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Abstract Recognition of abnormal patterns in control
charts provides clues to reveal potential quality problems
in the manufacturing processes. One potentially popular
approach for recognizing different control chart patterns
(CCPs) is to develop heuristics based on various shape
features of the patterns. The advantage of this approach is
that the users can easily understand how a particular pattern
is identified. However, consistency in the recognition
performance is found to be considerably poor in the
heuristics approach. Since shape features represent the
main characteristics of the patterns in a condensed form,
artificial neural network (ANN) with features extracted
from the process data as input vector representation can
facilitate efficient pattern recognition with a smaller
network size. In this paper, a set of seven shape features
is selected, whose magnitudes are independent of the
process mean and standard deviation under a special
representation of the sampling interval in the control chart
plot. Based on these features, the CCPs are recognized
using a multilayered perceptron neural network trained by
back-propagation algorithm. The recognizer can recognize
all the eight commonly observed CCPs. Extensive perfor-
mance evaluation of this recognizer is carried out using
simulated pattern data. Numerical results indicate that the
developed ANN recognizer can perform well in real time
process control applications with respect to both recogni-
tion accuracy and consistency.
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1 Introduction

Control charts, predominantly in the form of X chart, are
important tools in statistical process control (SPC). They
are useful in determining whether a process is behaving as
intended or there are some unnatural causes of variation. A
process is out of control if a point falls outside the control
limits or a series of points exhibit an unnatural pattern. One
of the eight types of patterns, e.g., normal (NOR),
stratification (STA), systematic (SYS), cyclic (CYC),
upward shift (US), downward shift (DS), increasing trend
(UT) and decreasing trend (DT) [1] are usually observed in
control charts. Only the normal pattern is indicative of the
process continuing to operate under the chance causes, all
other patterns are unnatural. Recognition of the abnormal
patterns is an important aspect of SPC. Identification of the
unnatural patterns can greatly narrow down the set of
possible causes that must be investigated and thus the
diagnostic search process can be effectively reduced in
length.

Over the years, numerous supplementary rules known as
zone tests or run tests [2] have been proposed to analyze
control charts. Interpretation of the process data still
remains difficult because it involves pattern recognition
tasks. It often relies on the skill and experience of the
quality control personnel to identify the existence of an
unnatural pattern in the process. An efficient automated
control chart pattern (CCP) recognition system can com-
pensate this gap and ensure consistent and unbiased
interpretation of CCPs leading to lesser number of false
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alarms and better implementation of control charts. Aiming
this, some researchers [3–5] have developed expert systems
for CCP recognition. Several techniques have been
deployed in the knowledge base design of the expert
systems, such as template matching, statistical testing, run
rules and heuristic algorithms/rules. Although the results
are promising, a common problem as reported in the
previous studies is that of false recognition.

Development in the computing technology has motivat-
ed many researchers [6–11] to explore the use of artificial
neural networks (ANNs) for control chart pattern recogni-
tion. The use of neural network techniques has overcome
some of the drawbacks encountered in the conventional
expert system approaches. Most of the existing ANN-based
control chart pattern recognition schemes as reported in the
literature, have used normalized or scaled raw data as input
vectors to the recognizer. These data representations
normally produce large ANN structures and are not very
effective and efficient for complicated recognition prob-
lems. A smaller ANN size can lead to faster training with
better recognition performance. The limitations of using
pre-processed raw data as input vectors can be overcome
with the use of extracted features from control charts for
representing the data [10, 12]. Whereas Pham and Wani
[12] have used nine shape features, Hassan et al. [10] have
used six statistical features for recognition of six principal
control chart patterns, i.e., NOR, CYC, UT, US, DT and
DS. Since extracted features represent the main character-
istics of the original data in a condensed form, the feature-
based neural network approaches can facilitate accurate and
efficient pattern recognition.

