
ORIGINAL ARTICLE

Hybrid evolutionary algorithm with marriage of genetic
algorithm and extremal optimization
for production scheduling

Yu-Wang Chen & Yong-Zai Lu & Gen-Ke Yang

Received: 5 September 2006 /Accepted: 29 November 2006 /Published online: 4 January 2007
Springer-Verlag London Limited 2006

Abstract This paper presents a hybrid evolutionary
algorithm with marriage of genetic algorithm (GA) and
extremal optimization (EO) for solving a class of
production scheduling problems in manufacturing. The
scheduling problem, which is derived from hot rolling
production in steel industry, is characterized by two major
requirements: (i) selecting a subset of orders from
manufacturing orders to be processed; (ii) determining
the optimal production sequence under multiple constraints,
such as sequence-dependant transition costs, non-execution
penalties, earliness/tardiness (E/T) penalties, etc. A combi-
natorial optimization model is proposed to formulate it
mathematically. For its NP-hard complexity, an effective
hybrid evolutionary algorithm is developed to solve the
scheduling problem through combining the population-
based search capacity of GA and the fine-grained local
search efficacy of EO. The experimental results with
production scale data demonstrate that the proposed hybrid
evolutionary algorithm can provide superior performances in
scheduling quality and computation efficiency.

Keywords Hybrid evolutionary algorithm . Genetic
algorithm . Extremal optimization . Production Scheduling

Abbreviations
GA genetic algorithm
MGA modified genetic algorithm
EO extremal optimization

GEO genetic extremal optimization
E/T earliness/tardiness
PCTSP prize collecting traveling salesman problem

1 Introduction

To make a manufacturing enterprise more competitive and
profitable in the global marketplace, the profit driven
“make-to-order” or “make-to-stock” business model has
been popularly applied in manufacturing. Among multi-
dimensional business and production decisions, computer-
aided production scheduling to optimize desired objective
criteria subject to multiple sophisticated constraints has
been one of the most important decisions in business and
production intelligence. In general, many production
scheduling can be formulated as a constrained combinato-
rial optimization model. Eventually, it is a typical NP-hard
problem, particularly for those large scale real-world
applications. This kind of scheduling problems is difficult
to be solved with traditional and exact optimization
techniques. Consequently, many approximation methods,
e.g., meta-heuristics, have been the major approach to this
kind of constrained combinatorial optimization problems.
Although approximation algorithms do not guarantee
achieving optimal solutions, they can attain near-optimal
solutions with reasonable computation time.

The major contributions to this paper are summarized as
follows:

(1) Based on a class of production scheduling problems in
manufacturing, this paper presents a mathematical
model with an objective function, which can be com-
putationally evaluated during the optimizing process.

Int J Adv Manuf Technol (2008) 36:959–968
DOI 10.1007/s00170-006-0904-9

Y.-W. Chen (*) :Y.-Z. Lu :G.-K. Yang
Department of Automation, Shanghai Jiaotong University,
Shanghai 200240, People’s Republic of China
e-mail: cywpeak@sjtu.edu.cn

Y.-Z. Lu
e-mail: y.lu@ieee.org

(2) A hybrid evolutionary algorithm, in which extremal
optimization (EO) plays the role of mutation operator
in genetic algorithm (GA), is developed to solve the
NP-hard constrained combinatorial optimization
problem.

(3) The proposed evolutionary algorithm is applied and
tested in solving a real-world production scheduling
problem, i.e.,, the hot rolling scheduling in steel
industry, with production scale data.

The rest of this paper is organized as follows: The
scheduling problem is defined and formulated in Sect. 2.
Section 3 presents the conceptual introduction to GA and
EO, and proposes the hybrid evolutionary methodology for
solving the production scheduling problem. Section 4
provides experimental results and performance analysis by
simulating production scale data of hot rolling scheduling
problem. Finally, Sect. 5 presents some concluding remarks
of this paper.

2 Problem formulation

This section seeks to formulate the proposed scheduling
problem in a mathematical model.

2.1 Problem description

The scheduling problem studied in this paper primarily
arises from hot rolling production scheduling [1]. Concisely
stated, the manufacturing systems under study have the
following major features:

(1) The manufacturing processes could be either discrete,
batch or semi-batch production.

