
ORIGINAL ARTICLE

Development of an intelligent agent-based AGV controller
for a flexible manufacturing system

Sharad Chandra Srivastava & Alok Kumar Choudhary &

Surendra Kumar & M. K. Tiwari

Received: 30 June 2005 /Accepted: 17 November 2006 / Published online: 30 January 2007
Springer-Verlag London Limited 2007

Abstract Automated guided vehicles (AGVs) are the most
flexible means to transport materials among workstations of
a flexible manufacturing system. Complex issues associated
with the design of AGV control of these systems are
conflict-free shortest path, minimum time motion planning
and deadlock avoidance. This research presents an intelli-
gent agent-based framework to overcome the inefficacies
associated with the aforementioned issues. Proposed ap-
proach describes the operational control of AGVs by
integrating different activities such as path generation,
journey time enumeration, collision and deadlock identifi-
cation, waiting node location and its time estimation, and
decision making on the selection of the conflict-free
shortest feasible path. It represents efficient algorithms
and rules associated with each agent for finding the
conflict-free minimum time motion planning of AGVs,
which are needed to navigate unidirectional and bidirec-
tional flow path network. A collaborative architecture of
AGV agent and its different modules are also presented.
Three complex experimental scenarios are simulated to test
the robustness of the proposed approach. It is shown that

the proposed agent-based controller is capable of generating
optimal, collision- and deadlock-free path with less com-
putational efforts.

Keywords Automated guided vehicles (AGVs) .

Flexible manufacturing systemAGV control .

Multi-agent system (MAS) . Deadlock avoidance

1 Introduction

Flexible manufacturing systems (FMS) aim to combine the
productivity of flow lines with the flexibility of job shops,
to attain very versatile manufacturing units achieving high
operational efficiencies. They are particularly designed for
low volume, high variety manufacturing, and good decision
making and management are crucial to maximize the
benefits that they offer. Stecke and Solberg [1] mentioned
four decision stages for FMS, i.e., design, planning,
scheduling and control. An FMS consists of a set of cells:
material handling system (automated guided vehicles) and
service centers, etc. Automated guided vehicle systems
(AGVs) are advanced material handling devices extensively
used in automated manufacturing systems (AMS) to
transport materials among workstations [2]. The design
and implementation of such AGVs require answers to a
number of problems, such as guide path design, controller
devices, and routing algorithms. In the recent past, with the
emergence of distributive technologies [3] and advanced
manufacturing paradigms, the AGV design and control
problems attracted the attention of various researchers,
including Tanachoco and Sinrich [4], Egbelu and Tanachoco
[5], Egbelu [6], etc. AGVs are under computer control and
they are the most flexible means to link all the locations of
the shop floor [7–9], their operations must face some

Int J Adv Manuf Technol (2008) 36:780–797
DOI 10.1007/s00170-006-0892-9

S. C. Srivastava : S. Kumar
Department of Production Engineering,
Birla Institute of Technology,
Mesra,
Ranchi 835 215, India

A. K. Choudhary
Wolfson School of Mechanical and Manufacturing Engineering,
Loughborough University,
Loughborough, UK

M. K. Tiwari (*)
Department of Forge Technology, National Institute of Foundry
and Forge Technology,
Ranchi 834003, India
e-mail: mkt09@hotmail.com

traffic control problem, such as collision prevention and
deadlock avoidance [10, 11], and minimum time motion
planning. The objective of this research is to provide an
analytical treatment of some of these issues and to offer a
novel perspective to resolve the issues related to collision-
and deadlock-free vehicle routing with minimum time
motion.

The collision and deadlock-free, shortest time, multiple
automated guided vehicle system (MAGVs) are the need of
today’s FMS. There are varieties of AGVs available in the
manufacturing system, serving a predefined flow path
network, which consists of a set of nodes interconnected
via set lanes (edge or links). Nodes represent sites for
workstation and parking areas for vehicle and serve as pick-
up and drop-off points for loads. A demand could be
generated in the form of pick-up loads at any workstation
and drop off a load to other workstations. The main problem
to be tackled here is finding the shortest path of the AGVs
from its present location to the destination station via
intermediate pickup workstation. There are several possible
paths through which the vehicle can travel, and among these
shortest, a conflict- and deadlock-free path is to be adopted
for routing. The vehicle’s chosen path should be such that, it
may not affect the others active travel schedule.

The main thrust of this research is to frame collaborative
agent-based architecture for real time traffic control of
AGVs, with a view to avoiding collisions and deadlocks
and achieving minimum journey motion times in an FMS.
It generates a conflict-free shortest path for the AGV in an
effective manner and, therefore, can overcome the ineffi-
cacies that may arise in complex layout of manufacturing
system. Agent controller, presented in this paper, controls
the AGVs using modules. These modules are associated
with rule-based system, heuristics and algorithms. Various
agents used in this architecture are as follows: guide path
agent, zone controller agent, journey time database agent,
online traffic controller agent, AGV agent, order agent and
interface agent. In addition, contract net protocols are used
for fully automated competitive negotiation through the use
of contracts among different agents.

