
ORIGINAL ARTICLE

Performance evaluation of the scatter search method
for permutation flowshop sequencing problems

M. Saravanan & A. Noorul Haq & A. R. Vivekraj &
T. Prasad

Received: 7 August 2006 /Accepted: 12 April 2007 /Published online: 15 June 2007
Springer-Verlag London Limited 2007

Abstract Many optimization problems from the industrial
engineering world, in particular manufacturing systems, are
very complex in nature and are quite hard to solve by
conventional optimization techniques. There has been
increasing interest to apply metaheuristic methods to solve
such kinds of hard optimization problems. In this work, a
novel metaheuristic approach called scatter search (SS) is
applied for the n/m/P/Cmax problem, an NP-hard sequenc-
ing problem, which is used to find a processing order of n
different jobs to be processed on m machines in the same
sequence with minimizing the makespan. SS contrasts with
other evolutionary procedures by providing a wide explo-
ration of the search space through intensification and
diversification. In addition, it has a unifying principle for
joining solutions and they exploit the adaptive memory
principle to avoid generating or incorporating duplicate
solutions at various stages of the problem. In this paper,
various metaheuristic methods and best heuristics from the
literature are used for solving the well-known benchmark
problem set of Taillard (Eur J Oper Res 64:278–285, 1993).
The results available for the various existing metaheuristic
and heuristic methods are compared with the results
obtained by the SS method. The proposed framework
achieves better results for 4 of 12 benchmark problems and
also achieves an average deviation of 1.003% from the

benchmark problem set of Taillard (Eur J Oper Res 64:278–
285, 1993). The computational results show that SS is a
more effective metaheuristic for the n/m/P/Cmax problem.

Keywords Permutation flowshop . Scheduling .

Metaheuristic . Heuristic methods . Scatter search .

Makespan

1 Introduction

A flowshop is characterized by the unidirectional flow of
work with a variety of jobs being processed sequentially in
a one-pass manner. A number of operations need to be done
on every job in many manufacturing and assembly
facilities. A “job” is, thus, a collection of operations to be
performed on an item or unit with applicable technological
constraints. This implies that all of the jobs have to follow
the same route, even if the jobs are identical. The machines
are assumed to be set up in a series and such a processing
environment is referred to as a flowshop. In a scheduling
problem using m machines, they must finish a total of n
jobs and each job has exactly m operations, each of which
must be proceeded in a different machine. Thus, each job
has to pass through each machine in a particular order. The
order of machines needed to complete a job is the same for
all of the jobs. The objective of the scheduling problem
now is to determine a sequence on each machine that
satisfies the above constraints and minimizes the objective
function.

In this paper, the permutation flowshop problem has
been attempted with a novel evolutionary technique called
scatter search (SS). This algorithm incorporates procedures
based on different strategies, such as diversification, local
search, Tabu search, or path relinking. In common with

Int J Adv Manuf Technol (2008) 37:1200–1208
DOI 10.1007/s00170-007-1053-5

M. Saravanan (*)
Department of Mechanical Engineering,
R.V.S. College of Engineering & Technology,
Dindigul 624005 Tamil Nadu, India
e-mail: sarandgl2k@yahoo.co.in

A. Noorul Haq :A. R. Vivekraj : T. Prasad
Department of Production Engineering,
National Institute of Technology,
Tiruchirappalli, Tamil Nadu, India

other evolutionary methods, SS operates with a population
of solutions, rather than with a single solution at a time, and
employs procedures for combining these solutions to create
new ones. SS, in contrast with other evolutionary procedures
such as genetic algorithms, provides an unifying principle
for joining solutions based on generalized path construc-
tions and by utilizing strategic designs, whereas other
approaches resort to randomization. Additional advantages
are provided by intensification and diversification mecha-
nisms that exploit adaptive memory, together with process-
es to avoid generating or incorporating duplicate solutions
at various stages and drawing on foundations that link SS
and path relinking to Tabu search [1].

2 Literature survey

During the last 40 years, the n/m/P/Cmax problem has held
the attention of many researchers [2]. Although optimal
solutions of n/m/P/Cmax problems can be obtained via
enumeration techniques such as exhaustive enumeration
and the branch and bound method [3], these methods may
take a prohibitive amount of computation time, even for
moderate size problems. Sequencing methods in the
literature can be broadly categorized into two types of
approaches, namely, optimization and heuristic. Optimiza-
tion approaches guarantee to obtain the optimum sequence,
whereas heuristic approaches mostly obtain near-optimal
sequences. Among the optimization approaches, the algo-
rithm developed by Johnson [4] is the widely cited research
dealing with sequencing n jobs on two machines. Lomnicki
[5] proposed a branch and bound technique to find the
optimum permutation of jobs. Since the flowshop schedul-
ing problem has been recognized to be NP-hard, the branch
and bound method cannot be applied for large size
problems. This limitation has encouraged researchers to
develop efficient heuristics. For practical purposes, it is
often more appropriate to look for a heuristic method that
generates a near-optimal solution at relatively minor
computational expense. This leads to the development of
many heuristic procedures.