One limitation in extraction of statistical features is that
it requires considerably large number of observations.
Moreover, the statistical features lose information on the
order of the data. On the other hand, each type of control
chart pattern has its own geometric shape and various
features can represent this shape. The advantage of shape
features is that those can be extracted from lesser number of
observations without losing order of the data. However,
extraction of some of the shape features considered by
Pham and Wani [12] requires user’s inputs and consequent-
ly, their CCP recognition system is not truly automated.

Gauri and Chakraborty [13] have studied the usefulness
of 32 possible shape features and presented a set of
heuristics based on an optimal set of 13 features using
classification and regression tree (CART) algorithm [14].
Their heuristics can recognize all the eight types of CCPs.
The main advantage of their proposed approach is that
extraction of the shape features does not require user’s
inputs in any form and so the CCP recognizer developed
using those features is truly automated. However, a rigorous
study on the recognition performance of the heuristic-based
recognizer on multiple sets of simulated test samples

reveals that its performances vary widely. In other words,
the generalization of the heuristic-based recognizer is found
to be quite poor. This is because that in the process of
automatic selection of features under CART algorithm, a
few correlated features have been selected in the optimal set
and as pointed out by Montgomery and Peck [15],
prediction based on correlated variables can lead to
prediction instability. The number of patterns in different
pattern classes are widely different (e.g., number of upward
shift patterns are nine times more than normal patterns) in
the learning samples used by Gauri and Chakraborty [13]
for selection of the optimal set of features and the related
heuristics. This may be the possible reason why such
correlated features have been selected automatically.

On the other hand, although the magnitudes of all the
features in the optimal set [13] are independent of the
process mean, magnitudes of some features in the optimal
set (e.g., AASBP, ASL, SRANGE, BRANGE, DABL,
DBRANGE, ALSPI, ABDPE, SASDPE and SASPE) are
dependent on the process standard deviation. Consequently,
the heuristics based on these features will only be
applicable to a specific process from where the learning
samples are collected/simulated. From a preliminary study,
it is observed that the magnitudes of all these features
become independent of the process standard deviation if the
mathematical expressions for two features AASBP and
ALSPI are slightly modified and each sampling interval is
represented by a constant linear distance, c=1σ, where σ is
the standard deviation of the underlying process. Conse-
quently, the CCP recognizers developed using the shape
features extracted under this representation of sampling
interval will be applicable to any general process.

In this paper, a set of seven shape features is considered
and extracted under the above-said representation of
sampling interval. Based on these features, CCPs are
recognized using ANN techniques and the performance of
this recognizer is extensively studied using synthetic pattern
data.

2 Sample patterns

Ideally, sample patterns for developing/validating a CCP
recognizer should be collected from a real process. Since, a
large number of patterns are required for developing/
validating a CCP recognizer and as those are not econom-
ically available, simulated data are often used. This is a
common approach adopted by other researchers also.

Various control chart patterns are generated considering
different pattern parameters as shown in Table 1. The
window size (N) is taken to be 32, i.e., each observation
window consists of 32 data points. The values of different
pattern parameters are varied randomly in a uniform
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manner between the limits shown. For the generation of
training and test patterns, 300 and 250 time series of
standard normal data are used respectively. Since there are
eight pattern classes considered in this study, a total of 2400
(300×8) and 2000 (250×8) sample patterns are simulated
for training and validation/verification phases respectively.
It may be noted that the training set contains equal number
of samples for each pattern class. This is so done because if
a particular pattern type is trained more number of times,
the network will become biased towards that pattern.

3 Shape features

The pair-wise correlation coefficients among the thirteen
shape features in the optimal set of features as derived by
Gauri and Chakraborty [13] are estimated from the learning
samples. It is noted that some pair-wise correlation

coefficient values are very high, as given in Table 2. This
implies that the optimal set of features includes some highly
correlated features. For example, ASL is highly correlated
with DABL;SRANGE with BRANGE , REAE and
DBRANGE; and ABDPE with SASDPE and SASPE.
Consequently, the stability (or consistency) of the recogni-
tion performance becomes considerably poor when the
CCPs are recognized using those features. In this study,
therefore, only those features, which are having fairly low
correlation among themselves, are chosen (see Table 3).
These features are listed below:

