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Abstract A tandem AGV configuration connects all cells
of a manufacturing facility/plant by means of non-over-
lapping, single-vehicle closed loops. Each loop has at least
one additional P/D station, provided as an interface between
adjacent loops. This study describes the development of
tabu search and genetic algorithm procedures for designing
tandem AGV systems. The objective is to minimize the
maximum workload of the system. Both algorithms have
mechanisms to prevent solutions with intersecting loops.
The new algorithms and the partitioning algorithm pre-
sented by Bozer and Srinivasan are compared using
randomly generated test problems. Results show that for
large-scale problems, the partitioning algorithm often leads
to infeasible configurations with crossed loops in spite of its
shorter running time. However the newly developed
algorithm avoids infeasible configurations and often yields
better objective function values.

Keywords AGV. Tandem configuration . Tabu search .

Genetic algorithm

1 Introduction

The design of handling systems is one of the most
important decisions in facility design activities. Material
handling operations make up to nearly 20 to 50% of the
overall operational costs [1]. An automated guided vehicle
(AGV) is a driverless vehicle used for the transportation of
goods and materials within a production plant partitioned
into cells (or departments), usually by following a wire
guide path. One of the most important issues in designing
AGV systems is the guide path design. The problem of
guide path design for AGVs is not new. A number of
algorithms for AGV guide path design have been devel-
oped over the past 20 years [2]. The AGV guide path
configurations discussed in previous research include
conventional/traditional (see [3–14]), tandem (see [15–
19]), single loop (see [20–29]), bi-directional shortest path
(see [30–32]) and segmented flow ([33–36]). Vis (2006)
discusses literature related to design and control issues of
AGV systems in manufacturing, distribution, transshipment
and transportation systems [37].

The tandem configuration, which is the concern of this
paper, was introduced by Bozer and Srinivasan [15, 16] and
is based on the "divide-and-conquer" principle. A tandem
configuration is obtained by partitioning all the work-
stations into single-vehicle, non-overlapping zones. Addi-
tional pick-up/delivery (P/D) points are provided between
adjacent zones to serve as transfer points. This configura-
tion offers some advantages such as the elimination of
blocking and congestion, simplicity of control, and flexi-
bility due to system modularity. It also has some disadvan-
tages including the need for handling a load by two or more
vehicles and thus longer load movement times, extra floor
space and cost requirements, resulted by the use of
additional P/D points and conveyors. Lin et al. [18]
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proposed a two phase approach to route loads by multiple
vehicles in different zones through the tandem configura-
tion network.

Tandem paths were initially proposed by Bozer and
Srinivasan [15, 16] who presented an analytical model to
compute the workload of a single loop. They developed a
heuristic method which partitioned the stations in loops
[17]. Hsieh and Sha [38] proposed a design process for the
concurrent design of machine layout and tandem routes.
Liu and Chen [39] suggested a divided AGVS which is
similar to a tandem AGVS in that there is one AGV in each
divided zone. However, the difference is that the path of
one zone is allowed to cross over the path of another. Aarab
et al. [40] used hierarchical clustering and tabu search to
determine tandem routes in a block layout. Yu and Egbelu
[41] presented a heuristic partitioning algorithm for a
tandem AGV system, based on the concept of variable
path routing. Kim et al. [42] proposed an analytical model
to design a tandem AGVS with multi-load AGVs. Their
design procedure is somewhat similar to the one proposed
by Bozer and Srinivasan. They use TSP to generate subsets
of stations and then apply Markov’s chain model to check
their serviceability. Then, they select the final tandem path
using a partitioning model. Using simulations, the perfor-
mance of the proposed model is shown through comparing
it with a conventional multi-load AGVS. Later Bozer and
Lee [43] considered eliminating the conveyers by using an
existing station as a transfer point. Ventura and Lee [44]
studied tandem configurations with the possibility of using
more than one AGV in the loops. Huang [45] proposed a
new design concept of tandem AGV based on using of a
transportation-center to link the transfer points in loops.