(2) Without loss of generality, we consider here a
manufacturing system with a single production stage
and huge number of products described by multiple
entities, such as product grades, dimensions and many
other feature parameters.

(3) The number of work orders to be scheduled is equal to
or greater than the number of scheduled orders within
the resulting schedule scenario. This means that we
may leave some orders unscheduled under a given
time horizon.

(4) The objective is to construct an optimal schedule
scenario that minimizes the weighted sum of sequence-
dependent transition costs, non-execution penalties and
earliness/tardiness (E/T) penalties.

(5) Multiple constraints, such as the feasible path between
two consecutive orders, the capacity requirement of
scheduling solution, due delivery date, etc., are taken
into consideration in practice.

In those scheduling systems, there are two representative
characteristics: (i) selecting a subset of orders from
manufacturing orders to be processed; (ii) determining the
optimal production sequence under practical constraints.

For scheduling of daily operations of a steel rolling, Balas
and Martin (1985) firstly presented the prize collecting TSP
(PCTSP) Model [2, 3]. Generally, the PCTSP can be defined
as follows: A weighted graph G = (V, A) is given, where
V = {v1,..., vn} is the set of n vertices and A is the set of
directed arcs, a prize pi and a penalty γi are associated with
each vertex i∈V, and a cost cij is associated with each arc
(i, j)∈A. The objective is to minimize the sum of costs
between pairs of vertex and penalties for those unvisited
vertex, while collecting a prescribed amount of prize money.
Considering a special case when all the prizes are equal,
Balas [1] presented the uniform PCTSP, in whichP
i2V

yi ¼ m; m � nð Þ, where yi is a 0–1 variable taking the

value 1 if the vertex is visited and 0 if the vertex is not
visited. Lopez et al. [4] proposed a detailed description of hot
rolling scheduling and developed a fast and effective
heuristic based on tabu search to solve the production
scheduling problem. Tang and Wang [5] presented a new
variant of the vehicle routing problem (VRP), i.e.,, the
prize-collecting VRP, to formulate the similar production
scheduling problem, and proposed an iterated local search
algorithm using cyclic transfer. Furthermore, the scheduling
problem with sequence-dependent transition effects and its
variations, non-execution penalties, E/T penalties has also
drawn considerable attention in manufacturing systems,
because any reduction directly translates into production cost
savings. Feo et al. [6] studied a single scheduling problem
with sequence dependent setup costs and linear delay
penalties, and then proposed a greedy randomized adaptive
search procedure to solve the relevant problem. Shin et al.
[7], and Pugazhendhi et al. [8] studied the scheduling problem
with sequence-dependent set-up times. Rubin and Ragatz [9]
applied a genetic algorithm to the sequencing problem with
sequence dependent setup times for minimizing the total
tardiness of a set of jobs in a single stage process. Ruben et al.
[10], Liu and Chang [11] investigated the multi-stage
scheduling problem with sequence dependent effects. Refael
and Mati [12] studied the scheduling problem with non-
execution penalties, i.e., each non-executed order is penalized.

Summarizing the above-mentioned literatures, the sched-
uling problem under study in this paper is a constrained
combinatorial optimization problem, and unfortunately
belongs to the class of NP-hard problems.

2.2 Mathematical formulation

Let us assume that there are n orders, and all orders are
available for sequentially processing at the initial time of
the defined schedule horizon. Consequently, the constrained

960 Int J Adv Manuf Technol (2008) 36:959–968

combinatorial scheduling problem can be formulated as
follows: Let N = {1,2,..., n} be the set of manufacturing
orders to be processed. The sequence-dependent transition
cost cij is incurred while processing order j immediately
after order i for any pairs of orders i, j∈N. We assign a
comparatively large number to cij while it is infeasible from
order i to j. The objective is to find out the optimal
production sequence S� ¼ j1; j2; . . . ; jmf g m � nð Þ in the
feasible solution space.