The currently available heuristics for solving this
problem in the literature can be classified into two
categories: constructive heuristics and improvement heu-
ristics [6]. In the constructive heuristic, once a job sequence
is determined, it is fixed and cannot be reversed. In the
constructive category, methods developed by Palmer [7],
Campbell et al. [8], Gupta [9], Dannenbring [10], Rock and
Schmidt [11], and Nawaz et al. [12] can be listed. Mostly,
these methods are developed on the basis of Johnson’s
algorithm. Turner and Booth [13] and Taillard [14] have
verified that the method proposed by Nawaz et al. [12],
namely NEH, performs well among the constructive

methods tested. On the other hand, Osman and Potts [6],
Widmer and Hertz [2], Ho and Chang [15], Ogbu and
Smith [16], Taillard [14], Nowicki and Smutnicki [17], and
Ben-Daya and Al-Fawzan [18] have developed improve-
ment heuristics for the same problem.

The improvement heuristics start with an initial solution
and then provide a scheme for iteratively obtaining an
improved solution. In recent years, studies with metaheur-
istics have been extensively carried out on this argument.
The metaheuristic is a rather general algorithmic framework
that can be applied to different optimization problems with
minor modifications. Essentially, it is a type of randomized
improvement heuristic [6]. Methods of this type include
genetic algorithms [19, 20], simulated annealing [21, 22],
and the Tabu search [23]. The literature shows that these
methods can obtain very good results for NP-hard combi-
natorial optimization problems. Nowicki and Smutnicki
[24] have developed a new algorithm called the modified
scatter search algorithm (MSSA). MSSA produced 20 new,
better upper bound solutions among 30 very hard, as yet
unsolved instances from common benchmark sets. Another
metaheuristic is given by Stutzle [25], called the iterated
local search (ILS). According to the tests conducted by
Stutzle, the ILS algorithm is much better than the Tabu
search of Taillard [14] and is also better than the Tabu
search of Nowicki and Smutnicki (TSAB) [17]. Ruiz and
Maroto [26] compared 25 methods, ranging from the
classical Johnson’s algorithm or dispatching rules to the
most recent metaheuristics, including Tabu search, simulat-
ed annealing, genetic algorithms, ILS, and hybrid tech-
niques for the benchmark problems [27]. In their paper
[26], all of the algorithms and methods are coded in Delphi
6.0 and run on an AthlonXP 1600+ computer with 512 MB
of main memory. The methods used for comparison are
well known metaheuristics, such as Osman and Potts’ [6]
SA algorithm (SAOP), Widmer and Hertz’s [2] SPIRIT,
Chen et al.’s [28] GA algorithm (GAChen), Reeves and
Yamada’s [29] GA algorithm (GAReev), hybrid GA+local
search by Murata et al. [30] (GAMIT), Stutzle’s ILS [25],
and GA by Ponnambalam et al. [31] (GAPAC). Reza Hejazi
and Saghafian [32] have described a complete survey of
flowshop scheduling problems up to 2004. The proposed
SS method outperforms other methods for the flowshop
scheduling problems of Noorul Haq et. al. [33].

This paper is organized as follows. Section 3 describes
the formulation of the sequencing problem. In Sect. 4, the
elements of the SS method based on the sequencing
problems are discussed. A simple problem is solved by
the proposed SS method in Sect. 5. The computational
results obtained by the application of this method to the
problems selected from benchmark problems [27] are
discussed in Sect. 6. Section 7 includes our discussions
and conclusions.

Int J Adv Manuf Technol (2008) 37:1200–1208 1201

3 Problem formulation

The permutation flowshop scheduling problem consists of
scheduling n jobs with given processing times on m
machines, where the sequence of processing a job on all
machines is identical and unidirectional for each job. In
studying flowshop scheduling problems, it is a common
assumption that the sequence in which each machine
processes all jobs is identical on all machines (permutation
flowshop). A schedule of this type is called a permutation
schedule and is defined by a complete sequence of all jobs.
This paper addresses the same problem representation used
in the literature [34].

3.1 Assumptions in permutation flowshop scheduling

The operating sequences of the jobs are the same on every
machine and the common sequence has to be determined.
The following assumptions are made for this work:

1. n jobs, j={i/i=1, 2,..., n}, are available at time 0.
2. There are m machines m1, m2,..., mm to process n jobs,

each having a sufficient capacity of buffer for work-
in-process.

3. Each job can be processed by at most one machine at a
time. Each machine can process at most one job at a
time, and is never interrupted during processing.