The rest of the article is organized as follows: The
literature relevant to collision- and deadlock-free minimum
time motion planning with the application of artificial
intelligence (AI) is reviewed in Sect. 2. Section 3 describes
various complexity associated with the problem environ-
ment. An overview of agent technology and proposed
structure of agent-based AGVs are mentioned in Sect. 4.
Agent interaction approaches, various rules, heuristics, and
algorithms associated with different agents are illustrated in
Sect. 5. Section 6 discusses about the implementation
aspects of proposed model. Three experimental scenarios
are illustrated in Sect. 7. Results of simulation runs and
effectiveness of the proposed approach are discussed next.

Lastly, the paper ends with concluding remarks and future
research directions.

2 Literature review

Research articles covering in depth knowledge in the broad
domain of works related to collision- and deadlock-free,
shortest time route and application of AI to the control
aspect of AGVs, are considered here for discussion.
Broadbent et al. [12] coined the concept of conflict-free
shortest time route. A matrix has been generated by
applying Dijkstra’s shortest time path algorithm that
describes the occupation time of a vehicle at a node.
Conflicts at a node (junction) or catching-up conflicts can
be resolved by slowing down the vehicle, which is yet to be
scheduled. The procedure can be applied to any type of
path, namely unidirectional and bidirectional, but the
procedure does not guarantee an optimal solution of
bidirectional models [13]. Introduced the concept of virtual
tunnel for the bidirectional path consisting of several
segment of multi-unidirectional paths. This concept allows
multiple simultaneous crossing at an intersection.

Chang and Tanachoco [14] presented an algorithm for
finding conflict-free shortest time route for AGVs in a
network, which is based on Dijkstra’s shortest path method.
The main drawback of this procedure is its computational
complexity, as the number of vehicles and number of nodes
increases, the response time will increase. Narshimhan et al.
[15] analyzed the rerouting of AGVs to encounter inter-
ruption via simulation. But, this procedure does not
guarantee an optimal and conflict-free path. Oboth et al.
[16] presented a route generation technique that provided
conflict-free routes for multiple AGVs with varying speeds.
It is unconfirmed whether this technique can guarantee the
optimal conflict-free route. Recently, several researchers
[17, 18] have attempted to solve the shop-floor control
problems using the concept of agent technology.

Wallace [19] has presented novel agent approach, in
which the rule-based intelligent agents act as traffic
managers to allow or disallow mobile robots access to
points (x-y coordinates within a two-dimensional world)
and segments (lines connecting points) in a system. These
rules and assessments define the interaction between the
AGVs and guide-path that controls AGVs movement. As
compared to this distributed approach, the proposed
centralized approach to control the AGV movement,
although less flexible, is more reliable and easier in
implementation as well as it avoids many unnecessary
agent-to-agent interactions. Lim et al. [20] suggested a
construction algorithm to design a guide-path network for
AGVs. Their study used the total travel time, including
waiting and interference time, of the vehicle as the decision

Int J Adv Manuf Technol (2008) 36:780–797 781

criteria for determining the direction of the path segment on
the unidirectional guide-path layouts, and Q learning is
utilized to estimate the travel time of vehicles on path
segments. Fanti [21] has formulated a zone control scheme
to tackle the traffic control problems, based on the knowledge
of the AGVs’ operative condition. Lee et al. [22] proposed a
systematic two staged traffic control scheme to obtain
collision free minimum time motion of AGVs along loop
less path. Kim et al. [23] modeled an intelligent agent that
lies in the two extremes i.e., heterarchical and hierarchical
frameworks to solve an industrial warehousing problem.
Yamashita [24] proposed two empty vehicle dispatching
policies, and numerically calculated the waiting time
distributions of the items for each policy using a state space
reduction technique for Markov chains.

In this research, the main focus is to resolve some of the
complex issues concerning the collision and deadlock
avoidance with minimum time motion planning pertaining
to operational control of AGVs. This paper presents an multi-
agent-based framework representing a zone controlled AGV
environment, incorporating various issues like path genera-
tion, link occupation time, collision and deadlock avoidance,
and suggests the waiting node, waiting time, positioning of
the idle AGVs, pick-up and drop-off nodes associated with an
shortest conflict-free path selection. However the intelligent
agent-based framework can be used to overcome the short-
comings associated with previous approaches and incorporate
many beneficial facilities explained as follows.

i. It is a complete framework to develop a minimum time
motion plan for AGVs and to govern the AGVs as same
plan.

ii. The system provides collision- and deadlock-free AGV
movement and can solve the breakdown problems (if any).

iii. This centralized MAS control is more reliable and easy
to implement onto shop floor. The shop-floor controller
acts as mediator among other shop-floor activities and
AGV movements that can act to establish seamless co-
ordination among each activities of the shop floor.

iv. Pre-detected time of reaching the product at its target is
quite important for establishing co-ordination among
shop-floor activities.

v. The system can not only serve the AGVs on complex
guide-path but also efficiently control the movement of
AGVs even if the number of AGVs is increased.