To test the viability of tandem configurations, Farling et
al. [46] performed a simulation study to evaluate the impact
of system size, machine failure rate and unload/load time
on the performance of three AGV configurations, namely
traditional (parallel unidirectional flows), the tandem flow-
path and the tandem loop. In a tandem loop flow-path, there
exists an express loop which connects all the loops (see
[47]). Ross et al. [47] and Choi et al. [48] conducted some
experiments to compare a tandem AGVS with a conven-
tional AGVS. They compared the performance measures of
the two systems in various conditions such as production,
utilizations of vehicles, and mean production times, etc. Ho
and Hsieh [49] proposed a design methodology for tandem
AGV systems with multiple-load vehicles. Their goal was
to devise a design methodology that could achieve the
workload-balance between vehicles of different loops,
minimize the inter-loop flow, and minimize the flow
distance. They sequentially solved these problems in order
to attain a complete design for the tandem AGV system.
Simulation and Simulated Annealing were applied to solve
the problems.

The application of metaheuristic algorithms in designing
tandem paths is limited to only two papers. Most of the
previous studies have proposed heuristic algorithms for the
design of tandem routes. Only in [40] and [49], tabu search
and simulated annealing have been applied as design
procedures. In [40] hierarchical clustering was applied to
partition departments in loops and tabu search was only
used in order to find a single loop path for each zone. Thus,
the application of metaheuristics as design procedures in
tandem systems has not yet been fully considered. Table 1
characterizes problem specifications and solution tech-
niques of the studies in the area of tandem path design.
We selected the original definitions of tandem AGVS
proposed in [17], as our problem definition and developed
our algorithms based on them. Considering this, their
proposed heuristic was the only existing algorithm which
can be used as a base algorithm in comparing the
performance of the newly developed algorithms.

The aim of this paper is to develop a TS and a GA
procedure for designing routes in tandem configuration.
Given a grid layout, a route sheet and the number of loops
as inputs, the problem is to assign workstations to loops
without allowing any overlap between loops, and in a way
that the maximum workload of the system is minimized. As
mentioned above, the proposed algorithms will be com-
pared to the partitioning heuristic of [17], referred to as the
base algorithm, using randomly generated test problems.
This paper is organized as follows: a brief description of the
problem and its assumptions are presented in Sect. 1; the
TS and GA algorithms and their characteristics are
discussed in Sect. 3, and Sect. 4 reports computational
results; finally, conclusions are presented in Sect. 5.

2 Problem definition

Tandem AGV systems were first introduced by Bozer and
Srinivasan in [15, 16]. Although the tandem configuration
can be used both in warehousing and manufacturing, it was
mainly defined and developed for the latter case. The
system proposed by Bozer and Srinivasan in [17] is defined
on a grid layout (Fig. 1). Each workstation is presented as a
single point and may represent a machine, or a group of
machines, such as a cell or a department.

The problem of configuring a tandem AGV system
consists of partitioning a set of N workstations into several
independent single AGV loops (zones). Additional P/D
stations called transfer points are introduced to provide an
interface between adjacent loops. Transfer points are
connected to each other by/using conveyors. Figure 2
illustrates a typical tandem configuration.

The aim is to partition the workstations of a layout in
such a way that each station is assigned to only one loop,
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the workload of the AGVs associated with the material flow
within and between the loops does not exceed the AGV
capacity, and the workload is evenly distributed among all
loops. The workload factor of each AGV, denoted by ω, is
the proportion of time a vehicle is busy, either loaded or
empty. This is the building block of the system and must be
calculated for each loop.

The assumptions made by Bozer and Srinivasan in [17]
are as follows. There are two types of workstations: input/
output stations and process stations, where actual process-
ing takes place. Transfer points are also considered as I/O
stations. Every station has an I/O queue. A bidirectional
single load AGV is used in each loop. When loaded, the
AGV follows the shortest path to the destination station,
and when empty it uses the FEFS (first encountered first
served) empty dispatching rule, which will never leave the
AGV idle. When tandem AGVSs were proposed for the
first time, the FEFS was the only dispatching rule suggested
[50].

Additional limitations are as follows: intersections and
overlaps between loops are forbidden, and the number of

Fig. 1 A typical Grid layout ([17])

Fig. 2 A typical tandem configuration ([17])T
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loops must be at least two. The latter can be determined as an
input, or can be obtained through the designing process. Here,
the number of loops is given at the beginning of the algorithm.

3 Development of tabu search and genetic algorithm

A tabu search is a single solution metaheuristic search
algorithm, which was first introduced by F. Glover (see
[51–53]). It is a local search mechanism, which employs a
short-term memory called a tabu list, to prevent cycling in
local solutions. GA is a population based metaheuristic
which employs the natural selection and natural genetics
mechanisms to develop solutions to problems (see [54]).
According to [53], TS, SA and GA was singled out by the
Committee on the Next Decade of Operations Research as
"extremely promising" for the future treatment of the
practical applications. Moreover, GA and specially TS have
shown good suitability for vehicle routing problems. Thus,
TS and GA have been selected to solve the problem
concerned in this paper. In this section, the developed
algorithms based on TS and GA are described.