a) Ratio between the variance of the observations and
mean sum of squares of errors of the least square (LS)
line representing the overall pattern (RVE)

b) Average absolute slope of the straight lines passing
through the consecutive points (AASBP)

c) Area between the overall pattern and LS line per
interval in terms of SD2 (ALSPI)

d) Average of slopes of straight lines passing through six
pair-wise combinations of midpoints in four equal
segments (ASL)

e) Range of slopes of straight lines passing through six
pair-wise combinations of midpoints in four equal
segments (SRANGE)

f) Ratio of mean sum of squares of errors of the LS line
representing the overall pattern and pooled mean sum
of squares of errors of the LS lines fitted to two
segments that minimize the pooled mean sum of
squares of errors (REPEPE)

g) Absolute slope difference between the LS line repre-
senting the overall pattern and line segments represent-
ing the patterns within the two segments that minimize
the pooled mean sum of squares of errors (ABDPE)

The mathematical expressions of the above-mentioned
seven features are shown in Appendix. It may be noted that

Table 1 Parameters for simulating control chart patterns

Control chart patterns Pattern parameters Parameter values Pattern equations

Normal Mean (μ) 80 yi ¼ mþ ris

Standard deviation (σ) 5
Stratification Random noise (σ′) 0.2σ to 0.4σ yi ¼ mþ ris 0

Systematic Systematic departure (d) 1σ to 3σ yi ¼ mþ ris þ d � �1ð Þi
Cyclic Amplitude (a) 1.5σ to 2.5σ yi ¼ mþ ris þ a sin 2pi=Tð Þ

Period (T) 8 and 16
Increasing trend Gradient (g) 0.05σ to 0.1σ yi ¼ mþ ris þ ig

Decreasing trend Gradient (g) −0.1σ to −0.05σ yi ¼ mþ ris � ig

Upward shift Shift magnitude (s) 1.5σ to 2.5σ yi ¼ mþ ris þ ks;

Shift position (P) 9, 17, 25 k ¼ 1 if i � P; else k ¼ 0

Downward shift Shift magnitude (s) −2.5σ to −1.5σ yi ¼ mþ ris � ks;

Shift position (P) 9, 17, 25 k ¼ 1 if i � P; else k ¼ 0

Table 2 Pair-wise correlation coefficients between some selected
features

Features ASL SRANGE ABDPE

AASBP 0.01 −0.04 0.30
ASL 1.00 −0.2 −0.11
SRANGE −0.20 1.00 0.38
RVE 0.01 0.10 −0.09
REAE −0.19 0.91 0.26
BRANGE −0.21 0.97 0.46
DABL 0.87 −0.33 −0.30
DBRANGE −0.15 0.89 0.36
ALSPI 0.03 −0.32 −0.46
ABDPE −0.11 0.38 1.00
SASDPE −0.11 0.41 0.97
SASPE −0.13 0.32 0.82
REPEPE −0.12 0.65 0.28
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the expressions for the features AASBP and ALSPI are
marginally different from that used by Gauri and Chakraborty
[13]. This is so done to ensure that the magnitudes of these
two features become independent of the process standard
deviation. The remaining features are independent of the
process standard deviation due to the particular representation
of the sampling interval in the form of c=1σ.

4 Pattern recognizer design using artificial neural
network

The structure of a neural network can be characterized by the
interconnection architecture among the processing elements,
the transfer function for conversion of inputs into outputs
and the learning algorithm. There exists a variety of different
structures and learning algorithms useful for neural network
applications, e.g., multilayer perceptron (MLP), counter
propagation network, probabilistic neural network (PNN),

learning vector quantization (LVQ), modular neural network
(MNN) and others. Since a multilayer perceptron with back
propagation learning rule has been successfully used by
many researchers [6, 7, 9, 10] to solve pattern classification
problems, this pattern recognizer is also developed based
on MLP architecture. This type of neural network is simple
and ideally suited for pattern recognition tasks. Its basic
structure comprises an input layer, one or more hidden
layer(s) and an output layer. The input layer receives
numerical values from the outside world and the output
layer sends information to the users or external devices.
The processing elements in the hidden layer are used to
create internal representations. Each processing element in
a particular layer is fully connected to every processing
element in the succeeding layer. There is no feed back to
any of the processing elements. Figure 1 shows an MLP
neural network architecture comprising these layers and
their respective weight connections, w1

ji and w2
kj.

