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Abstract Predicting the completion time of a lot is a
critical task to a wafer fabrication plant (wafer fab). Many
recent studies have shown that pre-classifying a wafer lot
before predicting the completion time was beneficial to
prediction accuracy. However, most classification
approaches applied in this field could not absolutely
classify wafer lots. Besides, whether the pre-classification
approach combined with the subsequent prediction ap-
proach was suitable for the data was questionable. For
tackling these two problems, a self-organization map-fuzzy-
back-propagation network-ensemble (SOM-FBPN-ensem-
ble) approach with error feedback to adjust classification is
proposed in this study. The proposed methodology has two
advanced features: predicting the completion time using a
FBPN-ensemble instead of a single FBPN, and feeding
back the prediction error to adjust the classification result
by the SOM. According to experimental results, the
prediction accuracy of the proposed approach was signif-
icantly better than those of many existing approaches.
Besides, the effects of the two advanced features were also
evident.
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1 Introduction

Predicting the completion time for every lot in a wafer
fabrication plant (wafer fab) is a critical task not only to the
fab itself, but also to its customers. After the completion time
of each lot in a wafer fab is accurately predicted, several
managerial goals (including internal due-date assignment,
output projection, ordering decision support, enhancing
customer relationship, and guiding subsequent operations)
can be simultaneously achieved [8]. Predicting the comple-
tion time of a lot is equivalent to estimating the cycle (flow)
time of the lot, because the former can be easily derived by
adding the release time (a constant) to the latter.

There are six major approaches commonly applied to
predict the completion/cycle time of a wafer lot: multiple-
factor linear combination (MFLC), production simulation
(PS), back propagation networks (BPN), case-based rea-
soning (CBR), fuzzy modeling methods, and hybrid
approaches [11]. Among the six approaches, MFLC is the
easiest, quickest, and most prevalent in practical applica-
tions. The major disadvantage of MFLC is the lack of
forecasting accuracy [8]. Conversely, a huge amount of data
and lengthy simulation time are two disadvantages of
PS. Nevertheless, PS is the most accurate completion-time
prediction approach if the related databases are continu-
ously updated to maintain enough validity, and it often
serves as a benchmark for evaluating the effectiveness
(prediction accuracy) of another method. Considering both
effectiveness and efficiency (execution time), Chang et al.
[5], Chang and Hsieh [3], and Hsu and Sha [14] all
forecasted the completion time of a lot in a wafer fab with
a BPN having a single hidden layer. Compared with MFLC
approaches, the average prediction accuracy measured with
root mean squared error (RMSE) was considerably improved
with these BPNs. For example, an improvement of about
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40% in RMSE was achieved in Chang et al. [5]. On the
other hand, much less time and fewer data are required to
generate a completion-time forecast with a BPN than with
PS. More recently, Chen [11] incorporated the future
release plan of the fab into a BPN, and constructed a
“look-ahead” BPN for the same purpose, which led to an
average reduction of 12% in RMSE. Chang et al. [4]
proposed a k-nearest-neighbors based case-based reason-
ing (CBR) approach which outperformed the BPN
approach in forecasting accuracy. In one case, the
advantage of CBR over BPN was up to 27%. Other
CBR applications refer to [2, 7]. Chang et al. [5, 7]
modified the first step (i.e. partitioning the range of each
input variable into several fuzzy intervals) of the fuzzy
modeling method proposed by Wang and Mendel [16],
called the WM method, with a simple genetic algorithm
(GA) and proposed the evolving fuzzy rule (EFR)
approach to predict the cycle time of a lot in a wafer
fab. Their EFR approach outperformed CBR and BPN in
prediction accuracy. Chen [8] constructed a FBPN that
incorporated expert opinions in forming inputs to the
FBPN. Chen’s FBPN was a hybrid approach (fuzzy
modeling and BPN) and surpassed the crisp BPN
especially in respect to efficiency. Another hybrid ap-
proach was proposed in Chang and Liao [6] by combining
SOM and WM, in which a lot was classified using a SOM
before predicting the completion time of the lot with WM.
Chen [12] constructed a look-ahead k-means (kM)-FBPN
for the same purpose, and discussed in detail the effects of
using different look-ahead functions. More recently, Chen
[9] proposed a look-ahead SOM-FBPN approach for
wafer-lot completion time prediction. Besides, a set of
fuzzy inference rules were also established to evaluate the
achievability of an estimated completion time. Subse-
quently, Chen et al. [13] added a selective allowance to the
completion time predicted using Chen’s approach to
determine the internal due date.