3 Shop-floor environment

The problem considered here is related to the dynamic
environment of flexible manufacturing systems (FMS),
where fixed numbers of AGVs are available to handle
material transfer requests. An order or demand for a vehicle

implies that the vehicle is to move from its present location
(initial node) to a node of a pick-up workstation (interme-
diate node), where the jobs for loading are available. From
there, the loaded AGV proceeds to a node representing a
drop-off workstation (final node) for unloading, where the
AGV is free to be routed again.

Distributive traffic control has been adopted in many
practical situations, where the range sensors maintain a
minimum headway between two adjacent vehicles. When
the complexity of the guide path network is high, these
distributive controls resulted in decreased efficiency of the
system. In these situations, it is difficult to find a substitute
path, and deadlock occurs more frequently with an increase
in the number of AGVs. In this research, we have
considered centralized traffic control scheme for multiple
AGV systems with complicated bidirectional guide paths.
On shop floors, the exact position of an AGV can be
obtained only when they pass over pre-specified control
points fixed on the guide path. Hence, the zone blocking
technique, which permits only one vehicle in a given path
segment at a time is suitable for multiple automated guided
vehicles under centralized traffic control [25, 26]. In such a
system, the guide path is divided into a set of many small
path segments; these segments are termed as a link of the
network. The link from node x to one of its adjacent node y
is denoted as (x, y). For this link, node x is said to be
adjacent to node y and vice versa. For each pair of adjacent
nodes, link (x, y) is said to be unique. For bidirectional path
segment two links (x,y) and (y,x) are considered separately,
and (y, x) is said to be the inverse link of (x,y).

In this paper, we have adopted some implicit assump-
tions to map the shop-floor scenario. Vehicles can start and
stop only at nodes. In order to avoid collision, temporary
stay at some nodes is permitted. A spin turn of AGVs on a
guide path is assumed to be avoided. It is also assumed that
a vehicle path cannot contain any loops or partial paths,
whose start node is the same as its goal node. A rapezoidal
velocity profile is used, and the maximum speed for each
profile is fixed at its maximum vehicle speed Vmax

multiplied by velocity parameter ηxy (0<ηxy≤1) that is
assigned to each link. Acceleration and deceleration of
AGVs are assumed to be constant, and can be denoted as
αacc and αdec. Disruption and rescheduling of any active
travel schedule for other vehicle is not permitted.

Journey time for a path P [I, F] can be determined using
the aforementioned variables. Here (x, y)∈P [I, F], for link
(x, y), when AGV move over it, the time require to clear
(x, y) equals to (ηxy. Vmax)

−1. lxy. Here, journey time for a
path P is represented by:

τ pð ÞΔ ¼
X

ηxyνmax

� ��1
� l x; yð Þ þ

X

i

θi þ
X

j

φj þ
X

r

ξr . . .

ð1Þ

782 Int J Adv Manuf Technol (2008) 36:780–797

where

θi Additional time for ith acceleration.
φj Additional time for jth deceleration.
ξr Additional time for rth temporary stay.
P [I, F] Path P from I to F, where I is the initial or start

node and F is the final or goal node
τ(P) Journey time for a path P
Vmax Maximum velocity of the AGV
ηxy Velocity parameter associated with the link

(0<ηxy≤1)
lxy Length of link (x,y).

Entry time and exit time, associated with each link, is
known using journey time. Suppose an AGV is moving
along a path P [I, F] then entry time of (x, y) is estimated
using τ[{I. . . x}] while the exit time is calculated as
τ[{I,..P, y}]. A very small response time is also considered.
This is the time from the start of the algorithm execution to
the start of the vehicle movement. It includes the
computational time of the algorithm and the communication
delay needed to transmit the travel schedule to the vehicle.

4 Background information on agent technology

4.1 Definition of agent

It is well documented that there are sundry definitions of
the term agent reported by several researchers in the recent
past. Fisher [27] defined agent as an encapsulated entity
with embedded AI capabilities. Jennings and Wooldridge
[28] defined agent to be an autonomous problem-solving
entity, which by nature is communicative, reactive, and goal
oriented. Davidson et al. [29] mentioned that agent is an
entity with an ability to interact independently with its
environment through its own sensors and effectors [30].
Nwana and Ndumu [31] defined an agent to be a software
and/or hardware component capable of acting rationally, in
order to accomplish tasks on account of its user. Huang and
Nof [32] suggest that an agent is a collaborative computing
system capable of reacting autonomously and responding
reflexly to the impacts from the environment in a goal
oriented paradigm. Moreover, literature available on role
and definition of agents are vast and beyond the scope of
this section. More details about agents can be found in
[33–37].