Table 3 Pair-wise correlation coefficients between considered features

Features AASBP ASL SRANGE RVE ALSPI ABDPE REPEPE

AASBP 1.00 0.01 −0.04 −0.22 −0.46 0.30 −0.27
ASL 0.01 1.00 −0.20 0.01 0.03 −0.11 −0.12
SRANGE −0.04 −0.20 1.00 0.10 −0.32 0.38 0.65
RVE −0.22 0.01 0.10 1.00 −0.30 −0.09 0.15
ALSPI −0.46 0.03 −0.32 −0.30 1.00 −0.46 −0.12
ABDPE 0.30 −0.11 0.38 −0.09 −0.46 1.00 0.28
REPEPE −0.27 −0.12 0.65 0.15 −0.12 0.28 1.00

Fig. 1 MLP neural network
architecture
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Before this recognizer can be put into application, it
needs to be trained and tested. In the supervised training
approach, sets of training data comprising input and target
vectors are presented to the MLP. The learning process
takes place through calculating the error, propagating the
error back through the network, and modifying/adjusting
the weight connections between the input and hidden layers
(w1

ji) and between the hidden and output layers (w2
kj) to

reduce the error. These weight connections are adjusted
according to the specified performance and learning
functions of the neural network.

4.1 Neural network configuration

The general rule is that the network size should be as small
as possible to allow efficient computation. In the present
neural network application, the number of nodes in the
input layer is set according to the actual number of features
used, i.e., seven. The number of output nodes is set
corresponding to the number of pattern classes, i.e., eight,
each representing a particular pattern class. On the other
hand, the number of nodes in the hidden layer is selected
based on the results of many experiments conducted by
varying the number of nodes from 10 to 20. All those
experiments are coded in MATLAB® using its ANN
toolbox [16]. The neural network is trained using a
particular set of learning samples, and then two different
sets of test samples are subjected to classification by the
trained network. The resulting average misclassification
percentage value is, then, estimated. The transfer functions,

data representation scheme and training algorithms men-
tioned in Section 4.2, 4.3 and 4.4, respectively, are used for
the network during those experimentations. The average
recognition performances achieved under different number
of hidden nodes are shown in Fig. 2, which indicates that
the recognition performance of the neural network for the
two sets of test samples is the maximum when the number
of nodes in the hidden layer is 16. The selected ANN
architecture is, therefore, 7×16×8.

4.2 Transfer function

The transfer functions used are hyperbolic tangent (tansig)
for the hidden layer and sigmoid (logsig) for the output
layer. The hyperbolic tangent function transforms the layer
inputs to output range from −1 to +1 and the sigmoid
function transforms the layer inputs to output range from 0
to 1 [17].

4.3 Data representation

Various shape features from different control chart patterns
are extracted. The feature values are then mapped to an
interval of (−1, 1) using a simple linear transformation,

si ¼ 2� fi � fminð Þ= fmax � fminð Þ � 1½ � ð1Þ
where, fi and si are the actual and scaled values,
respectively, for the i th feature (i=1,2,..,7).

Since this study uses the supervised training approach,
each pattern presentation is tagged with its respective label.

Number of nodes
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nodes in the hidden layer on
average recognition percentage
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These labels, shown in Table 4, are the target values for the
recognizers’ output nodes. The maximum value in each row
(0.9) identifies the corresponding node expected to secure
the highest output for a pattern considered to be correctly
classified. The output values are denoted as O1, O2,...,OM in
Fig. 1.