4. The processing sequence of n jobs on each machine is
the same, i.e., an optimal permutation schedule is
sought.

5. The setup times of the operations are included in the
processing time and do not depend on the sequence.

3.2 Permutation flowshop problem representation

The permutation flowshop represents a particular case of
the flowshop scheduling problem, having as the goal the
deployment of an optimal schedule for n jobs on m
machines. Solving the flowshop problem consists of
scheduling n jobs (i=1,..., n) on m machines (j=1,..., m).
A job consists of m operations and the jth operation of each
job must be processed on machine j. So, one job can start
on machine j if it is completed on machine j−1 and if
machine j is free. Each operation has a known processing
time pi,j. For the permutation flowshop, the operating
sequences of the jobs are the same on every machine. If
one job is at the ith position on machine 1, then this job will
be at the ith position on all of the machines.

As a consequence, for the permutation flowshop prob-
lem, considering the makespan as the objective function to
be minimized, solving the problem means determining the
permutation which gives the smallest makespan value. In
the above specified context, a job ji can be seen as a set of

operations, having one operation for each of the m
machines:

– ji={Oi1, Oi2, Oi3,..., OiM}, where Oij represents the jth
operation of ji

– Operation Oij must be processed on machine mj

– For each operation Oij , there is an associated
processing time pij

Notationally, F/P/Cmax, considering the makespan as the
objective function to minimize the overall processing time,
refers the problem.

Let ∏1, ∏2, ∏3,..., ∏N be a permutation. Computing the
completion time C(∏i, j) for the ith job of the given
permutation ∏ and machine j can be done as follows:

C Π1; 1ð Þ ¼ pΠ1; 1

C Πi; 1ð Þ ¼ C Πi�1; 1ð Þ þ pΠi; 1 i ¼ 2; . . . ; N

C Π1; jð Þ ¼ C Πi; j� 1ð Þ þ pΠ1; j i ¼ 2; . . . ; M

C Πi; jð Þ ¼ max C Πi�1; 1ð Þ;C Π1; j� 1ð Þf g
þ pΠi; j

i ¼ 2; . . . ; N ;
j ¼ 2; . . . ; M

Under these specifications, the value of the objective
function, the makespan, Cmax, is given as C(∏N, M)
−completion time for the last operation on the last machine.

4 Elements of scatter search

The solution approach that is developed for this permuta-
tion problem consists of an adaptation of the scatter search
(SS) method. SS is an instance of the so-called evolutionary
method, which is not based solely on randomization as the
main mechanism for searching. It constructs solutions by
combining others by means of strategic designs that exploit
the knowledge on the problem at hand. The goal of these
procedures is to enable a solution procedure based on the
combined elements to yield better solutions than one based
on the original elements.

Compared to other evolutionary methods, SS operates
with a population of solutions, rather than with a single
solution at a time, and employs procedures for combining
these solutions to create new ones. The meaning of
“combining” and the motivation for carrying it out has a
rather special origin and character in the SS setting. One of
the distinguishing features of this approach is its intimate
association with the Tabu search (TS) metaheuristic, and,
hence, its adoption of the principle that searching can
benefit by incorporating special forms of adaptive memory,
along with procedures particularly designed for exploiting
that memory. More about the origin and multiple applica-

1202 Int J Adv Manuf Technol (2008) 37:1200–1208

tions of SS can be found in Glover et al. [1]. The basic
steps involved in the static SS are:

Step 1 Use the diversification generator to generate
diverse trial solutions from the seed solution(s)

Step 2 Use the improvement method to create one or more
enhanced trial solutions

Step 3 With these initial solutions, update the reference set
(RefSet)

Step 4 Repeat

4.1 Generate subsets of the RefSet
4.2 Combine these subsets and obtain new solutions
4.3 Use the improvement method to create a more

enhanced trial solution
4.4 While continuing to maintain and update the

RefSet

Until Refset is stable (no new solutions are included)
Step 5 If iterations (steps 1–4) elapse without improve-

ment, stop. Else, return to step 1.