3.1 Feasibility conditions

A solution is called feasible if (1) no overlap or intersection
exists among loops, (2) each station is assigned to only one
loop, and (3) the workloads are less than 1 (or a reasonable
value less than 1).

The algorithm proposed by Bozer and Srinivasan [17]
does not have a specific mechanism to check the overlaps
between the loops. The TS algorithm checks the intersec-
tion of loops for (before making any move) every move and
selects only non-overlapping loops. The GA checks the
intersection of loops created by genetic operators, using the
penalty object. It tries to mate only those stations in each
loop having zero penalty objects. Therefore, after a couple
of iterations any intersection will be eliminated. For the
sake of simplicity, the initial routes of loops are considered
as the Euclidean traveling salesman route of the stations in
the loop. Figure 3 shows a typical infeasibility in the
presence of overlapping loops.

3.2 Number of loops

In the heuristic algorithm of Bozer and Srinivasan in [17],
the number of loops is given as an input. This also applies
to the TS and GA algorithms.

3.3 Developed tabu search algorithm

In this section the developed tabu search algorithm is
described.

3.3.1 Neighborhood structure

The neighborhood of a solution is simply obtained by
removing a station from one loop and adding it to another,
provided that it does not create any intersection and the
workload of loops does not exceed 1. A current solution
corresponding to a partition of the set of workstations in L
loops can be represented as follows:

S ¼ P1; . . . ;Pi; . . . ;PLf g; i ¼ 1; . . . ; L ð1Þ
Consider station s from the set of stations in loop Pi,

where st ∈ Pi. Also, consider solution S′ in the neighbor-
hood of solution S:

S0 ¼ P0
1; . . . ;P

0
i; . . . ;P

0
L

� �
; i ¼ 1; . . . ; L ð2Þ

Solution S′ is obtained by moving station s from loop Pi

to loop Pj in solution S. In other words

P0
i ¼ Pi � sf g ð3Þ

P0
j ¼ Pj [ sf g; j 6¼ i; ð4Þ
The feasible move mij is characterized by the transmis-

sion of station s from loop i to loop j, subject to the
workload constraint. The neighborhood of S is the set of all
feasible solutions that can be reached from S by applying
moves mij.

A typical neighborhood structure is shown in Fig. 4.
Figure 4a shows the possible moves for station 11, and
Fig. 4b shows the new solutions resulting from possible
moves of station 11 to 3 loops.

3.3.2 Objective function and evaluation of neighborhood

The evaluation method of neighborhood structure is based
on the objective function of the integer linear programming
model presented by Bozer and Srinivasan in [17]. The
objective is to minimize the maximum workload of all
loops.

Fig. 3 A typical infeasible solution

Int J Adv Manuf Technol (2008) 36:996–1009 999



Thus, the basis of the search procedure is to select a loop
with maximum workload and try to reduce its workload. The
workload reduction is obtained by moving one of the stations
of the selected loop to another loop, which causes leads to an
increase in the workload of the second loop. The best move
is the one resulting in the largest decrease in the workload of
the selected loop and the smallest increase in the workload of
the second loop. Thus, a simple expression is used as the
evaluation criterion: workload reduction of the selected loop,
minus workload increase of the second loop.

3.3.3 Generation of feasible solutions

The procedure of generating initial solutions consists of
three phases:

a. Clustering the stations into L groups by means of k-
means clustering method.

b. If necessary, removing workload infeasibilities.
c. Reducing the number of singleton stations.

In the first stage, a k-means clustering method is applied
(see [55]). Applying the k-means clustering method for
generating the initial partition ensures that no intersections
will occur between the created loops, since distance is used
as the closeness measure. On the other hand, the work-
stations in a loop should be reasonably close to each other,
so that unnecessary vehicle trips are avoided.

The initial cluster centers are chosen randomly and the
rectilinear distance is used as the closeness measure, due to
the rectilinear shape of the final routes of the loops. The
resulting clusters are then checked for workload feasibility.
In case of infeasibility, a simple search method is used to
reduce the workload of infeasible loops by moving some
stations, following the defined neighborhood evaluation
method and based on the objective function. The search
method will stop as soon as all infeasible workloads are
reduced to less than 1. In the last phase, the configuration is
checked for the presence of singleton loops and if more

than one is present, another algorithm is employed to
reduce the number of singletons by adding stations from the
adjacent loops.

