell formation problems in a
manufacturing environment with flexible processing and routing
capabilities. Int J Prod Res 34:2901-2923

Koza JR (1990) Genetic programming: a paradigm for genetically
breeding populations of computer programs to solve problems.
Tech. Rep. STAN-CS-90-1314 Stanford University Computer
Science Department

Koza JR (1992) Genetic programming: on the programming of
computers by means of natural selection and genetics. MIT Press,
Cambridge MA

Langdon WB, Qureshi A (1995) Genetic Programming - Com-
puters using ‘“Natural Selection” to generate programs. Tech. Rep.
RN/95/76, Gower Street, London WCIE 6BT, UK

@ Springer

	Optimization of flexible process planning by genetic programming
	Abstract
	Introduction
	Flexible process planning
	Flexible process plans
	Representation of flexible process plans
	Mathematical model of flexible process planning

	Brief review of GP
	GP for flexible process planning
	The flow chart of proposed method
	Convert network to tree, encoding and decoding
	Convert network to tree
	Encoding and decoding

	Initial population and fitness evaluation
	Initial population
	Fitness evaluation

	GP operators
	Reproduction
	Crossover
	Mutation

	Case studies and discussion
	Implementation and testing
	Comparison with GA

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