4.1 Diversification generation method

The diversification generation method is used to generate a
collection of diverse trial solutions, using an arbitrary trial
solution (or seed solution) as an input. This element of the
SS approach is particularly important, given the goal of
developing a method that balances diversification and
intensification in the search. This method was suggested
by Glover [35], which generates diversified permutations in
a systematic way without reference to the objective
function. Assume that a given trial permutation (P) used
as a seed is represented by indexing its elements, so that
they appear in consecutive order, to yield P=(1, 2,..., n).
Define the subsequence P(h: s), where s is a positive integer
between 1 and h, to be given by P(h: s)=(s, s+h, s+2h,...,
s+rh), where r is the largest nonnegative integer such that
s+rh≤n. Then, define the permutation P(h), for h≤n to be:

P hð Þ ¼ P h : hð Þ; P h : h� 1ð Þ; . . . ; P h : 1ð Þð Þ

To illustrate:

– Suppose P is given by P=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12). If h=4 is chosen, then:

P 4 : 4ð Þ ¼ 4; 8; 12ð Þ
P 4 : 3ð Þ ¼ 3; 7; 11ð Þ
P 4 : 2ð Þ ¼ 2; 6; 10ð Þ
P 4 : 1ð Þ ¼ 1; 5; 9ð Þ

to give:

P 4ð Þ ¼ 4; 8; 12; 3; 7; 11; 2; 6; 10; 1; 5; 9ð Þ
– Similarly, if h=3 is chosen, then:

P 3 : 3ð Þ ¼ 3; 6; 9; 12ð Þ
P 3 : 2ð Þ ¼ 2; 5; 8; 11ð Þ
P 3 : 1ð Þ ¼ 1; 4; 7; 10ð Þ

to give:

P 3ð Þ ¼ 3; 6; 9; 12; 2; 5; 8; 11; 1; 4; 7; 10ð Þ

In this illustration, h is allowed to take the two values
closest to the square root of n. These values are interesting
based on the fact that, when h equals the square root of n,
the minimum relative separation of each element from
every other element in the new permutation is maximum,
compared to the relative separation of exactly 1 in the
permutation P. In general, for the goal of generating a
diverse set of permutations, preferable values for h range
from 1 to n/2.

4.2 Improvement method

The improvement method is used to transform a trial
solution into one or more enhanced trial solutions. Neither
the input nor the output solutions are required to be
feasible, though the output solutions will more usually be
expected to be so. If there is no improvement in the input
trial solution results, the “enhanced” solution is considered
to be the same as the input solution. For each trial solution
produced in diversification, we use the improvement
method to create one more enhanced trial solution.

For example:

1 2 3 4 5

The sequence is divided into two by taking half the
number of jobs on both sides. If the number of jobs is not
an even number, more than half the number of jobs is taken
on the left side (refer to the above example). The jobs on
the right side of the sequence have to be inserted on the left

Int J Adv Manuf Technol (2008) 37:1200–1208 1203

side. Similarly, the jobs on the left side of the sequence
have to be inserted on the right side. The improved trial
solution will be obtained by the improvement method.

4.3 Reference set update method

The reference set (RefSet) update method accompanies
each application of the improvement method, and is
generally examined straight after the improvement method,
because of its linking role with the subset generation
method. The update operation consists of maintaining a
record of the b best solutions found, where the value of b is
treated as a constant search parameter. The issues associ-
ated with this updating function are conceptually straight-
forward; to build and maintain a reference set consisting of
the b best solutions is found (where the value of b is
typically small, e.g., not more than 20), organized to
provide efficient accessing by other parts of the method.
Solutions gain membership to the reference set according to
their quality or their diversity.

4.4 Subset generation method

This procedure consists of creating different subsets X of
RefSet, as a basis for implementing the subsequent
combination method. The SS methodology prescribes that
the set of combined solutions (i.e., the set of all combined
solutions that the implementation intends to generate) is
produced in its entirety at the point where X is created.

Therefore, once a given subset X is created, there is no
merit in creating it again. The procedure seeks to generate
subsets X of RefSet that have useful properties, while
avoiding the duplication of subsets previously generated.
The approach for doing this is organized to generate four
different collections of subsets of RefSet, subset type 1, 2,
3, and 4, with the following characteristics:

– Subset type=1: all two-element subsets
– Subset type=2: three-element subsets derived from the

two-element subsets by augmenting each two-element
subset to include the best solution not in this subset

– Subset type=3: four-element subsets derived from the
three-element subsets by augmenting each three-ele-
ment subset to include the best solutions not in this
subset

– Subset type=4: the subsets consisting of the best i
elements, for i=5 to b

A central consideration of this design is that RefSet itself
might not be static, because it might be changing as new
solutions are added to replace old ones (when these new
solutions qualify to be among the current b best solutions
found). In the implementation, however, a static updating of
RefSet is maintained, but a broad definition of “best” for

the membership in this set is used. In other words, RefSet is
not allowed to dynamically change its size, but two criteria
are used to allow solutions initially become members of this
set. One criterion is the quality of the solution (as given by
the objective function value) and the other is the diversity
of the solution (as given by the dissimilarity measure). In
this sense, the definition of “best” to construct the first
RefSet is broader than one that considers only the value of
the objective function. After the first RefSet has been
created, subsequent membership in the set can only be
obtained by means of solution quality. That is, RefSet
changes when the combination method generates solutions
of higher quality and the process stops when RefSet
converges.