3.3.4 Definition and selection of moves

According to the neighborhood definition, what meant by a
move is moving a station from one loop to another one.
Based on minimax objective function, the evaluation of
possible moves in each of the iterations is restricted to the
loop with maximum workload.

Not all loops must be considered when looking for
possible moves since in most cases applying the move will
lead to overlaps. As a rule of thumb, usually just a few
adjacent loops are worth checking. In order to prevent
unnecessary calculations and to improve efficiency, we
only consider the closest adjacent six or seven loops,
according to the distance of their geometrical centers to the
geometrical center of the selected loop. It is not necessary
to check all stations in the selected loop, because this will
result in computational inefficiencies. Similarly, it seems
that the best candidate stations to be moved are often those
whose removal will result in the largest workload decrease.
It was, therefore, decided to check only the four stations
with the largest workload decreases as candidates for
removal from the loop. The possible moves can be defined
as follows.

Assume that PO is the selected loop such that is has the
maximum workload among existing loops. Also, let AO be
the subset of selected stations in loop PO. The loops are
selected as candidate destination loops for stations in AO,
denoted as PDj where j=1, ..., LD , j ≠ i and LD is the
number of candidate loops. Based on the neighborhood
definition, the inclusion of a station in another loop is
allowed only if this does not lead to an infeasible solution.
A destination loop workload threshold w has been set to
select the moves leading to the best possible solutions, by
limiting the increase of the workload of the other loop.
When evaluating possible moves, the moves that satisfy the

Fig. 4 A typical neighborhood structure
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threshold conditions are first considered. In the absence of
such moves, this restriction is not taken into account and all
possible moves are evaluated.

3.3.5 Tabu restrictions and aspiration criterion

The algorithm uses a fixed size tabu list. As a result of
move definition, once a station is moved from one loop to
another, it cannot be added to that loop again for the next θ
iterations. However, when a potential tabu move leads to a
solution better than the best solution found so far, its tabu
status is revoked.

3.3.6 Diversification

Diversification is a commonly used strategy in TS. It is
used to allow the search mechanism to escape from
probable local minima. In our implementation, when no
feasible move exists, the tabu list is emptied and the search
restarts from the best known solution.

3.3.7 Termination criterion

The termination criterion is set as the maximum number of
iterations performed since the best solution has changed. In
our case this value was set to 20.

3.3.8 Allowing infeasible solutions

In some cases, all possible moves lead to an increased
workload. In such situations, the search is allowed to
proceed outside the feasible space, in the hope of reaching
feasibility again at a later stage.

3.3.9 Controlling singleton stations

A control is imposed in order to limit the number of
singleton stations in the configuration. This is done in two
stages: in the generation of the initial solution and in the
main body of the algorithm. After generating an initial
feasible solution, the number of singleton stations is
checked and if there is more than one, another subroutine
is applied to reduce them.

Another control is imposed as a condition for accepting
of the current solution as the best solution. The number of
singleton stations in the current solution is checked and if it
is more than one, the same algorithm is applied to reduce it.
If the number of stations in the best solution is more than
one, and the current solution has fewer singleton stations, it
is accepted as the best solution, even if it has a worse
objective function. In other words, a solution with fewer
singleton stations is preferred when the number of singleton
stations is more than one. Otherwise, if this number is less

than or equal to one in the best solution found so far, the
current solution is accepted as the best solution, when it has
less than or equal to one singleton station and a better
objective function, too.

3.3.10 The detailed description of the Tabu Search
algorithm

The detailed description of the TS algorithm is as follows:

Phase 1 1) Generate an initial solution S0, and set S: =
S*, f (S): = f (S*);

2) Set Cτ: = 0 (τ is the number of the last iteration with
an improvement in the objective function);

3) Set iteration counter to zero: t: = 0.
Phase 2 while t- Cτ<20, repeat

1) t :¼ t þ 1;
2) Choose the loop with maximum workload (PO);
3) Choose the best move and update f (S), S (if any

moves exist considering the workload threshold,
select the best move);

4) If no possible moves exists, then set S:=S*, f (S): =
f (S*); and TL = ∅ (diversification);

5) Update the tabu list;
6) If σ (S) >1 (σ (S) is the number of singleton

stations in solution S), attempt to reduce it;
7) If σ (S) >1 but σ (S) < σ (S*), then set S: = S*, f (S): =

f (S*); else if σ (S*) = 1, σ (S) = 1 and f (S) < f (S*),
then set S: = S*, f (S): = f (S*).