4.4 Training algorithm

Preliminary investigations are conducted to choose a
suitable training algorithm. Three types of back propagation
training algorithms, e.g., gradient descent with momentum
and adaptive learning rate (traingdx), BFGS quasi-Newton
(trainbfg), and Levenberg-Marquardt (trainlm) algorithms
are evaluated, based on some experiments coded in
MATLAB® using its ANN toolbox [16]. Traingdx, trainbfg
and trainlm are various codes available in MATLAB® for
different training algorithms. The traingdx is adopted here
for training of the network, since it provides reasonably
good performance and more consistent results. This result is
in conformity with that of Hassan et al. [10]. This training
algorithm is also more memory-efficient compared with
trainlm. Trainlm gives the fastest convergence with the
least number of epochs, but it requires too much memory.
Trainbfg gives much faster convergence compared to
traingdx, but the results are relatively less consistent. The
network performance is measured using the mean squared
error (MSE) value.

4.5 Training and verification

Recognition performance and generalization are the two
critical issues for acceptance of a pattern recognizer for real
time applications. With the aim to obtain a rigorous
evaluation of the developed ANN-based pattern recognizer,
three new sets of training samples of size 2400 each and

four new sets of verification samples of size 2000 each are
generated. Each set of the training data comprising the
input and target vectors is presented to the MLP with the
following training parameters:

– Maximum number of epochs=2500
– Learning rate=0.1
– Ratio to increase learning rate=1.05
– Error goal=0.01
– Momentum constant=0.5
– Ratio to decrease learning rate=0.7

The training is stopped whenever either the error goal
has been achieved or the maximum allowable number of
training epochs has been met. In this process, three different
ANN-based recognizers are developed. All these recog-
nizers have the same architecture and differ only in the
training data sets used.

A good idea about the generalization capability of a
recognizer can be obtained by exposing it to multiple
sets of test samples for classification. The recognition
performance of all these three ANN-based recognizers
are, therefore, tested using different sets of test samples.
The procedures for training and verification are coded
in MATLAB® using its ANN toolbox [17]. The
recognition performance of the ANN-based pattern recog-
nizers at the training and verification stages are provided
in Table 5.

4.6 Implementation

The trained network stores the implicit decision rules
through a set of connection weights used to recognize the
unnatural patterns. Given with an input vector, the neural
network will always produce an output vector. In this
application, the value of each processing element in the
output layer is a real-valued variable (between 0 and 1).

Table 4 Target recognizer outputs

Pattern class Description Recognizer outputs

Node

1 2 3 4 5 6 7 8

1 NOR 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 STA 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1
3 SYS 0.1 0.1 0.9 0.1 0.1 0.1 0.1 0.1
4 CYC 0.1 0.1 0.1 0.9 0.1 0.1 0.1 0.1
5 UT 0.1 0.1 0.1 0.1 0.9 0.1 0.1 0.1
6 US 0.1 0.1 0.1 0.1 0.1 0.9 0.1 0.1
7 DT 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.1
8 DS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9
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The recognizer selects the pattern corresponding to the
output node having the maximum value. The proposed
pattern recognizer involves the following steps:

Step 0. Collect the most recent 32 sample means from the
monitored process.

Step 1. Extract the magnitudes of seven shape features,
e.g., RVE, AASBP, ALSPI, ASL, SRANGE, REPEPE
and ABDPE. Scale these values to (−1, 1) interval.
Denote the coded values by vi (i=1,2,..,7). The
coded data form an input vector, VI, to the neural
network, where VI={vi}.

Step 2. Present the input vector VI to the trained neural
network and compute the output vector Vo=(o1,
o2, o3, o4, o5, o6, o7, o8).

Step 3. Let o*=max [o1, o2, o3, o4, o5, o6, o7, o8]
corresponds to the ith node. Then the pattern
corresponding to the ith output node will be the
identified pattern by the recognizer.

Step 4. Go to step 0.