4.5 Solution combination method

This method is used to transform a given subset of solutions
produced by the subset generation method into one or more
combined solution vectors. Specific processes for carrying
out these steps are described by Martí et al. [36]. Here, the
solution combination method, which is applied to each
subset generated in the previous step, uses a min–max
construction based on votes. The method scans (from left to
right) each reference permutation in the subset, and uses the
rule that each reference permutation votes for its first
element that is still not included in the combined
permutation (referred to as the “incipient element”). The
voting determines the next element to enter the first still
unassigned position of the combined permutation. This is a
min–max rule in the sense that, if any element of the
reference permutation were chosen other than the incipient
element, then it would increase the deviation between the
reference and the combined permutations. Similarly, if the
incipient elements were placed later in the combined
permutation than its next available position, this deviation
would also increase. So the rule attempts to minimize the
maximum deviation of the combined solution from the
reference solution, subject to the fact that other reference
solutions in the subset are also competing to contribute.

5 Numerical illustration

In this illustration, the processing times for a four-job and
three-machine problem is given below:

Job Machine
* M1 M2 M3
J1 1 8 4
J2 2 4 5
J3 6 2 8
J4 3 9 2

1204 Int J Adv Manuf Technol (2008) 37:1200–1208

The detailed steps involved in the proposed SS method
are given as follows:

Step 1 Generate trial schedules by using the NEH [12]
method as the seed sequence, say (1, 2, 3, 4)

Step 2 Use the diversification generation method to gen-
erate diverse trial solutions from the seed solution.

Select the value of h for the seed sequence. The
preferable value is 1 to n/2, since n=4, h=2:

P 2 : 2ð Þ ¼ 2; 4ð Þ
P 2 : 1ð Þ ¼ 1; 3ð Þ
P 2ð Þ ¼ 2; 4; 1; 3ð Þ ¼ Cmax value is 35

if h ¼ 1; P 1ð Þ ¼ 1; 2; 3; 4ð Þ ¼ Cmax ¼ 28

Step 3 For each trial, with trial solutions produced in step
2, use the improvement method to create one or
more enhanced trial solutions. During successive
applications of the step, maintain and update a
reference set containing the b best solutions. In the
improvement method, the insertion of each ele-
ment on both sides is carried out, as explained in
Sect. 4.2. Example:

2 4 1 3

2 1 4 3 = Cmax = 33

2 3 4 1 = Cmax = 32

Likewise, left to right insertions should be carried out.
Finally, the best sequence is selected and, again, the same
procedure is repeated until there is no improvement observed.
Step 4 From the improvement results, rank the sequence

in order of increasing makespan and form the
RefSet consists of the best and diverse solutions
(refer to Sect. 4.3):

RefSet 1ð Þ ¼ 2 1 4 3
RefSet 2ð Þ ¼ 2 4 3 1

�
best solutions

RefSet 3ð Þ ¼ 1 4 2 3
RefSet 4ð Þ ¼ 3 1 4 2

�
diverse solutions

Step 5 The subsets are formed as:

Subset 1 ¼ 1; 2ð Þ 1; 3ð Þ 1; 4ð Þ
2; 3ð Þ 2; 4ð Þ 3; 4ð Þ

Subset 2 ¼ 1; 2; 3ð Þ 1; 3; 4ð Þ
2; 3; 4ð Þ

Subset 3 ¼ 1; 2; 3; 4ð Þ
(Similarly, all of the four types of subsets are formed for

big problems. Refer to Sect. 4.4.)

6. For each subset produced in step 5, the solution
combination method (refer to Sect. 4.5) is carried out
as follows, e.g.:

Subset 1 ¼ 1; 2ð Þ
RefSet 1ð Þ ¼ 2143

RefSet 2ð Þ ¼ 2431

Combined sequence ¼ 2143 ¼ Cmax ¼ 33

Similarly, all of the sets are combined.

The best solution from the combination set is added to the
RefSet. The same procedure is repeated for the new updated
RefSet until the best possible objective value is obtained.

6 Computational results

One difficulty faced by researchers in scheduling is to
compare their developed heuristics with those of other
researchers. If the standard set of test problems is
accessible, different algorithms’ performances can be
compared on exactly the same set of test problems. For
this reason, 120 benchmark problems are chosen from
Taillard [27] as the test problems for this study. Taillard has
produced a set of n/m/P/Cmax problems with 5, 10, and 20
machines and from 20 to 500 jobs .The instances were
randomly generated as follows for each job i (i=1, 2,..., n)
on each machine j (j=1, 2,..., m), and an integer processing
time pij was generated from the uniform distribution [1, 99].
In order to propose problems that are as difficult as
possible, Taillard [27] generated many instances of prob-
lems, then, for each size of problems, chose the ten
instances that seemed to be the hardest ones to form a
basic problems set. Thus, there were ten instances for each
problem size and 120 problem instances in all. Subsequent-
ly, Taillard [27] gave each of these instances with the
following information: initial value of the random gener-
ator’s seed, a lower bound, and an upper bound of the
optimal makespan. The test problem files are available via
Taillard’s website at http://ina2.eivd.ch/collaborateurs/etd/
problemes.dir/ordonnancement.dir/ordonnancement.html.