3.4 Developed genetic algorithm

In this section the developed genetic algorithm is described.

3.4.1 Solution presentation

Each solution is presented by a chromosome that defines
the assignment of stations to loops. A chromosome is an N-
element vector, where N is the number of stations.
Assuming that the index of each element represents all of
the N stations, the values of elements (genes) define the
loop number to which the station is assigned. Figure 5
shows a typical presentation of a solution for an eight-
station problem with four loops.

3.4.2 Fitness function

As in tabu search algorithm, the objective function is to
minimize the maximum workload of the system. Thus, the

Fig. 5 A typical presentation of chromosome
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fitness function of a chromosome is the maximum
workload of the loops, which can be obtained by
calculating the workload of each loop. The algorithm tries
to select chromosomes with the minimum workload from
the maximum workloads just mentioned.

3.4.3 Initial population generation

A heuristic algorithm has been developed to generate the
required population. Almost, the whole answer space of the
problem will be generated by the heuristic algorithm
developed for this purpose. After creating possible solu-
tions, duplications and infeasible solutions are removed and
the remaining space is used as the initial population. Then,
in the same number of chromosomes will be selected
randomly from the mentioned space.

3.4.4 Selection

In this model, the probability of selecting better choices is
more than the worse ones, if using roulette wheel. A fitness
function is assigned to each loop. The chromosome with
higher fitness value (i.e., higher maximum workload), will
receive a lower weight to be selected. Based on these
weights, a couple of chromosomes will be chosen randomly
for the next generation. Chromosomes with lower weights
have less opportunity to be selected, but the associated
probability is not zero. There will couple of chromosomes
at the same size of first population, at the end. Obviously,
some of these have been already chosen, while others have
not.

3.4.5 Genetic operators

In this algorithm, the one-point crossover operator is used.
According to the mentioned probabilistic selection method,
a number of chromosomes will be chosen from the first
population for the next generation, so that they can be
mated to create children (offspring). The genetic algorithm
tries to create new children by switching a couple of genes
in the selected chromosomes, so that it can improve the
workloads. Figure 6 shows a typical crossover using the
one-point operator. The dashed line shows the crossover
point. After generating all the children, they will be
compared with their own parents. The better ones will be
elected for the new generation. It will take a short time to

get an answer, because the locations of changed genes are
randomly selected.

After all, to avoid local answers, the algorithm uses the
mutation operator. Based on the first population size,
number of stations and the probability of mutation (Pmut),
specified at the beginning, a known number of genes will
be nominated for mutation.

3.4.6 Termination criteria

Since no mathematical model exists for tandem configura-
tion design , the optimum solutions are not known. Also,
due to the short calculation time of the “maximum number
of generations” termination criteria, is used. In our case this
value was set to 50 and in most cases the algorithm gets to
the best solution.

To avoid similar iterations, the algorithm will be
terminated if the best solution does not improve after a
specified number of generations. In this case, this number is
set equal to 3.

3.4.7 The detailed description of the genetic algorithm

Based on the above definitions, the developed algorithm is
as follows:

Phase 1 1) Generate the initial answer space using the
heuristic algorithm.

2) Randomly select a couple of chromosomes with the
same size as the size of the first population from
this space.

3) Set iteration counter to zero: t: = 0.
Phase 2: while t < “maximum number of generations”,

repeat

1) t :¼ t þ 1;
2) If t >=15, check each of the 3 sequential gener-

ations for any improvement. If there is no better
solution, then stop.

3) Upon the calculated fitness function, assign a weight
to each chromosome. (This weight has a reverse
relation with the fitness function. A chromosome
with higher fitness function will have a lower
weight.)

4) Multiply the weight of any chromosome in the
selection group with intersection in its loops, by a
penalty probability (equal to 0.1), so that the total
weight will be in its lowest range.

5) Calculate the cumulative summation of weights for
each chromosome.

6) Produce a couple of random numbers between 0
and 1, with the same size as the first population.
Compare them with the cumulative summation in
step 5. Any span of the two cumulative summationFig. 6 A typical presentation of crossover
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numbers with a randomly number, will be selected.
(Each span presents a chromosome.)