4.2 Agent properties and types

According to Jennings and Wooldridge [28], an agent can
exhibit autonomy, social ability, responsiveness and proac-
tiveness, in addition to adaptability, mobility, veracity and

rationality. Furthermore, agents may have high and low
level reasoning capabilities [29]. In this paper, we have
defined an agent as a computational entity that acts on
behalf of others is autonomous, both proactive and reactive,
and exhibit certain degree of ability to learn; cooperate and
can move after receiving the details of certain task. An
agent acts autonomously following certain algorithm.
Based on their skills, an agent tries to attain the goal
defined by the assigned task in a proactive manner. In order
to achieve the goal, agent must be mobile, collaborative,
and communicative to share their knowledge.

4.3 Agent-based architecture of AGVs

Three basic elements of agents have been identified:
network interface, local knowledge model and domain
knowledge model. Network interface consists of the agents
to the network. Various resources like Java classes, other
agent’s address, message language KQML, ontology and
strategies comes into the purview of local knowledge
model. Domain knowledge model comprises of dexterity
essential for an agent to perform functional tasks and skills
that may be the method for activating action corresponding
to the received request. Figure 1 represents schematic
structure of an agent.

In order to implement the agent characteristics in to
AGVs following functional modules are required: commu-
nication interface, perception, social knowledge, self
knowledge, domain knowledge, learning, reasoning, prob-
lem solving interface, coordination, planning scheduling
and control, conflict management, application interface, etc.
In this paper, we have developed a collaborative architec-
ture incorporating the features from other architectures and
thus provide powerful and promising capabilities. The
internal architecture for AGV agent is shown in Fig. 2.

4.4 Communication protocols used in agent network

The protocol aims to efficiently and effectively distribute
the task among the different agents to ensure the comple-
tion of task smoothly and efficiently. It allows agent to
share the information therefore determine the overall
behavior and organization of MAS (multi-agent system).
Figure 3 shows the mechanism of sending and receiving
information tasks through communication bus (internet/
intranet).

In this proposed MAS, all agents communicate over the
Internet/intranet via a bundle of knowledge query and
manipulation language (KQML) messages to transfer data
among each other. Agent communication language (ACL)
acts as formalism for exchanging messages. It consists of
three layers: a content layer, a message layer and a
communication layer. The actual message is specified by

Int J Adv Manuf Technol (2008) 36:780–797 783

ControlCoordination Conflict Mgmt

Communication interface

Planning/Scheduling Problem Solving Models

Knowledge Domain

Contract Net Protocol

Fig. 2 Architecture for AGV agent

DOMAIN KNOWLEDGE LOCAL KNOWLEDGE
DEXTERITY ONTOLOGY
SKILLS LANGUAGE

 STRATEGY

DATA BASE

INTERACTION WITH OTHER AGENT AND ENVIRONMENT

NETWORK INTERFACE

COMMUNICATION INTERFACE

MESSAGE QUEUE OF TASK RESPONSE
DEVICE

Fig. 1 Agent’s architecture

784 Int J Adv Manuf Technol (2008) 36:780–797

the content layer. The message layer comprises performa-
tives which are provided by the language (e.g., tell, reply,
decision making and ask-if), which correspond to the
speech act from the speech act theory [36]. The performa-
tive header defines what the message means and what the
recipient agent should do. For the implementation aspect of
the proposed structure, small subsets of performatives have
been customized, as described in Table 4. When a message
is transmitted among the agents, it is wrapped by the
KQML in a standard format. The destination agent can
compose the KQML and retrieve the embedded message.
The agent language (AL) is developed for each agent to
understand the message it receive and execute the task as
message ‘tells’.

4.5 Agent’s functionality

This paper presents an idea consisting of society agents to
resolve the issue related to conflict, deadlock and interrup-
tion occurring in a guide path network. Six types of agent
have been proposed to develop the architecture of the
control mechanism of AGVs. Each agent is associated with
modules and these modules follow some rule bases,
heuristics and algorithms. Figure 4 represents the architec-
ture of a proposed multi-agent system framework and
coordination, and negotiation among these agents has been
demonstrated in Table 4.

These agents are described as follows:

1. 4.6.1 Guide path (GP) agent 1. The guide path agent is
responsible for finding the possible paths through
which the AGVs can be routed. A guide path agent
receives information from an AGV agent regarding its
present location, location of pick-up, and drop- off
workstation. GP agent generates shortest feasible path
and K shortest feasible path based on high level
reasoning capability and different modules associated
with it. The working methodology and generation of
shortest path and K shortest path is illustrated in Sect. 5.