Based on above discussions, a mathematical model can
be formulated. Let us first define the following notations:

i,j index of orders
n number of manufacturing orders in order book
m number of orders in scheduling sequence
cij sequence-dependent transition cost for processing

order j immediately after order i
cii non-execution penalty for order i isn’t included in

scheduling sequence
di due delivery or complete time for order i
pi processing time of order i
ti starting time of order i
Ts starting time of scheduling horizon

We also define the following decision variables:

xij ¼
1 ; if order j is preceded by order i

0 ; otherwise

(
i; j 2 N

Because we intend to solve the selection and sequencing
operation simultaneously, another variable xii is defined as
below.

xii ¼
1 ; if order i isn't included

in scheduling sequence

0 ; otherwise
i 2 N

8<
:

In addition, a dummy order 0 which has no processing
time and sequence-dependent transition costs with other
orders is added to the set of manufacturing orders as the
starting node, and adjunctive constraints force the dummy
to be included in scheduling sequence.

The scheduling solution is defined as an optimized
production sequence with starting times calculated for each
selected order. The objective function for evaluating the
performance of schedule scenarios consists of two parts: (i)
sequence-dependent transition costs and non-execution penal-

ties, which can be formulated as
Pn
i¼0

Pn
j¼0

cijxij; (ii) E/T penalties,

in which early and tardy orders are penalized based on just-
in-time philosophy [12]. Let a nonnegative earliness penalty
weight αi and a nonnegative tardiness penalty weight bi be
associated with each order i∈N. So the E/T penalties of total
manufacturing orders can be defined as

Pn
i¼1

aiei þ birið Þ, where
ei ¼ max 0; di � ti � pif g, ri ¼ max 0; ti þ pi � dif g. A n

important special case being considered is ai ¼ bi ¼ 1 for
1 � i � n, accordingly, the E/T penalties are equal toPn
i¼1

ei þ rið Þ. Consequently, the mathematical model of the

proposed scheduling problem can be formulated as follows:
Minimize

l
Xn
i¼0

Xn
j¼0

cijxij þ 1� lð Þ
Xn
i¼1

ei þ rið Þ ð1Þ

Subject to

Xn
i¼0

xij ¼ 1; j ¼ 0; . . . n ð2Þ

Xn
j¼0

xij ¼ 1; i ¼ 0; . . . n ð3Þ

Xn
i¼1

1� xiið Þ ¼ m; i ¼ 1; . . . n ð4Þ

x00 ¼ 0 ð5Þ

t0 ¼ Ts ð6Þ

tj ¼
Xn
i¼0

xij ti þ pið Þ þ xjj t0 þ Tð Þ; j ¼ 1; . . . n ð7Þ

xij 2 0; 1f g; i; j ¼ 0; . . . n ð8Þ

Equation (1) is the objective function of the scheduling
problem, and the parameter l 0 � l � 1ð Þ is the weight for
adjusting the relative importance of two parts; constraint
Eqs. (2) and (3) denote that each order is scheduled only
once or not included in scheduling sequence respectively;
Eq. (4) defines the capacity requirements; constraints (5)
and (6) specify the dummy order as the starting node of
scheduling sequence; Eq. (7) establishes the relationship
between variables tj and xij, in which constant T is greater
than the processing time of one production sequence. The
expression infers that if the order j is not included in current
scheduling sequence, its starting time will be postponed to
next scheduling sequence.

2.3 Complexity of solutions

Obviously, the proposed scheduling problem is a hard
constrained combinatorial optimization problem with

Int J Adv Manuf Technol (2008) 36:959–968 961

pmn ¼ n!=m! possible solutions. Considering a simple case,
we see 10 manufacturing orders are to be processed and
seven orders are required to construct a production
sequence. There will be 720 (10!/7!) possible solutions
without considering any constraints. If we have a large
amount of candidates, e.g., thousands of manufacturing
orders in order book, the complete enumeration of all
possible solutions is computationally prohibitive, i.e.,, no
exact algorithm is capable of solving the optimization
problem with reasonable computation time. Frequently,
evolutionary algorithms as promising approximate tech-
niques, such as genetic algorithm [10], tabu search [4],
extremal optimization [13], are employed to solve the
production scheduling problem for finding desirable, al-
though not necessary optimal solution.

3 Hybrid evolutionary solution with marriage of GA
and EO

In this section, we illustrate the detailed development of the
hybrid evolutionary algorithm in solving the proposed
scheduling problem.