7) Create a population for generating children and the
next generation, with the same size as the first
population.

Phase 3 1) Produce a couple of random numbers
between 0 and 1, with the same size
as the first population. Compare them
with the cross probability (Pc=0.3)
and save the index of any of number
less than Pc.

2) Separate chromosomes with the same indices from
the selected population of step 1. Mate them two by
two.

3) Randomly specify the location of each cross. Brake
chromosomes and mix them with each other.

Phase 4 1) Compute the workload and the fitness
function of the new chromosomes.

2) Put the new chromosomes and their parents
together, and sort them by their fitness function
value increasingly.

3) Choose the best group of chromosome with the
same size of the original to generate the new
generation.

Phase 5 1) Specify the number of genes to be mutated
(NP), based on the number of genes and
Pmut (Pmut=0.01).

2) Randomly select NP genes for mutation. Specify
their location in the chromosomes.

3) Add one to the number of genes, presenting the
loop that station belongs to.

Phase 6 1) Specify the workload of each loop in the new
chromosomes and specify their fitness
functions

2) Check the feasibility of the chromosomes. For any
chromosome with an intersection, assign a penalty
probability (0.1). Consider these penalties in
computing weights.

4 Computational results

Since no benchmark problem instances exist for the tandem
configuration problem, some randomly generated problems
were used to test the algorithms.

4.1 Test problems

The test problems were generated for five types of grid
layouts with 10, 20, 30, 40 and 50 stations. For each layout
size, three types of from-to flow charts were randomly built
with 0.2, 0.25 and 0.5 densities. Flow values (units/hour)
were chosen randomly between 0.05 and 0.3. The specifi-

cations for the AGV were obtained from [16]. The speed of
the AGV (empty or loaded) and the time required to pick
up or deliver a load were set to 15 grid units/minute and
0.2 minutes respectively. For each of the 15 problems, four
random instances were generated. In total, 60 problems
were solved.

4.2 Solving the problems

Each of the test problems was solved for three levels L
(number of loops). The L values were initially derived from
the base algorithm and then were applied to the solution
procedure of the algorithms. These L values are:

– Lmax: the maximum possible value for L. Assuming
that each station can form a feasible loop with at least
one of its adjacent stations, this value will be equal to
[0.5N];

– Lmin: the minimum possible value for L, at which the
objective function doest not exceed 0.7 (the selected
threshold for workload in the base algorithm);

– Laverage: the mean of Lmax and Lmin.

Based on the suggestions provided in [17], in order to
reduce the run time of the integer linear programming
model, an estimated threshold zH was used to eliminate
unnecessary loops. This threshold was set to 0.7 for Lmin,
was obtained from the average and maximum workload for
loops with two or three stations for Lmax, and finally for
Laverage, it was set to a value between the zH of Lmax and
Lmin, or the average workload for loops with sizes equal to
[N/L]. Since at most one singleton station in the final
configuration, obtained from the TS algorithm, was
assumed, the same assumption was made for the base
algorithm as well.

The first two phases of the base algorithm, generating
subsets of stations and eliminating some of them, were
coded by Matlab 6.5 and the IP model was coded using
LINGO 8.0 software [56]. The TS and GA algorithms were
coded using Matlab 6.5. It was found that in most cases the
effective size of the tabu list is [N/5]±2. For the TS
algorithm, three randomly selected initial solutions were
used for each problem, except for some small problems,
where the number did not reach three. For the GA
algorithm, each problem was solved four times for each
loop number.

4.3 Comparison of algorithms

Tests were carried out on a 2.00 GHz Intel Pentium 4, with
256 MB RAM. The summaries of the test results for TS and
GA are shown in Tables 2 and 3. The statistics of Tables 2
and 3 are summarized in Tables 4 and 5. For small
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problems, the objective functions of the two algorithms are
often equal to the base algorithm, which might be the value
of optimal solution. The percentage of better solutions
significantly increases as a function of the instance size, N.

To test the performance of the algorithms against each
other, some statistical tests were carried out. Since the
variances were unknown, first F-tests were carried out to
check the equality of variances. All tests showed that the
equality of variances could not be accepted. Based on this
result, t-test was run to compare means with the assumption
of unequal variances of samples at an α-level of 0.05. The
hypotheses and test results are shown in Table 6. Based on
the test results, it was accepted that TS and GA are better
than or the same as base algorithm and that TS is better
than or the same as GA.