According to these results, classifying wafer lots is a
good way of getting better performance in lot completion
time prediction. However, most classification approaches
applied in this field could not absolutely classify wafer lots.
In other words, a wafer lot can be classified into multiple
categories with different degrees. Therefore, predicting the
completion time of a wafer lot using the prediction
approach tailored to a single category seems to be
insufficient. On the other hand, whether the pre-classifica-
tion approach combined with the subsequent prediction
approach is suitable for the data is questionable. For
tackling these two problems, Chen’s look-ahead SOM-
FBPN approach is modified and the look-ahead SOM-
FBPN-ensemble approach with error feedback to adjust
classification is proposed in this study. In the proposed
methodology,

(1) Awafer lot is classified using a SOM before predicting
the completion time of the wafer lot with a FBPN-
ensemble.

(2) “Many” FBPNs form a FBPN ensemble that is applied
to wafer lot completion time prediction. For this
purpose, an output aggregation mechanism is also
proposed. Conversely, only “a single” network or rule
base is applied in existing approaches. This opens a
new direction for future research in this field, because
the other approaches can be improved in the same way
to enhance the effectiveness.

(3) Many pre-classification techniques (e.g., kM, FCM,
SOM) have been applied in this field. However,
whether the pre-classification techniques combined
with the subsequent prediction approach (e.g., kM-
FBPN, FCM-FBPN, SOM-FBPN, SOM-WM, etc.)
is suitable for the data is questionable, which is
very critical to the performance. Instead of trying
many classifier-and-predictor combinations, the con-
cept of feedback control is applied in this study to
improve the suitability of the SOM-FBPN combi-
nation for the data by feeding back the forecasting
error generated by the FBPN-ensemble to adjust
the classification result done by the SOM. After
some replications, the SOM-FBPN combination will
become more suitable for the data. Such a treatment
is also novel in this field, and opens another
direction for future research, because the other
pre-classifying approaches can also be tuned in
similar ways.

The methodology architecture is shown in Fig. 1. The
remaining of this paper is organized as follows. Section 2
introduces the SOM-FBPN-ensemble approach with error
feedback to adjust classification. To evaluate the effective-
ness of the proposed methodology, PS is applied in Sect. 3
to generate test data. Based on analysis results, some
discussions are made in Sect. 4. Finally, the concluding
remarks and some directions for future research are given in
Sect. 5.

2 A SOM-FBPN-ensemble with error feedback to adjust
classification

The proposed methodology is modified from Chen’s look-
ahead SOM-FBPN approach [9]. Parameters that will be
used in the proposed methodology are defined:

an The normalized cycle time of lot n that is calculated
as (the cycle time of lot n - The minimal cycle
time) / (the maximal cycle time - the minimal cycle
time). There is only one fixed value of an no matter
which category lot n is re-classified into.
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on The normalized cycle time forecast of lot n,
which changes every training epoch and is
expected to converge to an.

Rn The release time of lot n.
Un The average fab utilization at Rn.

Qn The total queue length on the processing route
of lot n at Rn.

BQn The total queue length before bottlenecks at Rn.
FQn The total queue length in the whole fab at Rn.
WIPn The fab work-in-progress (WIP) at Rn.
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D rð Þ
n The delay (waiting time) of the rth recently

completed lot at Rn; r = 1∼3.
FDW fð Þ

n The future discounted workload on the
processing route of lot n at Rn [9]; f=1∼3.

En The prediction error of lot n.
ERn The prediction error rate of lot n.

There are three steps in applying the proposed method-
ology to predict the completion time of a wafer lot. The first
step is to pre-classify wafer lots with a SOM, which has
been shown to be effective in improving the accuracy of
wafer lot completion time prediction [6, 9, 10, 12, 13].