5 Results and discussions

Table 5 shows the training and verification performance of
the three ANN-based recognizers (coded as R1, R2 and
R3). It is noted that for all these three recognizers, the
recognition performance at the training and verification

phases do not differ significantly. The overall mean
percentage values of correct recognition at the training
and verification phases are 95.88% and 95.75% respective-
ly, and the overall range for percentage of correct
classification in the verification phase is 1.16% only. This
implies that the proposed ANN-based pattern recognizer
can produce highly reliable and consistent recognition
performance.

5.1 Confusion matrix

The confusion matrix is a table summarizing the tendency
of the recognizer to classify a recognized pattern into a
correct class or into any of the other seven possible (wrong)
classes. The confusion matrix, as given in Table 6, provides
the overall mean percentage of confusions among different
pattern classes for the recognizer. In other words, these are
the mean of scores from 12 such matrices (3 recognizers ×
4 test sets).

Table 6 shows that there is confusion in the classifica-
tion process by the recognizer. There is a tendency for
cyclic patterns to be mostly confused with normal patterns,
shift patterns with trend patterns, and trend patterns with
shift patterns. Cyclic patterns are the hardest to be classified
(93.67%), followed by downward shift (94.00%) and
downward trend (94.33%) patterns. This indicates that the
performance of the recognizer can still be improved by the
identification of new features that will be more useful in

Table 6 Confusion matrix for the ANN-based recognizers

True pattern class Identified pattern class

NOR STA SYS CYC UT US DT DS

NOR 94.78 0.00 0.00 3.11 1.44 0.00 0.67 0.00
STA 0.11 99.89 0.00 0.00 0.00 0.00 0.00 0.00
SYS 0.00 0.00 99.89 0.11 0.00 0.00 0.00 0.00
CYC 3.00 0.00 0.11 93.67 0.33 0.00 1.11 1.78
UT 1.00 0.00 0.00 0.44 94.89 2.67 1.00 0.00
US 0.44 0.00 0.00 0.44 3.56 94.56 0.44 0.56
DT 1.56 0.00 0.00 0.44 0.00 0.22 94.33 3.44
DS 1.33 0.00 0.00 0.56 0.00 0.33 3.78 94.00

Table 5 Training and verification performance of the ANN recognizers

Recognizer number Training phase Verification phase

Correct classification (%) Correct classification (%)

Mean Min. Max. Range

R1 95.63 95.69 95.46 96.01 0.55
R2 96.12 95.76 95.13 96.18 1.05
R3 95.89 95.81 95.34 96.29 0.95
Overall mean 95.88 95.75 Overall range 1.16
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discriminating cyclic from normal patterns, and shift from
trend patterns. On the other hand, the results for classifi-
cation of normal patterns in Table 6 (94.78%) suggest that
the type I error performance of the recognizer does not
seem to be quite good. This is possibly due to the
unpredictable nature of the random data streams that make
them relatively more difficult to be recognized compared to
other unnatural patterns.

5.2 Relative importance of the selected features

Use of too many features as input vector will lead to a more
complex neural network due to increase in the network size,
which is undesirable. Understanding the relative importance
of various features on the recognition performance can be
helpful in identifying the unimportant feature, if any, in the
chosen set. This will be valuable because the network size
can be reduced by eliminating the unimportant feature(s) or
the unimportant feature(s) can be replaced by more
powerful new feature(s), if can be identified and thus, the
recognition performance can be improved restricting the
network size to the bare minimum.

A possible approach for assessing the relative impor-
tance of various features can be described as follows:

a) Select a particular set of verification samples.
b) From the selected set of verification samples, prepare

seven artificial sets of test samples. In each artificial set
of test samples, replace all the individual values of a
feature corresponding to different patterns by the mean
value of the feature, i.e., make the values of one feature
invariant artificially keeping the values of all other
features as those are in the original set of verification
samples.

c) Recognize the control chart patterns from the artificial
sets of test samples using the proposed CCP recognizer.

d) Compute the amount of increase in misclassification
error (MCE) due to making various features invariant
in the artificial sets of test samples.

e) The feature whose invariance leads to the maximum
increase in MCE may be considered as the most
important feature for correct recognition of CCPs, and
the feature whose invariance does not affect MCE
significantly may be considered as an unimportant
feature.