3.1 Genetic algorithm

Genetic algorithm, which is enlightened by Darwinian
evolutionary theory [14], can be applied to solve combina-
torial optimization problems. By simulating the natural
behaviour of biological systems, the “fittest” chromosomes
(i.e.,, solutions) with desirable evaluation values are
reproduced by the genetic operators, i.e., selection, cross-
over and mutation. Eventually, the objective function value
of some individuals among the solution population possibly
approaches to the global optimum. GA is a class of
population-based search techniques, and the iterative
improvement is realized by the generate-test [15] procedure
of multi-solutions. It has been proved that GA is a powerful
optimization technique and especially adaptive for practical
applications.

3.2 Extremal optimization

Extremal optimization was recently proposed by Boettcher
and Percus [13, 16]. It is inspired by self-organized critical
models of co-evolution abstracted from the fundamental of
ecosystem. The search process of EO eliminates those
components having extremely undesirable (worst) perfor-
mance in sub-optimal solution, and replaces them with
randomly selected new components iteratively. Finally, the
high-quality solutions of hard optimization problems may
be explored through such kind of local searches.

Firstly, we interpret the novel algorithm by minimization
problems. The basic algorithm operates on a single solution
S, which usually consists of a number of variables
xi 1 � i � nð Þ. At each update step, the variable xi with
worst fitness λi (individual cost contribution) is identified
to alter.

The algorithm of EO can be represented as follows [17]:

Step 1: Initialize a configuration S; set Sbest = S.
Step 2: For the “current” configuration S

(a) evaluate λi for each variable xi,
(b) find j with λj � λi for all i, i.e., xj has the worst

fitness,
(c) choose at random a S0∈N(S) such that the “worst”

xj must change its state,
(d) if C(S0) < C(Sbest), then set Sbest = S0,

(e) accept S ← S0 unconditionally, independent of
C(S′) - C(S).

Step 3: Repeat at step (2) as long as desired.
Step 4: Return Sbest and C(Sbest).

There are no parameters to be adjusted for the selection
of better solutions. To improve the results and avoid the
possible dead ends, Boettcher and Percus [16] subsequently
proposed C-EO that is regarded as a general modification of
EO by introducing a parameter. All variables xi are ranked
according to the relevant fitness λi, namely find a
permutation Π: λΠ 1ð Þ � λΠ 2ð Þ � . . . � λΠ nð Þ1. Then, each
independent variable xi to be moved is selected according
to the probability distribution Pk / k�t ; 1 � k � n which
is associated with the distinct ranks k1, k2 ···kn. The choice
of power law distribution ensures that no ranks get
excluded for further evolution while maintaining a bias
against variables with bad fitness.

EO and its derivatives have been extensively applied
to solve numerous NP-hard combinatorial optimization
problems. The simulation performance has been proved
that EO outperforms other state-of-the-art algorithms in
many applications, such as graph bi-partitioning, satisfi-
ability (MAX-K-SAT), TSP problems and some industrial
applications [13, 16–18].

3.3 Hybrid evolutionary methodology

GA makes a population-based evolutionary search on entire
search space. It can explore the entire gene pool of solution
configurations in which the crossover operation performs
global exchanges and the mutation operation enhances the
diversity of the population. Contrarily, EO exploits a single
solution, with improvements achieved by repeatedly elim-
inating those components producing the worst fitness. It
performs a local search that does not get stuck in the local

962 Int J Adv Manuf Technol (2008) 36:959–968

minima, but proceeds to explore near-optimal configura-
tions broadly. By combining the population-based search
capacity of GA and the fine-grained local search efficacy of
EO, we developed a hybrid evolutionary algorithm in this
paper. It is credible to be an effective approach for solving
constrained combinatorial optimization problems. In the
following section, we will introduce the details of the
hybrid evolutionary algorithm through the proposed sched-
uling problem.

3.3.1 Allocating & sequencing algorithm – modified GA
for global search

Genetic algorithm and its derivatives have been widely
applied to deal with combinatorial optimization problems.
In this paper, a modified GA (MGA) is developed to solve
the scheduling problem.

(1) Representation of solutions (or chromosomes)
The traditional GA applications use binary strings or

ordinal integers to represent the chromosomes of solutions.
Unlike the standard GA configuration, we define the
scheduling solution as a chromosome that consists of the
chain of genes in this application. The chromosome and
genes represent the production sequence, and the sequenced
orders marked with order ID respectively. Assuming that
the length of the chromosome is equal to m, and n is the
total amount of manufacturing orders, we see that the
objective of the scheduling system is to build a scheduling
solution with sequential orders selected from the given
work orders to minimize the predefined criteria subject to
multiple constraints.