2.1 Step 1: Wafer lot pre-classification with a SOM

Every lot fed into the FBPN ensemble is called an example.
Examples are pre-classified into different categories with a
SOM. A SOM is usually trained using unsupervised
learning to produce low dimensional representation of the
training examples while preserving the topological proper-
ties of the input space. For this reason, the two dimensional
SOM constructed in this study ought to be able to manage
the 13 dimensional data of wafer lots. In addition, there
have been some studies using SOM for the same purpose,
e.g., Chang and Liao [6] and Chen [9, 10, 13]. The
structure of the SOM is 10*10, and the number of output
nodes is 100. Let xn denote the 13-dimensional feature
vector (Un, Qn, BQn, FQn, WIPn, D 1ð Þ

n , D 2ð Þ
n , D 3ð Þ

n , FDW 1ð Þ
n ,

FDW 2ð Þ
n , FDW 3ð Þ

n , En, ERn) corresponding to lot n (see
Fig. 2). Note that the prediction error En and the prediction
error rate ERn are included, and they are set to be zeros in
the beginning. The feature vectors of all lots are fed into
the SOM to be learned. The learning algorithm is the same
as that adopted in Chen [9]. However, pre-classification
was done only once in Chen’s study, while lots are pre-
classified many times in the proposed methodology. After
that, a labeling process is realized. According to the
distribution of labeled (categorized) output nodes of the
SOM after the labeling process, merged or isolated
clusters can be visually analyzed, and the number of
categories can be clarified. A case is illustrated in Fig. 3.
According to this figure, examples can be classified into
three categories. The centroid of each category is
calculated as:

x kð Þ ¼ x kð Þi
��i ¼ 1 � 13

� �
;

x kð Þi ¼
X

all v

xvi

,
X

all v

yvi;

yvi ¼ 1
0

�
if example v2 category k;

else;

k ¼ 1 � 3:

where xðkÞ denotes the centroid of category k. However, it
is often difficult to classify an example into a single
category absolutely. Therefore, the membership of an
example belonging to each category is calculated:

μv kð Þ ¼ 1

,
X3

l¼1

ev kð Þ
�
ev lð Þ

� �2
;

ev kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

all i

xvi � x kð Þi
� �2

;

vuut

where μv(k) denotes the membership of example v
belonging to category k. In this way, an example can be
classified into multiple categories with different degrees.
Conversely, in Chang and Liao [6] and Chen [9] an
example is only classified into a single category (the
category with the highest membership) to simplify the
situation.

After classification, examples of different categories are
then learned with different FBPNs but with the same
topology. Before that, a membership threshold μL for
adopting an example in network learning has to be
determined. Only examples which membership values of
belonging to a category are greater than or equal to μL will
be adopted in training the FBPN to obtain the parameter
values tailored to the category. As a result, an example
might be adopted by multiple categories. The procedure for
determining the parameter values of FBPNs is described in
the next section.
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2.2 Step 2: Completion time prediction within each lot
category with FBPN

The configuration of the FBPN is established as follows:

(1) Inputs: eleven parameters associated with the n-th
example/lot including Un, Qn, BQn, FQn, WIPn, D rð Þ

n

(r=1∼3), and FDW fð Þ
n (f=1∼3). These parameters

have to be normalized so that their values fall within
[0, 1]. Then some production execution/control
experts are requested to express their beliefs (in
linguistic terms) about the importance of each input
parameter in predicting the cycle/completion time of a
lot. Linguistic assessments for an input parameter are
converted into several pre-specified fuzzy numbers.
The subjective importance of an input parameter is
then obtained by averaging the corresponding fuzzy
numbers of the linguistic replies for the input
parameter by all experts. The subjective importance
obtained for an input parameter is multiplied to the
normalized value of the input parameter. After such a
treatment, all inputs to the FBPN become triangular
fuzzy numbers (TFNs), and the fuzzy arithmetic for
TFNs is applied to deal with all calculations involved
in training the FBPN.

(2) Single hidden layer: Generally one or two hidden
layers are more beneficial for the convergence prop-
erty of the FBPN.

(3) Number of neurons in the hidden layer: the same as
that in the input layer. Such a treatment has been
adopted by many studies (e.g., [4, 8–11]).

(4) Output: the (normalized) cycle time forecast of the
example.