As noted from Table 5, the range for percentage of
correct classification is the minimum (0.55%) for the
recognize R1 and therefore, it is taken for the purpose of
assessing the relative importance of various features. This
CCP recognizer has resulted in an average 95.69% of
correct recognition, i.e., 4.31% of misclassification at the
verification phase. Seven artificial sets of test samples are
prepared from a set of verification samples and then

subjected to classification using the recognizer R1. The
observed misclassification values in seven artificial sets of
test patterns, arranged in a descending order, are given in
Table 7. It can be observed from the table that all the
chosen features have some important contribution in
recognition of various CCPs. However, the most important
and the least important features in the chosen set are RVE
and SRANGE respectively. It can be noted from Table 3 that
the feature SRANGE is quite highly correlated with feature
REPEPE, which is the second most important feature. This
may be the possible reason for the least importance of the
feature SRANGE. If a new feature, which will be more
powerful in pattern discrimination and whose degree of
association with the chosen set of features will be fairly
low, can be identified, it should replace the feature
SRANGE to achieve better recognition performance.

6 Conclusions

A set of seven shape features is selected so that their
magnitudes will be independent of the process mean and
standard deviation. Based on these features, all the eight
commonly observed CCPs are recognized using a multi-
layered perceptron artificial neural network trained by back-
propagation algorithm. The performance of the recognizer
is extensively studied using synthetic pattern data. The
numerical results reveal that the developed ANN-based
recognizer can perform well in real time process control
applications in terms of reliability and consistency of
recognition performance. Analysis of the confusion matrix
indicates that the recognizer has a general tendency of
confusing cyclic patterns with normal, shift patterns with
trend, and trend patterns with shift. This is indicative of the
fact that the performance of the recognizer can be improved
further by identification of new features that will help in
discriminating cyclic patterns from normal, and shift
patterns from trend. The least contributing feature is
identified based on analysis of the relative importance of
various features. If a new feature, which will be more

Table 7 Effects on pattern misclassification (%) due to various
invariant features

Set of test
patterns

Invariant
feature

Observed
misclassification

Amount of increase in
misclassification

1 RVE 48.91 44.60
2 REPEPE 41.42 37.11
3 AASBP 30.70 26.39
4 ABDPE 28.17 23.86
5 ALSPI 24.45 20.14
6 ASL 22.37 18.06
7 SRANGE 9.67 5.36
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powerful in pattern discrimination, can be identified, it
should be used in place of the least contributing feature to
achieve better pattern recognition performance without
increasing the neural network size.

Appendix: Mathematical expressions for various shape
features

(a) Ratio between variance of the observations and mean
sum of squares of errors of the least square (LS) line
representing overall pattern (RVE):

RVE ¼
XN
i¼1

yi � yð Þ2
,

N � 1ð Þ
" #, XN

i¼1

yi � yð Þ2 �
XN
i¼1

yi ti � tð Þ
 !2,XN

i¼1

ti � tð Þ2
8<
:

9=
;
,

N � 2ð Þ
2
4

3
5 ð2Þ

where, ti ¼ ic i ¼ 1; 2; ::;Nð Þ is the distance of ith time
point of observation from the origin, yi is the observed
value of a quality characteristic at ith time point, and N is
the total number of observations in the window.

b) Average absolute slope of the straight lines passing
through the consecutive points (AASBP):

AASBP ¼
XN�1

i¼1

yiþ1 � yið Þ= tiþ1 � tið Þj j
,

N � 1ð Þ ð3Þ

c) Area between the pattern and LS line per interval in
terms of SD2 (ALSPI):

ALSPI ¼ ALS= N � 1ð Þ½ �
,

SD2 and SD2 ¼
XN
i¼1

yi � yð Þ2
,

N � 1ð Þ

ð4Þ

where, ALS is the area between the pattern and the fitted LS
line. The value of ALS can be easily computed by summing
the areas of the triangles and trapeziums that are formed by
the LS line and overall pattern.