For example, the representative of a chromosome can be
shown in Fig. 1. The vector [5, 9, ... , 10] denotes the
production sequence, and each number in the vector
represents a particular order ID.

This chromosome can represent one possible scheduling
solution in which the production sequence consists of
8 orders while total amount of candidates n=12.
(2) Population initialization

Generally, there are two issues to be considered for
population initialization of GAs: the initial population size
and the procedure to initialize the population [19].

For improving the capacity of searching solution space,
the population size may increase exponentially with the
complexity of the problem, i.e.,, the length of the
chromosome. Nevertheless, a large population size is faced
with excessive time complexity and high computational
cost; on the contrary, a small quantity of individuals cannot
efficiently locate the optimal solution. So, determining an
appropriate population size is crucial to find the optimal
scheduling solution. The population size is set as a default
number Pop=200 in this application.

Furthermore, heuristic initialization and random initial-
ization are among the most popular ways to generate the
initial population. Heuristic methods can create sub-optimal
solutions with high mean fitness. It is advantageous to
improve the convergent speed, and yet, it may get into local
optimum and never explore the whole solution space due to
lacking of genetic diversity. Contrarily, if the initial
population is generated in a random manner, it may take
more generations to refresh and improve those defective
individuals. Especially for a practical application with many
constraints, starting from a randomly initialized population
is difficult to search the optimal solution. Consequently,
three well designed methods are employed to initialize the
population in MGA. Firstly, a heuristic algorithm is applied
to generate a feasible individual, which can improve the
feasibility of the iterative-generated solutions in each
generation, and accelerate the convergent speed. Secondly,
the nearest neighbour search method, that firstly specifies a
starting order i, and then iteratively visits next unscheduled
order with least cost, is adopted to initialize partial
individuals. Finally, random insertion method is used to
create other individuals.
(3) Fitness function

The fitness function calculates how fit an individual is,
and the “fittest” ones have more chances to be inherited
into next generation. The scheduling solution S is evaluated
by the objective function (1) of the mathematical model
formulated in Sect. 2.2.
(4) Genetic operators

A. Selection
The selection operator is intended to improve the mean

evaluation value of the population by giving the better
chromosomes with higher probability to get evolved into
next generation.

The selection schemes are characterized as the selection
pressure, which is defined as the ratio of the selection
probability of the best chromosome to that of an average
chromosome. The rank-based selection schemes select
individuals according to their fitness. In MGA, the formu-
lation of selection probability proposed by Michalewicz
[14] is applied: pi = c(1-c)i−1, where c is the selection
pressure, and i is the sequence number of the ranked
chromosomes within the population.

Selection operation used in MGA determines which
individuals will have their genotypic information passed to
next generation. One parent is chosen from the solution
pool by roulette wheel selection. For maintaining the
genetic diversity, another parent is selected from current
generation using a method inspired by the niche technique,
which ensures the differentia between two parent chromo-
somes. So, we define a similarity coefficient cij = sij/n,
where n is the chromosome size, sij is the amount of

Int J Adv Manuf Technol (2008) 36:959–968 963

identical genes between chromosome i and chromosome j.
Those chromosomes, with which the similarity coefficient
of the first selected parent is less than a predetermined
number c0, have the potential to be chosen as the second
parent. This method is proved to be effective to extensively
explore the solution space.

B. Crossover
Crossover transforms the current solutions for finding

better ones. Ordered crossover (OX) and partially matched
crossover (PMX) [20] have been proved as the effective
crossover schemes for integral encodes. Because the
integral range of genes is equal to or greater than the
chromosome length, i.e., the species of child chromosomes
are not completely homologous to that of parents, the
mechanism of the MGA crossover is not the same as that of
the standard OX and PMX.

C. Local search as mutation
The population undergoes mutation by an actual change

of the candidate chromosomes. Physically, it generates an
alternative solution from a specific individual. In MGA,
local search 2-opt are employed as the mutation operator.

While the terminated criteria are satisfied, the algorithm
reports the best schedule scenario so far. The criteria of
termination can be a certain number of generations (Gen),
or a predefined amount of CPU time.