The algorithm was coded using C++ and run on an Intel
Pentium IV, 3-GHz PC. To evaluate the algorithm, each of
the problem instances was tested for ten trials. The best trial
was chosen and the ten instances for the same problem size
were averaged. The final results are shown in Table 1,
which gives a comparison with other metaheuristics. Ant
colony systems (ACS) has been discussed by Ying and
Yiao [37], genetic algorithms (GA), simulated annealing
(SA), and neighborhood search (NS) methods were dis-
cussed by Colin [34], MSSAwas discussed by Nowicki and
Smutnicki [24], various metaheuristics were discussed by
Ruiz and Maroto [26], and the best heuristics were

Int J Adv Manuf Technol (2008) 37:1200–1208 1205

http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnancement.html
http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnancement.html

T
ab

le
1

C
om

pa
ri
so
n
of

th
e
sc
at
te
r
se
ar
ch

(S
S
)
m
et
ho

d
w
ith

va
ri
ou

s
m
et
ah
eu
ri
st
ic

an
d
he
ur
is
tic

al
go

ri
th
m
s
fo
r
pe
rm

ut
at
io
n
fl
ow

sh
op

pr
ob

le
m
s
ad
op

te
d
fr
om

T
ai
lla
rd

[2
7]

P
ro
bl
em

si
ze

S
ca
tte
r
se
ar
ch

M
et
ah
eu
ri
st
ic

m
et
ho

ds
H
eu
ri
st
ic

m
et
ho

ds

A
C
S

G
A

S
A

N
S

M
S
S
A

S
A
O
P

S
pi
ri
t

G
A
-C
he
n

G
A
-R
ee
v

G
A
-M

IT
IL
S

G
A
PA

C
P
al
m
er

C
D
S

N
E
H

H
o-
C
ha

(J
ob

s/
m
ac
hi
ne
s)

P
R
D

C
P
U

tim
e

(s
)