Based on these factors link occupation time is estimated
by JTD agent.

2. 4.6.2 Journey time database (JTD) agent 1. The journey
time database agent enumerates the link occupation
time of each AGVs. Link occupation time is the
interval between the entry time and exit time of a link.
It also includes the response time that is nothing but the
time from the start of the algorithm execution until start
of the vehicle movement. In Sect. 5, an illustration has
been cited for estimating the link occupation time.
These informations are utilized by zone controller agent
to plan the trajectory along a candidate path.

3. 4.6.3 Zone controller (ZC) agent 1. A zone controller
agent utilizes link occupation table data to determine a
collision- and deadlock-free trajectory of a vehicle.
Hence, a ZC agent is mainly responsible for trajectory
planning of AGVs. However, it is considered that
potential collision occur if its link occupation time
overlaps any active occupation schedule by other
vehicle. In this case, ZC agent searches for temporary
staying node and time. In order to avoid collision/
deadlock, ZC agent is responsible for making two types
of decisions as discussed in Sect. 5.

4. 4.6.4 Online traffic controller (OTC) agent 1. OTC
agent determines the overall motion planning of
AGVs. This agent is also termed as decision maker.
The OTC agent on the basis of communication takes
decision related to the shortest feasible path with
other agent and heuristics and rule bases associated
with them. Details of rules and heuristics are
described in Sect. 5. After deciding the shortest
feasible path, OTC agent instructs the AGV agents to
initiate its motion and continuously governs its move-
ment. If any problems related to the AGVs control
(probable location to be head-on collision of AGVs,
breakdown of AGVs) arise, it reports the shop-floor
controller to heal up the trouble.

5. 4.6.5 Order agent (OA) 1. As generation of new order
to transfer the supplies from one station to another

Agent 1

Agent 2

Seek collaborator through TVP

Error information through TVP

Communication Bus (Internet)

Communication Bus (Intranet)

Task
arrives

Task
arrives

Task
departureTask

departure

Task
departure

Task
arrives

Task
departure

Task
arrives

Fig. 3 Agents sending and re-
ceiving information/tasks
through a communication bus

Int J Adv Manuf Technol (2008) 36:780–797 785

station or entry of new supplies in the system arise;
shop-floor controller detects the requirement of AGVs
to transport the supplies from station to station. It
instructs the order agent to develop a plan for transpor-
tation of the supplies.

6. 4.6.6 AGV agent 1. Each AGV in the system is referred
to as an AGV agent, and its routing plan is managed by
OTCA. It negotiates with an OTC agent at every
incident occurred with AGVs (loading, unloading,
information to cross of each node, breakdown, etc.).
A detailed structure of AGVagent is outlined in Sect. 4.
Figure 2 represents the architecture of AGV agent.

4.6 Agent-based system architecture

Once the agents are available, there are two possible
architectures from which to choose: (1) when all the agents
handle their own coordination or (2) a group of agents rely
on special system programs to achieve coordination. The
disadvantage of this first architecture is related to the
communication overhead, especially the scalability require-
ment, which is essential for better communication among
agents. As a consequence, the latter federated approach is
preferred in which agents do not communicate directly with
other agents. Instead, they communicate through a system
program called interface agents. This leads to the develop-
ment of a framework where the agents form a federation in
which they surrender their autonomy to their centralized
agent. The centralized agent takes the responsibility of
fulfilling their needs.

The proposed system is shown in Fig. 5, which
consists of seven components: interface agent, GP agent,

AGV agent, order agent, JTD agent, ZC agent, and OTC
agent.

The interface agent is responsible for the management of
interaction and the conflict resolution in the agent commu-
nity (GP agent, order agent, JTD agent, ZC agent, and OTC
agent). It contains the knowledge about capability and
function of each connected agent. Therefore, the message
can properly pass through the interface agent The interface
agent routes the request/response received to the appropri-
ate agent based on its knowledge about the capability of
each agent.

5 Agent interaction approaches

An AGV system is based on the guide path constructed of
nodes and links having some rules, heuristics and algorithm
associated with the agents to control the AGVs. It involves
a natural choice that agent should follow to select the rules
and heuristics inherent in them. This section presents
heuristics and rules associated with agents. The working
methodologies of each agent, along with the interaction
mechanism among them are also discussed here.