(5) Network learning rule: delta rule.
(6) Transformation function: Sigmoid function,

f xð Þ ¼ 1

1þ e�x
�

(7) Learning rate (η): 0.01∼1.0.
(8) Batch learning.
(9) Number of epochs per replication: 75000.
(10) Number of initial conditions/replications: 100. Be-

cause the performance of a BPN or FBPN is sensitive
to the initial condition, the training or testing process
will be repeated many times with different initial
conditions that are randomly generated. Among the
results, the best one is chosen for the subsequent
analyses.

The procedure for determining the parameter values
refers to Chen [9], and is only briefly described here. After
pre-classification, a portion of the adopted examples in each
category is fed as “training examples” into the FBPN to

determine the parameter values for the category. Two
phases are involved at the training stage. At first, in the
forward phase, inputs are multiplied with weights,
summated, and transferred to the hidden layer. Then
activated signals are outputted from the hidden layer, and
also transferred to the output layer with the same
procedure. Finally, the output of the FBPN eon is
generated. eon is defuzzified according to the centroid-of-
area (COA) formula, and then the defuzzification result
on is compared with the actual value (the normalized cycle
time) an to evaluate the accuracy of the FBPN which
is represented with RMSE. In addition, the prediction error
En and the prediction error rate ERn can be calculated as:

En ¼ on � an;

ERn ¼ En=an;

The two parameters will be fed back to the SOM, and
classification is done again. The rationale for such a treatment
is explained as follows. In the proposed way, lots that are
topologically close to each other and have similar values of the
two parameters will be re-classified into the same category,
which is beneficial to improving the prediction accuracy of the
FBPN. Take the extreme case in which all lots of a category
have the same values of En as an example. Namely, E pð Þ ¼
o pð Þ � a pð Þ ¼ E 8 lot p belonging to the category.

Simply add -E (a constant) to the network output of the
FBPN, and the prediction accuracy of all lots in the category
can be simultaneously enhanced: new E pð Þ ¼ new o pð Þ� a pð Þ ¼
o pð Þ � E � a pð Þ¼ o pð Þ � o pð Þ � a pð Þð Þ � a pð Þ ¼ 0; 8 lot p
belonging to the category.

Incorporating the effect of adding a constant through a
few epochs of re-training ought to be easy, because
theoretically a well-trained BPN or FBPN (without being
stuck to local minima) with a good selected topology can
successfully map any complex nonlinear distribution.

Subsequently in the backward phase, the deviation
between on and an is propagated backward, and the error
terms of neurons in the output and hidden layers can be
calculated. Based on them, adjustments that should be made
to the connection weights and thresholds can be obtained.
To accelerate convergence, a momentum can be added to
the learning expressions as well. Network-learning stops
when RMSE falls below a pre-specified level, or the
improvement in RMSE becomes negligible with more
epochs, or a large number of epochs have already been
run. Besides, the lower and upper bounds of all fuzzy
numbers in the FBPN will no longer be modified if Chen’s
index [9] converges to a minimal value. Then the remaining
portion of the adopted examples in each category is used as
“testing examples” and fed into the FBPN to evaluate the
accuracy of the network again that is also measured with
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RMSE. However, re-classification might lead to the
situation that lots keep transferring from one category to
another, and the convergence of any FBPN might not be
achieved. In this respect, according to experimental data,
the results of classification will quickly converge, because
among the 13 inputs to the SOM only two of them (En and
ERn) are variable and might change the classification
results. En and ERn will become smaller and smaller
because of network learning, and are expected to converge
to zeros. Finally lot transferring will stop, and every FBPN
will converge.

After training and testing, the FBPN of every category is
applied to predict the cycle times of examples belonging to
the category. Then the prediction error En and the prediction
error rate ERn are calculated for every example, and are fed
back to the SOM classifier. Subsequently, classification is
done again. If the classification result is the same as the
previous one, then stop; otherwise, the FBPN of every
category has to be re-trained and re-tested again with
the same procedure mentioned above. Note that only the
examples input to the FBPN might be different. The
structure of the FBPN itself is not changed. Finally, these
FBPNs form a FBPN-ensemble that can be applied to
predict the cycle/completion time of a new lot. The
procedure is detailed in the next section.