Here, it is worth noting that all algorithms were coded in
C++, compiled by MS Visual Studio 6.0, and run on
Pentium 2.4 GHz CPU. By simulating a typical group of
production scale data gathered from hot rolling mill, the
convergent curve of MGA is shown in Fig. 2. It is obvious
that the proposed MGA (crossover probability pc=0.95,
mutation probability pm=0.05) can converge at a near-
optimal solution within a hundred of generations.

3.3.2 Local improving algorithm - C-EO

Considering the characteristics of the proposed scheduling
problem, we find that the localized sequence-dependent
transition costs play an important role in making the resulting
schedule solution satisfactory. So, we develop a novel local
improving algorithm - C-EO to exploit a specific scheduling
solution. By introducing the parameter C as analysed in
Sect. 3.2, this fine-grained local search algorithm can explore
the solution space broadly. Firstly, the localized fitness of
extremal optimization is defined as li ¼ cp ið Þi þ cis ið Þ, where
p(i) and s(i), respectively, represent the predecessor and
successor of order i in scheduling sequence, i.e.,, the fitness

1 2 3 4 5 6 7 8

5 9 3 12 7 11 2 10

Slot#:
Chromosome:
Fig. 1 Example of representation and solution scheme

0 20 40 60 80 100
2000

2200

2400

2600

2800

3000

3200

3400

Number of Generation

F
itn

es
s

fu
nc

tio
n

va
lu

e
(B

es
t s

o
fa

r)

Fig. 2 Convergent curve of the
modified genetic algorithm

964 Int J Adv Manuf Technol (2008) 36:959–968

of scheduled order i is the sum of two related transition
costs. The workflow of C-EO can be written as follows:

Step 1 Initialize parameters and obtain the initial solution
S, which can be inherited from other algorithms,

and then calculate the objective function F(S), set
Sbest = S.

Step 2 For current scheduling solution S, sequentially
evaluate the localized fitness λi for each scheduled
order in the resulting schedule sequence, and rank
them according to their fitness values.

0 0.5 1 1.5 2 2.5 3 3.5 4
1400

1500

1600

1700

1800

1900

2000

2100

2200

Parameter (τ)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

n/m=2.5
n/m=5.0
n/m=7.5

Fig. 3 Plot of objective func-
tion value over the parameter Cτ
under a number of scheduling
instances

0 500 1000 1500 2000
1200

1400

1600

1800

2000

2200

2400

Number of Generation

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Fig. 4 Convergent curve of the
proposed C_EO algorithm

Int J Adv Manuf Technol (2008) 36:959–968 965

Step 3 Select an order o(s) according to the power law
distribution pk (C0)(C0 is a given value of the
adjustable parameter).

Step 4 Choose the best solution S0 from a neighbor
subspace N(S) of the schedule solution S.

Step 5 Set Sbest = S0 while F(S0) < F(Sbest), accept S ← S0

unconditionally.
Step 6 If the termination criteria aren’t satisfied, go to

step-2, else go next.
Step 7 Return Sbest and P(Sbest).

Note that in step 4 the neighbor N(S) can be built by
various strategies. The “route-improvement” algorithm
being similar to the heuristic search proposed by Cowling
[21] is used to generate the solution subspace. It takes the
scheduling solution S and improves it by perturbing S
slightly. This perturbation is iterated until no further
improvement is possible, and then the local optimum S′ is
obtained. The applied heuristics are:

Delete the selected order o(s) from the scheduling
sequence S;

Select an unscheduled order o(u), and insert it into the
optimum position;

Accept the feasible transitional solution as an element of
N(S) if λo(u) < λo(s);

Repeat steps 2 and 3 until all unscheduled orders have
performed the procedures.

Three types of improving moves corresponding to the
adjusting rules usually are employed by manual schedulers.

Hence the local optimum is quite practical in real-world
manufacturing systems.

Because C-EO has only one adjustable parameter C, we
analyze its optimal choice through simulating a serial of
parameter values under an identical solution provided by
MGA. The asymptotic curve of objective function value
over the adjustable parameter has been verified in the
practical scheduling problem as exemplified in Fig. 3.