5.1 GP agent

Two algorithms are associated with this agent. The
functioning of guide path agent is based on these
algorithms. These algorithms are termed as the shortest
feasible path (SFP) algorithm [38] and K- shortest feasible
path (KSFP) algorithm [39, 40]. These algorithms find the
shortest and K shortest feasible path from a start node I to

GP Agent

ZC Agent Interface Agent

JTD Agent

OTC Agent

Order Agents

AGV Agent 1
AGV Agent 2

:
:

Station 1
Station 2

:
:

Shop floor controller
(scheduler …… controller)

Fig. 4 Agent-based system ar-
chitecture using proposed ap-
proach, (dashed line shows the
Internet-based communication,
and solid lines show the Intranet
based communication)

786 Int J Adv Manuf Technol (2008) 36:780–797

goal node F, respectively. Agent-based control of AGVs
requires construction of a set of multiple feasible solutions,
which are called path table [22]. Hence, path table PTI/F for
a start node I to goal node F is a collection of candidate
path that contains the shortest feasible path and 2nd, 3rd
Kth shortest loop less feasible path. Here, K is an input
parameter defined by the operator. These algorithms are
based on the principle of partitioning the solution space
[41]. In this paper, a concept of an induced network model
has been visualized to find the shortest feasible path instead
of a linkage-constrained network. For a detailed study of
linkage-constrained network and induced network model, it
is advised to refer [22, 41]. The intension path P for a path
p 0I ; pn½ � ¼ 0I ; Im:::; pnf g in GI (Nc, Lc) is defined as the path
{I,m,...p,n} on G (N, L) constructed from the base node of
each element in P. The intension path of any path on GI

(Nc, Lc) is a feasible path on G(N, L) and vice versa.
Hence, graph search that performed only on GI (Nc, Lc) will
deal with only feasible path in G (N, L). Some of the

notations, which are frequently used in the description of
shortest feasible path and K ,shortest feasible Ppath
algorithm, are listed in Table 1.

These algorithms are discussed as follows.

5.1.1 Shortest feasible path (SFP) algorithm

SFPAlgorithm [42] proceeds to grow like a tree Γ Nt
C; L

t
C

� �

using the original network G (N,L) until the shortest
feasible path from I to F is found. Let a label dist. pnð Þ
for each pn 2 Nt

C denote the feasible path length from 0s to
pn. A priority queue £ is also defined, in which the leaf
nodes in ΓI are sorted in their order of Dist (.). SFP
algorithm is delineated as follows:

[SFP Algorithm]
Initialization Step: let 0I∈Nc be the only node included

in ΓI=>Nc={0I},
Set dist. (0I)=0, Let £={0I}

Step 1 Among the leaf nodes of ΓI, minimum Dist(.)
value is picked up. Choose arbitrarily if tie occurs.
Let the leaf node picked up be pn, now remove pn
from £.
pn is chosen in such a manner that, pn 2 £ � Nt

C

and Dist pnð Þ ¼ min
un2£

Dist unð Þð Þ
pn is excluded from £, hence, pn 2 Nt

C � £
� �

Step 2 If n=F then stop, shortest feasible path is p 0I ; pn½ �
in ΓI.

Step 3 Expand pn; nm a child node of pn is generated by
selecting m’s from Adj (n). All the m’s are not
selected even if m is feasible from p via n, but only
those are considered as the base node for the child
node of pn that met the criteria given below:

0,I

I, 1

1,2

 2, 3

5, 6
5,7

 3, 4

4,5

6,F

1,7

7,5

5,4

4,3

3,2

2,1

I 2

3

4 5
6

1

F

Fig. 5 An example for finding the shortest feasible path via SFP
algorithm

Table 1 List of notations used in SFP and KSFP algorithm

Notations Definition

G (N, L) : Linkage-constrained network
GI (Nc, Lc) : Induced network of a given linkage constrained

network G (N, L) with start node I
Adj (n) : Adjacent of node n
d (pn, nm) : Distance between pn and nm
Π1 : Shortest feasible path
Πi : ith Shortest feasible path
Sc : Set of candidate path
B[n] : {(n, m)} where m∈Adj(n)
= : Set of feasible path from start node I to goal

node F
φ : Null set
P(0I, pn) : It is defined for each (p,n)∈L, a new element in Nc

Γ Nt
C ; L

t
C

� �
: Growth of a tree using original network G (N,L)

0I : Start node
Dist(pn) : A label denoting feasible path length from 0I, to pn
£ : Priority queue

Int J Adv Manuf Technol (2008) 36:780–797 787

For m2Adj(n), let nm 2 £ � Nt
C if:

m is feasible from p via n, except the case pn ¼ 0I ,
In ΓI, m is not a base node of the ancestor node of
pn,
nm is not repeated in ΓI, i.e., nm=2Nt

C yet.
For such nm, let pn; nmð Þ 2 Nt

C , and Dist nmð Þ ¼
Dist pnð Þ þ d pn; nmð Þ.

Step 4 If £=φ stop. Otherwise return to step 1 as there is
no feasible path from I to F.