2.3 Step 3: Aggregation of outputs from the component
FBPNs

To obtain a better prediction result, a BPN is constructed
to (nonlinearly) aggregate the outputs from the compo-
nent FBPNs of the FBPN-ensemble with the following
configuration:

(1) Inputs: 2 m parameters including the outputs (indicat-
ed with ov(k); k=1∼m) from the component FBPNs
obtained for lot v, and the membership value of lot v
belonging to each component FBPN (indicated with
μv(k)).

(2) Single hidden layer.
(3) Number of neurons in the hidden layer: the same as

that in the input layer.
(4) Output: the (normalized) cycle time forecast of the lot.
(5) Network learning rule: Delta rule.
(6) Transformation function: Sigmoid function.
(7) Learning rate (η): 0.01∼1.0.
(8) Batch learning.
(9) Number of epochs per replication: 75000.
(10) Number of initial conditions/replications: 100.

The BPN also undergoes training and testing. Then, it is
applied and the network output (i.e., the aggregation result)
determines the cycle time forecast for the new lot. In this

study, SOM and BPN were both implemented on the
software “NeuroSolutions 4.0”, while a VB program has
been constructed to implement FBPN.

3 Test data from a simulated wafer fab

In real situations, the historical data of each lot is only
partially available in the fab. Further, some information of
the previous lots such as Qn, BQn, and FQn is not easy to
obtain on the shop floor. Therefore, a simulation model is
often built for the manufacturing process of a real wafer fab
[1, 3–6, 8–11, 14, 15]. Then, such information can be
derived from the shop floor status collected from the
simulation model [4]. To generate some test examples, a
simulation program coded using Microsoft Visual Basic 6.0
is constructed to simulate a wafer fabrication environment
with the following assumptions:

(1) The distributions of the times between the adjacent
machine breakdowns are exponential.

(2) The distribution of the time required to repair a
machine is uniform.

(3) The percentages of lots with different product types in
the fab are predetermined. As a result, this study is
only focused on fixed-product-mix cases.

(4) The percentages of lots with different priorities
released into the fab are controlled.

(5) Lots are sequenced on each machine first by their
priorities, then by the first-in-first-out (FIFO) policy.
Such a sequencing policy is not uncommon in many
foundry fabs.

(6) A lot has equal chances to be processed on each
alternative machine/head available at a step.

(7) A lot cannot proceed to the next step until the
fabrication on its every wafer has been finished.

(8) No preemption is allowed.

The basic configuration of the simulated wafer fab is the
same as a real-world wafer fab which is located in the
Science Park of Hsin-Chu, Taiwan, R.O.C. Assumptions
(1)∼(2), and (5)∼(8) are commonly adopted in related
researches (e.g., [3–6, 8]), while assumptions (3)∼(4) are
made to simplify the situation. There are five products
(labeled as A∼E) in the simulated fab. A fixed product mix
is assumed. The percentages of these products in the fab’s
product mix are assumed to be 35%, 24%, 17%, 15%, and
9%, respectively. The simulated fab has a monthly capacity
of 20,000 pieces of wafers and is expected to be fully
utilized (utilization=100%). Lots are uniformly (every a
fixed interval) released into the fab, and have a standard
size of 24 wafers per lot. The mean inter-release time of lots
into the fab is 0.88 h. Three types of priorities (normal, hot,
and super hot) are randomly assigned to lots. The
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percentages of lots with these priorities released into the fab
are restricted to be approximately 60%, 30%, and 10%,
respectively. Each product has 150∼200 steps and 6∼9
reentrances to the most bottleneck machine. The singular
production characteristic “reentry” of the semiconductor
industry is clearly reflected in the simulation model. It also
shows the difficulty for the production planning and
scheduling staff to provide an accurate due-date for the
product with such a complicated routing. Totally 102
machines (including alternative machines) are used to
process single-wafer or batch operations in the fab. Thirty
replications of the simulation are successively run. The time
required for each simulation replication is about 15 minute
on a PC with 256MB RAM and Athlon 64 Processor 3000+
CPU. A horizon of 24 months is simulated. The maximal
cycle time is less than 3 months. Therefore, 4 months and
an initial WIP status (obtained from a pilot simulation run)
seemed to be sufficient to drive the simulation into a steady
state. The statistical data were collected starting at the end
of the fourth month. For each replication, data of 30 lots are
collected and classified by their product types and
priorities. In total, data of 900 lots can be collected as
training and testing examples. Among them, 2/3 (600 lots,
including all product types and priorities) are used to train
the network, and the other 1/3 (300 lots) are reserved for
testing. The three parameters in calculating the future
discounted workloads are specified as: T1=one week; T2=
1.5 weeks; T3=2 weeks.