d) Average slope of the straight lines passing through six
pair-wise combinations of midpoints in four equal segments
(ASL):

The total length of the data plot is divided into four equal
segments (see Fig. 3) and the behavior of the process in a
quarter time period, i.e., within a segment, is represented by
the midpoint of the segment, which can be estimated as

Xn1þ7

i¼n1

ti

,
8

" #
;
Xn1þ7

i¼n1

yi

,
8

" #( )

where n1=1, 9, 17 and 25 for the first, second, third and
fourth segment, respectively. A combination of two mid-
points can be obtained in C4

2 ¼ 6 ways implying that six
straight lines can be drawn passing through the midpoints
of these four segments. Thus,

ASL ¼
X
j; k
j < k

sjk

,
6; j ¼ 1; 2; 3; k ¼ 2; 3; 4ð Þ ð5Þ

where sjk is the slope of the straight line passing through the
midpoints of jth and kth segments.
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Fig. 3 Four equal segments in a
pattern
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e) Range of slopes of straight lines passing through six
pair-wise combinations of midpoints (SRANGE):

SRANGE ¼ maximum sjk
� �

�minimum sjk
� �

; j ¼ 1; 2; 3; k ¼ 2; 3; 4; j < kð Þ
ð6Þ

In case of a shift pattern, the total observations can be
divided into two windows (before and after the occurrence
of a shift) and two LS lines (each approximately horizontal

to the X-axis) can be fitted well in these windows.
However, the time point of occurrence of shift cannot be
known exactly. Therefore, a criterion-based segmentation,
where the window sizes may vary in order to satisfy the
desired criterion, is taken into account. Two LS lines that
lead to the minimum pooled mean sum of squares of errors
(PMSE) are considered here as the two best fitted lines
within the overall pattern. Let the limiting time point of
segmentation is m (8≤m≤24). The PMSE value of the two
LS lines is, then, given by the following expression:

Pm
i¼1

yi � yð Þ2 � Pm
i¼1

yi ti � t1ð Þ
� �2

,Pm
i¼1

ti � t1ð Þ2
" #

þ PN
i¼mþ1

yi � yð Þ2 � PN
i¼mþ1

yi ti � t2ð Þ
� �2

, PN
i¼mþ1

ti � t2ð Þ2
" #

N � 4

where

t1 ¼
Xm
i¼1

ti

,
m; and t2 ¼

XN
i¼mþ1

ti

,
N � mð Þ:

Assuming that at least eight observations are required for
fitting a LS line, we fit the LS lines to all possible two
windows and compute the corresponding PMSE values.
Then the value of m that leads to the minimum PMSE is
considered as the limit point of the first window and (m+1)
becomes the starting point of the second window. Using
this segmentation, the following two features are extracted.

f) Ratio of mean sum of squares of errors of the LS line
representing the overall pattern and pooled mean sum of
squares of errors of the LS lines fitted to the two segments
(REPEPE):

REPEPE ¼ MSE=PMSE ð7Þ

where MSE is the mean sum of squares of errors of the LS
line fitted to overall pattern and is given by the following
equation:

XN
i¼1

yi � yð Þ2 �
XN
i¼1

yi ti � tð Þ
 !2,XN

i¼1

ti � tð Þ2
2
4

3
5
,

N � 2ð Þ

g) Absolute slope difference between the LS line
representing the overall pattern and line segments repre-
senting the patterns within the two segments (ABDPE):

ABDPE ¼ B�
X2
j¼1

Bj

,
2

 !�����
�����; j ¼ 1; 2ð Þ ð8Þ

where Bj is the slope of the LS line fitted to jth window and
B is the slope of the LS line fitted to overall pattern, and
can be given by the expression:

XN
i¼1

yi ti � tð Þ
" #, XN

i¼1

ti � tð Þ2
" #
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