Q
ua
lit
y

20
/5

0.
33

3
1.
19

1.
61

1.
27

1.
46

–
1.
39

5.
22

3.
82

0.
70

4.
21

0.
24

8.
98

10
.5
8

9.
54

3.
35

6.
94

20
/1
0

0.
88

4
1.
70

2.
29

1.
71

2.
02

–
2.
66

5.
86

4.
89

1.
92

5.
40

0.
77

13
.6
1

15
.2
8

12
.1
3

5.
02

10
.5
1

20
/2
0

0.
49

7
3

1.
60

1.
95

0.
86

1.
10

–
2.
31

4.
58

4.
17

1.
53

4.
53

0.
85

11
.0
3

16
.3
4

9.
64

3.
73

8.
30

50
/5

0.
16

6
6

0.
43

0.
45

0.
78

0.
79

–
0.
69

2.
03

2.
09

0.
26

3.
11

0.
12

6.
50

5.
34

6.
10

0.
84

3.
33

50
/1
0

1.
56

1
8

1.
89

2.
28

1.
98

3.
21

–
4.
25

5.
88

6.
60

2.
58

8.
38

2.
01

16
.4
1

14
.0
1

12
.9
8

5.
12

11
.2
9

50
/2
0

3.
11
7

11
2.
71

3.
44

2.
86

3.
90

−0
.8
2

5.
13

7.
21

8.
03

3.
76

10
.6
5

3.
29

18
.5
6

15
.9
9

13
.8
5

6.
20

12
.4
0

10
0/
5

0.
09

44
0.
22

0.
23

0.
56

0.
76

–
0.
40

1.
06

1.
32

0.
18

5.
41

0.
11

5.
32

2.
38

5.
01

0.
46

2.
70

10
0/
10

0.
73

52
1.
22

1.
25

1.
33

2.
69

–
1.
88

5.
07

3.
75

1.
08

12
.0
5

0.
66

12
.3
4

9.
20

9.
15

2.
13

7.
96

10
0/
20

1.
47

7
53

2.
22

2.
91

2.
32

3.
98

−1
.1
5

5.
21

10
.1
5

7.
94

3.
94

18
.2
4

3.
17

18
.2
5

14
.4
1

13
.1
2

5.
11

11
.1
0

20
0/
10

0.
44

96
0.
64

0.
50

0.
83

3.
81

–
1.
56

9.
03

2.
70

0.
82

7.
52

0.
49

9.
75

5.
13

7.
38

1.
43

5.
11

20
0/
20

1.
26

94
1.
30

1.
35

1.
74

6.
07

−
1.
39

8
4.
83

16
.1
7

7.
07

3.
33

15
.3
5

2.
74

17
.0
6

13
.1
7

12
.0
8

4.
37

9.
99

50
0/
20

1.
49

12
9

1.
68

−0
.2
2

0.
85

9.
07

–
3.
40

13
.5
7

4.
61

1.
83

2.
17

1.
29

2.
61

7.
09

8.
55

2.
24

7.
14

A
ve
ra
ge

1.
00

3
60

.3
6

1.
40

1.
50

1.
42

3.
24

–
1.
12

2.
81

7.
15

4.
75

1.
83

8.
92

1.
31

12
.5
3

10
.7
4

9.
96

3.
33

8.
06

1206 Int J Adv Manuf Technol (2008) 37:1200–1208

discussed in the same paper [26]. The solution quality is
measured by the mean percentage difference from Taillard’s
upper bound. The SS algorithm needs an initial permuta-
tion, which can be found by any method. In the tests, which
are conducted in a similar fashion as they are carried out in
previous papers [17, 37], algorithm NEH [12], which is
considered to be the best among simple constructive
heuristics for flowshop scheduling, is used. For each test
instance, the makespan (Cs) using the SS algorithm is
found. The percentage relative deviation (PRD) is used to
measure the algorithm quality:

PRD ¼ 100
Cs � CTð Þ

CT

The PRD is the percentage relative difference between
makespan Cs and the reference makespan CT given by
Taillard [27]. Since the CPU times vary according to the
hardware, software, and coding, the computational efficien-
cy cannot be compared directly in this paper. When
applying heuristics, the properties of reliability and consis-
tency are both important. As demonstrated, SS is very
consistent in the solution quality, with respect to the chance
of obtaining a bad solution, and the computational time. It
is clear that SS is promising for the n/m/P/Cmax problem.
On the whole, SS outperforms the various other metaheur-
istics and heuristic methods except for MSSA. The PRD is
found to be 1.003%, with a maximum of 3.117%.

7 Conclusion

The main aim of this research is to explore the potential of
the scatter search (SS) for scheduling problems of a permu-
tation flowshop. The inherent weakness of many search
procedures is that they often get trapped in a region around
some local minima. Their ability to break out of such entrap-
ments and achieve better, ideally global minima, is based on
their capacity to provide a suitable mixture of intensification
and diversification. SS also provides unifying principles for
joining solutions based on generalized path constructions
and by utilizing strategic designs where other approaches
resort to randomization. The SS algorithm is tested on
problems adopted from Taillard [27] and compared with the
other metaheuristic methods used and compared by Ying
and Liao [37] and Ruiz and Maroto [26]. In fact, the SS
metaheuristic can achieve an average deviation of 1.003%
from the upper bound solution of the benchmark problems
of Taillard [27]. The experimental observations verified the
effectiveness and efficiency of the SS algorithm over the
other metaheuristics. From the results given in Table 1, it is
concluded that the computational time required to obtain
the optimal solution is comparatively low.

References

1. Glover F, Laguna M, Marti R (2000) Fundamentals of scatter
search and path relinking. Control Cybern 29(3):653–684

2. Widmer M, Hertz A (1989) A new heuristic method for the flow
shop sequencing problem. Eur J Oper Res 41(2):186–193

3. Pinedo M (1995) Scheduling: theory, algorithm, and systems.
Prentice-Hall, Englewood Cliffs, New Jersey

4. Johnson SM (1954) Optimal two- and three-stage production
schedules with setup times included. Nav Res Logist Q 1(1):61–68

5. Lomnicki ZA (1965) A “branch-and-bound” algorithm for the
exact solution of the three-machine scheduling problem. Oper Res
Q 16(1):89–100

6. Osman IH, Potts CN (1989) Simulated annealing for permutation
flow-shop scheduling. OMEGA Int J Manag Sci 17(6):551–557

7. Palmer DS (1965) Sequencing jobs through a multi-stage process
in the minimum total time—a quick method of obtaining a near
optimum. Oper Res Q 16(1):101–107

8. Campbell HG, Dudek RA, Smith ML (1970) A heuristic
algorithm for the n-job, m-machine sequencing problem. Manage
Sci 16(10):630–637

9. Gupta JND (1971) A functional heuristic algorithm for the
flowshop scheduling problem. Oper Res Q 22(1):39–47

10. Dannenbring DG (1977) An evaluation of flow shop sequencing
heuristics. Manage Sci 23(11):1174–1182

11. Rock H, Schmidt G (1982) Machine aggregation heuristics in
shop scheduling. Methods Oper Res 45:303–314

12. Nawaz M, Enscore EE Jr, Ham I (1983) A heuristic algorithm for
the m-machine, n-job flow shop sequencing problem. OMEGA Int
J Manag Sci 11(1):91–95