A traced report was generated every simulation run for
verifying the simulation model. The average cycle times
have also been compared with the actual values for
validating the simulation model.

4 Results and discussions

To evaluate the effectiveness of the proposed methodology
and to make comparison with some existing approaches -
BPN, FBPN, CBR, EFR, kM-FBPN, SOM-WM, and the
look-ahead SOM-FBPN (without ensemble and error
feedback), all the eight methods were applied to five test
cases containing the data of full-size (24 wafers per lot) lots
with different product types and priorities.

In BPN or FBPN, there was one hidden layer with 11
nodes. In SOM-WM, look-ahead SOM-FBPN, and the
proposed methodology, lots were pre-classified with SOM.
The number of categories (m) determined for each product
type and priority is shown in Table 1. In kM, the optimal
number of categories (K) (see Table 2) was obtained by
applying Xie and Beni’s S test [17]. The convergence
condition in training networks was established as either the
improvement in RMSE becomes less than 0.001 with one
more epoch, or 75000 epochs have already been run.

The minimal RMSEs achieved by applying the eight
approaches to different cases were recorded and compared
in Table 3. As noted in Chang et al. [5], the k-nearest-
neighbors based CBR approach should be compared with a
BPN trained with only randomly chosen k cases. The
optimal value of parameter k in the CBR approach was
equal to the value that minimized RMSE [5]. The k values
for different product types and priorities are summarized in
Table 4. BPN was adopted as the comparison basis, and the
percentage of improvement on the minimal RMSE by
applying another approach is enclosed in parentheses
following the performance measure. According to experi-
mental results,

(1) From the effectiveness viewpoint, the prediction
accuracy (measured with RMSE) of the proposed
approach was significantly better than those of the
other approaches by achieving a 28%∼55% (and an
average of 43%) reduction in RMSE over the
comparison basis - the BPN approach. The average
advantages over FBPN, CBR, and EFR were 41%,
38%, and 15%, respectively.

(2) The proposed approach surpassed kM-FBPN, SOM-
WM, and the look-ahead SOM-FBPN that performed
pre-classification as well by improving the prediction
accuracy up to 12%, 11%, and 9%, respectively.

(3) The performances of EFR and SOM-WM were very
close. In fact, these two approaches are quite similar in
nature. Logical rule sets such as WM and EFR classify
sample first, and then provide different treatments.
Adding another classifier (SOM) to them seems to
have little effect.

(4) As the lot priority rose, the superiority of the proposed
approach over approaches without pre-classification
increased. In fact, the cycle time variation of lots with
higher priorities is often smaller, which makes their
cycle times easier to predict. Clustering such lots has a
more significant effect on the performance of cycle
time prediction.

Table 1 The number of lot categories determined by SOM

A (normal) A (hot) A (super hot) B (normal) B (hot)

m 6 4 4 5 3

Table 2 The optimal number of lot categories determined by kM

A (normal) A (hot) A (super hot) B (normal) B (hot)

K 8 6 3 9 5
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(5) Conversely, the greatest superiority of the proposed
approach over EFR happened when the lot priority
was the smallest (normal lots).

To demonstrate the effect of feeding back the prediction
error and error rate to adjust classification, an example is
given in Fig. 4, in which the fluctuations in the membership
values of some lot belonging to three categories, indicated
with μ1∼μ3, before and after a few replications of
classification adjustment are compared. According to this
figure, the classification result did change after feeding
back the prediction error and error rate. Nevertheless,
μ1∼μ3 seemed to converge. The fluctuations in the
membership values corresponded to the transitions of the
distributions of labeled (categorized) output nodes of SOM,
as demonstrated in Fig. 5. To evaluate the effect of feeding
back the prediction error and error rate to adjust classifica-
tion, the prediction accuracy of the look-ahead SOM-FBPN
with error feedback was compared with that of the same
approach but without error feedback in Table 5. The
advantage was 5.4% on average.