Here, it is pertinent to mention that the SFP algorithm behaves
as greedy algorithm. Figure 5 illustrates the approach for
finding shortest feasible path via SFP algorithm. Although it
seems strange that from the star node I to goal node F, there
is no direct link, yet it is a part of the KSFP algorithm to
eliminate one or more links from the original network.

5.1.2 KSFP Algorithm

This algorithm is evolved keeping in mind the principle of
partitioning the solution space provided that initial shortest
feasible solution exists that can be found from SFP algorithm.
Algorithm KSFP is delineated as follows:

[KSFP Algorithm]
Initialization step: Using the SFP Algorithm, find the

first shortest path, set k=1, Sc=φ Find Π1[I, F].

Step 1 [Generation of feasible deviation path: Shortest
feasible deviation path from y i

j; j ¼ 1:::ΠI which
branches at jth node of the kth shortest feasible
path is found out. Put the paths thus found in Sc].

Loop 1:For jth node of Πk [I, F] (j=1,.... πk),
{
Define B*[n] as a subset of B[n]. Let (nk(j),m)∈B* [nk, j],
if nk(j, m) is not repeated in Π1[I, F],...., Πk[I, F] and
furthermore m is feasible from nk(j−1) via nk(j) when j≠0.
Loop 2:For each [nk(j),m]∈B* [nk , j]
{
Set d(ni(i), .)=∞∀I... ..., j−1.
Set d(nk(j), .)=∞ except for d(nk(j), m).
Find Π1(nk,(j), g) by applying SFP algorithm.
Return d(. , .)’s that are set to ∞ in 1) and 2) to the
former values
Π1(nk,(j), g) does not exist return to 1) for the next (nk,
(j),m)
Include {I,...nk(j)}+Π1((nk,(j),F) in Sc (if it is not already
in Sc), where {I,...nk(j) } is the sub path of ΠI[I, F].
} // end of Loop 2
} // end of Loop 1

Step 2 Estimate Πk+1[I, F], find the shortest path in Sc,
and set the path as Πk+1[I, F],
Check if Sc=φ, stop, since Πk+1, ... , ΠK

distinguished from Π1, . . ., Πk do not exist.

Shortest path among Sc is chosen. Let it be Πi+1[I, F].
Eliminate Πk+1[I, F] from Sc.

Step 3 Check if k=K stop; otherwise k=k+1 and go to step 1.
After applying KSFP algorithm, one constructs a
path table. Each table contains K loop less path
having same start and goal nodes. The K loop less
path in the table is shortenend and stored in data
files in order of their journey times. Now, all listed
paths are referred to the journey time database
agent to determine the link occupation time
associated with each link in corresponding path.

5.2 Journey time database (JDT) agent

The journey time database agent generates link occupation
time data according to vehicle speed. Link occupation
time is the interval between the entry time and exit time of
a vehicle on a link. Link occupation time for every link is
stored in the form of link occupation table (LOT). Hence,
after dispatching of a vehicle, the link occupation
schedule of the vehicle is stored in LOT. ZC agent
utilizes LOT to determine collision free trajectory of a
vehicle. Figure 6 represents the proposed data structure of
each link.

Some preference rules are also considered while consid-
ering the motion of AGVs. These preference rules are
delineated as follows:

– AGV will move through the straight edge rather than
two curved situations.

– AGVs will move through the curved edge rather than
two straight edges.

– Before departing from initial node, the vehicle will
acquire the node position.

[Link Occupation Table (LOT) Algorithm]

Step 1 Refer the path table and determine the set of links
at which link occupation time is to be calculated.
Initial link refers to that link whose initial node
contains the idle vehicle.

Step 2 Input the entry time of vehicle at the initial link
Step 3 Equation 1 is used to determine the exit time, or

link occupation time of the vehicle.
Step 4 Enclose the entry time and exit time in [].
Step 5 Refer to the path table, determine the next link

where the vehicle has to proceed further.
Step 6 Repeat step 1 to step 5, until the completion of link

occupation data related to all the links of selected path.
Step 7 ∞ is placed at exit time of final link and 0 is placed

at link number.
∞ Shows the unknown idleness of the vehicle at final
nodes loop.
0 Shows unassigned link for the movement of AGVs.

788 Int J Adv Manuf Technol (2008) 36:780–797

An illustrative example has been expressed for the
calculation of link occupation time and is represented in
Fig. 7. If an AGV travel from node x to node y, its adjacent
node y during a time interval (tx, ty), the link (x,y) , and its
inverse link (y,x), and all the links and inverse links starting
at x or y are considered to be occupied during (tx, ty), such a
mechanism would protect vehicles from collision at the
intersection node.

5.3 Zone controller agent (ZCA)

The zone controller agent is responsible for determining the
conflict and interruption free path/route associated with other
moving vehicle with in the horizon of journey time schedule.
The ZC agent determines the collision free trajectory along the
K candidate path in the table that contain K-shortest feasible
path from current node to goal node. In order to avoid
collision, LOT is exploited by ZCA to ensure that two
vehicles do not occupy a link. Relevant rules associated with
ZC agent are as follows.