Generally speaking, the algorithm reaches an optimal
solution at a prediction value Copt≈2.0, and the objective
function value rises sharply beyond the neighbor of τopt,
especially for the scheduling instances with large n/m.

Figure 4 shows the convergent curve of C-EO algorithm.
The initial solution is inherited from previous MGA. It
considerably improves the schedule solution and reaches
a convergent solution within 2000 generations. The
procedure takes about 45 seconds while n=1050, and
m=120.

3.3.3 Hybrid evolutionary algorithms

Straightforwardly, the scheduling scenario given by MGA
can be further optimized through C-EO as demonstrated
above. For exploiting the respective advantages of GA and
EO further, a hybrid evolutionary algorithm with marriage
of GA and EO, which is called a genetic extremal
optimization (GEO) in the following parts, is presented. In
the integrated method, C-EO plays the role of the mutation
operator of MGA. So, its workflow is mainly consistent

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Sequential Slot Number

Lo
ca

liz
ed

 fi
tn

es
s

va
lu

e

 MGA

MGA − τ −EO

Fig. 5 Localized fitness com-
parison between MGA and
MGA _ C_EO

966 Int J Adv Manuf Technol (2008) 36:959–968

with MGA as described above, except that the mutation
operation is replaced by C-EO.

It has been proved that this method may provide even
superior scheduling solution by experimental results. Now
we summarize and compare the test results for practical
scheduling data.

Figure 5 shows the comparisons in the localized fitness
between MGA and MGA - C-EO, in which the scheduling
solution of MGA is further optimized by C-EO. It is
obvious that C-EO can improve the scheduling solution of

MGA through consecutively replacing those undesirable or
underperformed orders in scheduling sequence.

In the proposed hybrid evolutionary algorithm GEO,
Pop� Gen� pm possible solutions will be optimized by C-
EO. Using same production data, the comparisons in
evolutionary processes given by MGA - C-EO and GEO
are illustrated in Fig. 6.

Evidently, GEO provides superior performances in both
scheduling quality and convergent speed compared with
GA - C-EO.

0 200 400 600 800 1000
1000

1500

2000

2500

3000

3500

Number of Generation

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

MGA − τ − EO

 GEO

Fig. 6 Evolutionary
process comparison between
MGA _ C_EO and GEO

Table 1 Improvement created by the hybrid evolutionary algorithm using practical production scale data

Instance No. n/m MGA MGA- C-EO GEO

Objective Objective Improvement Objective Improvement

1 2.5 2404 2237 6.95 2035 15.35
2 2.5 3312 2913 12.05 2610 21.20
3 2.5 2453 2337 4.73 1941 20.87
4 2.5 2855 2552 10.61 2530 11.38
5 5 1981 1509 23.83 1472 25.69
6 5 1889 1596 15.51 1286 31.92
7 5 1952 1613 17.37 1523 21.98
8 5 1794 1399 22.02 1302 27.42
9 7.5 1715 1325 22.74 1147 33.12
10 7.5 1479 1202 18.73 1074 27.38
11 7.5 1637 1237 24.43 1122 31.46
12 7.5 1529 1219 20.27 1035 32.31

Int J Adv Manuf Technol (2008) 36:959–968 967

4 Experimental results and performance analysis

Extensive experiment tests have been performed with
production scale data. Some comparison results of objective
function values for MGA, MGA - C-EO, and GEO are
summarized in Table 1.

It can be seen that the hybrid evolutionary algorithm
developed in this paper can further reduce the objective
function value and provide a more favorable scheduling
solution. Especially, the significant effects of GEO are
demonstrated by 30% reduction for those scheduling
instances with larger n/m.

5 Concluding remarks

In this paper, we studied a typical constrained combinato-
rial scheduling problem with characteristics of sequence
dependent transition cost, non-execution penalties and E/T
penalties. A mathematical model is proposed to formulate
it. Since this problem is hardly possible to be solved with
exact optimization methods, an effective hybrid evolution-
ary algorithm with marriage of GA and EO is developed to
solve the proposed scheduling problem. The experimental
results with production scale data provide the quantitative
comparisons in scheduling performance and computation
efficiency. We can see that the GEO using C-EO as the
mutation operator of MGA provides superior performance.
Based on this research, it is intuitively clear that the state-
of-the-art approach has great potentials in both academic
research and industrial applications.