13. Turner S, Booth D (1987) Comparison of heuristics for flow shop
sequencing. OMEGA Int J Manag Sci 15(1):75–78

14. Taillard E (1990) Some efficient heuristic methods for the flow
shop sequencing problem. Eur J Oper Res 47(1):65–74

15. Ho JC, Chang Y-L (1990) A new heuristic for the n-job, m-
machine flow shop problem. Eur J Oper Res 52(2):194–206

16. Ogbu FA, Smith DK (1990) The application of the simulated
annealing algorithm to the solution of the n/m/Cmax flow shop
problem. Comput Oper Res 17(3):243–253

17. Nowicki E, Smutnicki C (1996) A fast tabu search algorithm for the
permutation flow-shop problem. Eur J Oper Res 91(1):160–175

18. Ben-Daya M, Al-Fawzan M (1998) A tabu search approach for
the flow shop scheduling problem. Eur J Oper Res 109(1):88–95

19. Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison-Wesley, Reading, Massachusetts

20. Holland JH (1975) Adaptation in natural and artificial systems.
The University of Michigan Press, Ann Arbor, Michigan

21. van Laarhoven PJM, Aarts EHL (1987) Simulated annealing:
theory and applications. D. Reidel, Dordrecht, The Netherlands

22. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller
E (1953) Equation of state calculation by fast computing machine.
J Chem Phys 21(6):1087–1092

23. Glover F, Laguna M (1997) Tabu search. Kluwer Academic
Publishers, Boston, Massachusetts

24. Nowicki E, Smutnicki C (2006) Some aspects of scatter search in
the flow-shop problem. Eur J Oper Res 169(2):654–666

25. Stutzle T (1998) Applying iterated local search to the permutation
flow shop problem. Technical report, AIDA-98-04, FG Intellektik,
TU Darmstadt, Germany

26. Ruiz R, Maroto C (2005) A comprehensive review and evaluation of
permutation flowshop heuristics. Eur J Oper Res 165(2):479–494

27. Taillard E (1993) Benchmarks for basic scheduling problems. Eur
J Oper Res 64:278–285

28. Chen C-L, Vempati VS, Aljaber N (1995) An application of genetic
algorithms for flow shop problems. Eur J Oper Res 80(2):389–396

Int J Adv Manuf Technol (2008) 37:1200–1208 1207

29. Reeves C, Yamada T (1998) Genetic algorithms, path relinking,
and the flowshop sequencing problem. Evol Comput 6(1):230–
234

30. Murata T, Ishibuchi H, Tanaka H (1996) Genetic algorithms for
flowshop scheduling problems. Comput Ind Eng 30(4):1061–1071

31. Ponnambalam SG, Aravindan P, Chandrasekaran S (2001)
Constructive and improvement flow shop scheduling heuristics:
an extensive evaluation. Prod Plan Control 12(4):335–344

32. Reza Hejazi S, Saghafian S (2005) Flowshop-scheduling prob-
lems with makespan criterion: a review. Int J Prod Res 43(14):
2895–2929

33. Noorul Haq A, Saravanan M, Vivekraj AR, Prasad T (2007) A
scatter search approach for general flowshop scheduling problem.
Int J Adv Manuf Technol 31(7–8):731–736

34. Colin RR (1995) A genetic algorithm for flowshop sequencing.
Comput Oper Res 22(1):5–13

35. Glover F (1998) A template for scatter search and path relinking.
In: Hao JK, Lutton E, Ronald E, Schoenauer M, Snyers D (eds)
Lecture notes in computer science, vol 1363, pp 13–54 (expanded
version available on request)

36. Martí R, Laguna M, Campos V (2005) Scatter search vs. genetic
algorithms: an experimental evaluation with permutation prob-
lems. In: Rego C, Alidaee B (eds) Metaheuristic optimization via
adaptive memory and evolution: tabu search and scatter search.
Kluwer Academic Publishers, Norwell, Massachusetts, pp 263–
282

37. Ying K-C, Liao C-J (2004) An ant colony system for permutation
flow-shop sequencing. Comput Oper Res 31(5):791–801

1208 Int J Adv Manuf Technol (2008) 37:1200–1208

	Performance evaluation of the scatter search method for permutation flowshop sequencing problems
	Abstract
	Introduction
	Literature survey
	Problem formulation
	Assumptions in permutation flowshop scheduling
	Permutation flowshop problem representation

	Elements of scatter search
	Diversification generation method
	Improvement method
	Reference set update method
	Subset generation method
	Solution combination method

	Numerical illustration
	Computational results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