Subsequently, to elaborate the performance of the
proposed methodology with respect to the algorithm used
for aggregation, the common weighted average (WA) was
also applied to perform linear aggregation, which resulted in
the aggregation-by-WA approach, while the proposed
approach was called the aggregation-by-BPN approach.
The third approach compared with did not perform aggrega-
tion and was therefore called the no-aggregation approach, in
which only the FBPNwith the highest membership would be
applied to predict the cycle time. For a fair comparison, none
of the three approaches fed back the prediction error to adjust
classification. The forecasting results were summarized in
Table 6. The effect of aggregation (using a network
ensemble instead of a single network) was revealed with
the average advantage of the aggregation-by-BPN approach

over the no-aggregation approach, which was 8.2%.
Besides, the performance of the aggregation-by-WA ap-
proach was even worse than that of the no-aggregation
approach, which meant that casual aggregation (even with
the common WA) did not lead to a better result.

On the other hand, the prediction efficiency becomes
worse after incorporating in the new characteristics.
Feeding back the forecasting error and error rate to adjust
the classification results and then re-training and re-testing
the FBPNs does prolong the learning time. After that, it
also takes a little more time to predict the cycle time of a
new lot with a FBPN ensemble than with a single FBPN.
For demonstrating this, the eight approaches were imple-
mented using MATLAB R2006a and Microsoft VB.NET on
a PC with 256MB RAM and Athlon 64 Processor 3000+
CPU. Two performance measures including the model
construction/learning time, and the forecasting time for
every product type and priority were collected. The results
were summarized in Table 7. Take the data of product type
Awith normal priority as an example, after incorporating in
the new characteristics the learning time was lengthened
from 307 minutes to 573 minutes. Secondly, the forecasting
times by applying various approaches were compared. The
forecasting time by applying PS was lengthy (27189
seconds), while that of the proposed methodology (157
seconds) or any other approach (45∼132 seconds) was
much shorter. In fact, the cycle time of a wafer lot might be
up to 3 months, and therefore forecasting taking only a few
minutes is acceptable in practical applications. Besides,
effectiveness is usually more emphasized than efficiency.
To consider both effectiveness and efficiency, the RMSE
and the time forecasting takes for all approaches were
compared in Fig. 6, which supported the Pareto optimality
of the proposed methodology because it was not dominated
by any of the other approaches. Conversely, CBR and
FBPN were dominated by EFR. Besides, SOM-WM was
dominated by kM-FBPN and look-ahead SOM-FBPN.

5 Conclusions and directions for future research

To further enhance the effectiveness of wafer lot comple-
tion time prediction, a SOM-FBPN-ensemble approach

Table 3 Comparisons of the RMSEs of various approaches

RMSE BPN FBPN CBR EFR kM-FBPN SOM-WM SOM-FBPN The proposed
approach

A (normal) 178.59 177.1 (−1%) 172.44(−3%) 164.29 (−8%) 157.78 (−12%) 160.25 (−10%) 141.47 (−21%) 129.32 (−28%)
A (hot) 102.1 102.27 (+0%) 86.66 (−15%) 66.21 (−35%) 64.93 (−36%) 61.51 (−40%) 59.51 (−42%) 48.84 (−52%)
A (super hot) 13.49 12.23 (−9%) 11.59 (−14%) 9.07 (−33%) 9.48 (−30%) 9.07 (−33%) 9.07 (−33%) 8.62 (−36%)
B (normal) 289.22 286.93 (−1%) 295.51 (+2%) 208.28 (−28%) 197.1 (−32%) 198.5 (−31%) 178.42 (−38%) 158.63 (−45%)
B (hot) 77.61 75.98 (−2%) 78.85 (+2%) 44.57 (−43%) 42.01 (−46%) 39.67 (−49%) 38.59 (−50%) 35.21 (−55%)