The number of loops (L) has a significant effect on the
running time of both TS and GA algorithms. The average
run time of the algorithms grows as the number of loops
increases. The explanation is that as the number of stations
in the loops increases, more time is required to compute the
workloads. In comparison with the base algorithm, the
algorithms are often faster for lower flow densities and
higher L values. In general, it seems that on larger problems
the base algorithm tends to be faster, but the latter
algorithms remain preferable because they always produce
feasible solutions.

Type of case Number of
instances

Percent of
instances

Average
deviation
from the base
algorithm

Maximum
deviation
from the base
algorithm

Better objective function 337 47% −8.31% −20.26%
Worse objective function 90 12% 3.99% 59.13%
Equal objective function 293 41% – –
Total 720 100% – –

Table 5 Summary of solution
cases for GA

TS against base algorithm GA against base algorithm TS against GA

H0 ìTS −ìBase=0 ìGA−ìBase=0 ìTS−ìGA=0
H1 ìTS −ìBase>0 ìGA−ìBase>0 ìTS−ìGA>0
Critical Area t = tcritical=1.65 t = tcritical=1.65 t = tcritical=1.65
t-value −0.6935 −0.3247 −0.3533
Test result accept Accept accept

Table 6 Summary of t-tests for
objective functions

Table 7 Summary of t-tests for run times

TS against base
algorithm

GA against base
algorithm

TS against GA

H0 ìTS−ìBase=0 ìGA−ìBase=0 ìTS−ìGA=0
H1 ìTS−ìBase>0 ìGA − ìBase>0 ìTS−ìGA>0
Critical area t=tcritical=1.65 t= tcritical=1.65 t=tcritical=1.65
t-value 2.852 6.51 −2.005
Test result Reject Reject Accept

Table 4 Summary of solution
cases for TS Type of case Number of

instances
Percent of
instances

Average deviation from
the base algorithm

Maximum deviation
from the base algorithm

Better objective function 301 60% −6.3% −22.5%
Worse objective function 68 13% 3.6% 13.3%
Equal objective function 134 27% – –
Total 503 100% – –

Fig. 7 Percentage of infeasible solutions by base algorithm
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Statistical tests were conducted to compare the compu-
tational times of algorithms. Tests were similar to those of
the objective functions. All tests showed that the equality of
the variances could not be accepted. Based on this result, t-
test was run to compare means with the assumption of
unequal variances of samples at an α-level of 0.05.
Hypotheses and test results are shown in Table 7. Based
on the test results, it was rejected that TS and GA run times
are better than or equal to the base algorithm’s run times,
but it was accepted that TS run times are better than or
equal to the GA’s run times.

The main advantage of the TS and GA algorithms
compared to the base algorithm, in addition to improved
solutions, is the feasibility of solutions. The TS and GA
algorithms prevent or eliminate intersections between the
loops, but the base algorithm has no specific mechanism to
ensure the independence of loops in the final configuration.
As a result, a number of solutions generated by this algorithm
are infeasible. The percentage of infeasible solutions accord-
ing to the problem size is shown in Fig. 7. The percentage of
infeasible solutions increases with problem size. For the
largest problem size solved, more than 60% of solutions are
infeasible. It can be inferred that the base algorithm is not
successful in solving problems with more than 20 stations. In
any case, the infeasibilities are present even in smaller
problems.

5 Conclusions

We have proposed new TS and GA algorithms for designing
AGV routes in a tandem configuration. Our heuristics were
compared to the base heuristic of Bozer and Srinivasan in
[17]. The three algorithms were run on 60 randomly
generated problems at three levels of loop numbers. Results
show that our algorithms are capable of producing better
solutions and the amount of improvements in the objective
function with respect to the base algorithm tends to be higher
as the problem size increases. Statistical tests showed that the
hypotheses of better or equal objective functions for TS and
GA in respect to base algorithm and for TS against GA
cannot be rejected. Similar tests showed that the hypotheses
of shorter run times for TS and GA in respect to base
algorithm can not be accepted, but hypothesis of TS run
times being better than GA is accepted. The main advantage
of our TS algorithm is the impossibility of generating
overlapping loops. Our GA algorithm applies a penalty
object to eliminate intersections. Results show that as the
problem size increases, the likelihood of generating infeasi-
ble solutions tends to be very high for the base algorithm.
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