Acknowledgments This research is supported by National Natural
Science Foundation of China (Grant No: 60574063).

References

1. Balas E (1999) New classes of efficiently solvable generalized
Traveling Salesman Problems. Ann Oper Res 86:529–558

2. Balas E, Martin G (1985) Roll-a-Round: Software package for
scheduling the rounds of a rolling mill. Balas and Martin
Associates, Pittsburgh

3. Feillet D, Dejax P, Gendreau M (2005) Traveling salesman
problems with profits. Transport Sci 39(2):188–205

4. Lopez L, Carter MW, Gendreau M (1998) The hot strip mill
production scheduling problem: A tabu search approach. Eur J
Oper Res 106:317–335

5. Tang LX, Wang XP (2006) Iterated local search algorithm based
on very large-scale neighborhood for prize-collecting vehicle
routing problem. Int J Adv Manuf Technol 29(11–12):1246–1258

6. Feo TA, Sarathy K, McGahan J (1996) A GRASP for single
machine scheduling with sequence dependent setup costs and
linear delay penalties. Comput Oper Res 23(9):881–895

7. Shin HJ, Kim CO, Kim SS (2002) A tabu search algorithm for
single machine scheduling with release times, due dates, and
sequence-dependent set-up times. Int J Adv Manuf Technol
19:859–866

8. Pugazhendhi S, Thiagarajan S, Rajendran C, Anantharaman N
(2004) Generating non-permutation schedules in flowline-based
manufacturing systems with sequence-dependent setup times of
jobs: a heuristic approach. Int J Adv Manuf Technol 23:64–78

9. Rubin PA, Ragatz GL (1995) Scheduling in a sequence dependent
setup environment with genetic search. Comput Oper Res 22(1):
85–99

10. Ruben R, Concepcion M, Javier A (2005) Solving the flowshop
scheduling problem with sequence dependent setup times using
advanced metaheuristics. Eur J Oper Res 165:34–54

11. Liu CY, Chang SC (2000) Scheduling flexible flow shops with
sequence-dependent setup effects. IEEE Trans Robot Autom 16(4):
408–419

12. Refael H, Mati S (2005) Machine scheduling with earliness,
tardiness and non-execution penalties. Comput Oper Res 32:683–
705

13. Boettcher S, Percus AG (1999) Extremal optimization: Methods
derived from Co-Evolution. In: Proceedings of the genetic and
evolutionary computation conference, pp 825–832

14. Michalewicz Z (1996) Genetic algorithms + data structures =
evolution programs. Springer-Verlag, London, UK

15. Han J (2005) Local evaluation functions and global evaluation
functions for computational evolution. Complex Systems 05:1–41
http://dx.doi.org/SFI-WP 03-09-048

16. Boettcher S, Percus AG (2000) Nature’s way of optimizing. Artif
Intell 119:275–286

17. Boettcher S, Percus AG (2003) Optimization with extremal
dynamics. Complexity (Wiley Periodicals, Inc.) 8(2):57–62

18. De Sousa FL, Vlassov V, Ramos FM (2004) Generalized extremal
optimization: An application in heat pipe design. Appl Math
Model 28:911–931

19. Chang WA, Ramakrishna RS (2002) A genetic algorithm for
shortest path routing problem and the sizing of population. IEEE
Trans Evol Comput 6(6):566–579

20. Larraòaga P, Kuijpers CMH,Murga RH, Inza I, Dizdarevic S (1999)
Genetic algorithms for the travelling salesman problem: A review
of representations and operators. Artif Intell Rev 13:129–170

21. Cowling P (2003) A flexible decision support system for steel hot
rolling mill scheduling. Comput Ind Eng 45:307–321

968 Int J Adv Manuf Technol (2008) 36:959–968

	Hybrid evolutionary algorithm with marriage of genetic �algorithm and extremal optimization �for production scheduling
	Abstract
	Introduction
	Problem formulation
	Problem description
	Mathematical formulation
	Complexity of solutions

	Hybrid evolutionary solution with marriage of GA and EO
	Genetic algorithm
	Extremal optimization
	Hybrid evolutionary methodology
	Allocating & sequencing algorithm – modified GA for global search
	Local improving algorithm - -EO
	Hybrid evolutionary algorithms

	Experimental results and performance analysis
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