Table 4 The k values for different product types and priorities in
CBR

A (normal) A (hot) A (super hot) B (normal) B (hot)

k 8 6 4 9 5
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with error feedback to adjust classification is proposed in
this study. In the proposed approach, at first wafer lots are
pre-classified into several categories using a SOM. For the
wafer lots completely belonging to each category, a
corresponding look-ahead FBPN is constructed to predict
the cycle/completion times. However, most wafer lots
belong to multiple categories with different degrees. For
this reason, instead of using the FBPN of a single category
to predict the cycle time of a new lot, the FBPNs of all
categories form a FBPN ensemble that is applied to predict

the cycle time. The output of the FBPN ensemble is derived
by aggregating the outputs from the component FBPNs
with a BPN for nonlinear aggregation. On the other hand,
the concept of feedback control is applied to improve the
suitability of the SOM-FBPN combination for the data by
feeding back the prediction error to adjust the classification
result. After some replications, the SOM-FBPN combina-
tion will become more suitable for the data. For evaluating
the effectiveness of the proposed methodology and to make
comparison with some existing approaches, production
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simulation is applied in this study to generate test data.
According to experimental results,

(1) From the effectiveness viewpoint, the prediction
accuracy of the proposed methodology was signifi-
cantly better than those of many existing approaches.

(2) The effect of using a network ensemble instead of a
single network for wafer lot completion time predic-
tion is evident.

(3) Feeding back the prediction error did adjust the
classification result. In this way, the SOM-FBPN
mechanism was tuned to be more suitable for the
data, which also contributed to the effectiveness of the
proposed methodology.

Conversely, there are disadvantages associated with the
proposed methodology:

(1) Compared with some existing approaches, more data
are required with the proposed methodology for the
sake of classifying lots with a SOM and incorporating
the future release plan.

(2) The prediction efficiency becomes worse after incor-
porating in the two new characteristics.

The main contribution to the body of the knowledge is:

(1) Classifying lots has been shown to be a good way of
getting better performance in predicting the comple-
tion time of a wafer lot. However, most classification
approaches applied in this field could not absolutely
classify wafer lots. Therefore, predicting the comple-

tion time of a wafer lot using the prediction approach
tailored to a single category seems to be insufficient.
Instead, aggregating the outputs from the prediction
approaches of multiple categories to generate a
representative value might be more accurate.

(2) On the other hand, many pre-classification approaches
have been applied in this field, e.g., kM, FCM, SOM,
etc. However, whether the pre-classification approach
combined with the subsequent prediction approach is
suitable for the data is questionable. Instead of trying
many classification and prediction approaches to find
out the most suitable combination, applying the
concept of feedback control to improve the suitability
of the classification-prediction combination might be
more practical.

However, to further evaluate the advantages and dis-
advantages of the proposed methodology, applying it to
cases with changing product mixes or loosely controlled
priority combinations is necessary, under which cycle time
variation is often very large. These constitute some
directions for future research.

Table 5 The effect of feeding back the prediction error and error rate
to adjust classification

RMSE A
(normal)

A
(hot)

A
(super
hot)

B
(normal)

B
(hot)

Without error
feedback

141.47 59.51 9.07 178.42 38.59

With error
feedback

131.02
(−7%)

54.18
(−9%)

9.05
(−0%)

161.58
(−9%)

37.76
(−2%)

Table 6 The effect of aggregation

RMSE A
(normal)

A
(hot)

A
(super
hot)

B
(normal)

B
(hot)

No-
aggregation

141.47 59.51 9.07 178.42 38.59

Aggregation-
by-WA

146.78
(+4%)

60.79
(+2%)

9.69
(+7%)

197.10
(+10%)

41.22
(+7%)

Aggregation-
by-BPN

132.55
(−6%)

49.94
(−16%)

8.79
(−3%)

162.6
(−9%)

36.01
(−7%)

Table 7 The forecasting times by applying various approaches
(product A, normal priority)

Approach Software Construction/
learning time (min)

Forecasting
time (s)

PS VB program Several weeks 27189
BPN MATLAB 195 45
FBPN VB program 290 49
CBR VB program 31 47
EFR VB program 98 46
kM-FBPN MATLAB +

VB program
301 119

SOM-WM MATLAB +
VB program

185 137

Look-ahead
SOM-FBPN

MATLAB +
VB program

307 132

The proposed
approach

MATLAB +
VB program

573 157
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