5.3.1 LOT rule

Overlapping of link occupation time is avoided; ZCA
checks the link occupation table and plan in such a manner
that link occupation times of the vehicle do not overlap
with other vehicles.

5.3.2 Intersection node rule

These rules are delineated as follows:

– Neighbor links of physically occupied link have also to
be considered as occupied. It is necessary to avoid
collision at intersection nodes and also guarantee
safety.

– Entry of the two vehicles can be made possible at any
node if both the vehicle have to travel on different edges.

– Entry of the vehicle at the same or different time is
possible at any node but the link occupation time
constraint must be observed in case the vehicles have
to travel on the same link.

A potential collision occurs if the link occupation times
overlap by any occupation schedule of other vehicle. In this
case, ZC agent estimates the temporary staying node and
node occupation time. Based on the type of collision,
temporary staying node and time are determined. In this
work, we have considered four types of collision. Figure 8
illustrates the schematic representation of these four types.
Each type of collision determines different temporary
staying nodes and times. In this case, hitting of a vehicle
from rear by a faster moving vehicle is not allowed as η
determines the speed of the vehicle on link.

Figure 9 represents an illustration for trajectory planning
of head on collision case. AGV 1 is dispatched along the
path Π1=Π1{1,10}={1,2,... 10}. AGV 2 is to be scheduled
and its candidate path is Π2=Π2{11,15}={11, 12, 8, . . . 4,
14, 15}. Suppose that occupation time of AGV 2 overlaps
with occupation time of previously dispatched AGV 1.
Then, temporary staying node and time of AGV 2 is
determined using trajectory planning algorithm as follows:

5.3.3 Trajectory planning

[TP Algorithm]

Step 1 Refer to LOT find the possible collision on any
link in ∏2. Trajectory planning is completed if no
potential collision is detected. For the selected case
detected link is (6, 5).

Step 2 Get the index of AGVoccupying that link. For this
case, AGV 1 occupies (6, 5).

Step 3 Take inverse sequence of ∏2 (inv∏2), for this case
inv∏2=(15,14,4 . . . 8, 12,11)

Step 4 Choose start node (β) of the link that bears
potential collision (β=6 for (6, 5)). The tempo-
rary staying node is determined as the first
element ξ∈inv∏2 after (β) such that ξ∉∏1 in this
case ξ=12.

Step 5 Pick (ξ) from ∏2, Denote expected entry time by
later dispatched AGV, for this case (12,8) is

Start Node x

Goal Node y

Length of Link L (x, y)

Entry time I1 (x,y)

Exit time O1 (x,y)

AGV occupying Index

AGV occupying index

Exit time O N (x,y)

Entry time IN (x,y)

:
:
:
:

Space for the 1st occupation

Space for the Nth occupation

I j(x,y)= the jth entry time for link (x,y)
O j(x,y)= the jth exit time for link (x,y)

Fig. 6 Data structure for link occupation table

Int J Adv Manuf Technol (2008) 36:780–797 789

chosen and I*(12,8). Among the exit times Oi

(12,8) (i=1,2 . . . N) for link (12,8), select i in
such a manner that Oi (12,8) is the smallest exit
time that is greater than I*(12,8).

Step 6 Difference in the expected entry time and
smaller exit time gives the temporary staying
time (ξr=O

i (12, 8)−I*(12, 8)). In order to occupy
this temporary stays modify the trajectory of
AGV 2.

Step 7 Calculating φi, ϕj for the temporary stay.
Step 8 Detect if there is any potential collision, then

repeat step 1–7, else stop.

5.4 Online traffic controller agent

This agent is also known as decision-maker and
responsible for overall motion planning of the AGVs.
Based on overall motion planning algorithm and selection
rule, OTC agent decides the optimal path to be traversed
by AGV.

[Overall motion planning algorithm]

Step 1 initialize i=1

Step 2 Communicating with ZC agent, plan the trajectory
along the path ∏i

Step 3 Check for ∏i, if there is no potential collision
detected, i.e., node staying time=0, the collision
free minimum time motion path lies among ∏k

(1≤k≤ i). The smallest τ(Π) among ∏1, ∏2,
∏3...∏i is selected.

Step 4 If node staying time is greater than zero, and i<I
for ∏I, go to step 2 and increment i=+1.

Step 5 If node staying time is greater than zero and i=I;
the path ∏k (1≤k≤i) that has the smallest ∏k

among ∏1, ∏2, ∏3,...∏i is selected. Step 2
determines the trajectory planning.

TIE breaking rule If the tie occurs, that is if the two paths
show same reachable time at destination, OTC agent prefers
the route having less traffic by consulting ZC agent.

Link (x,y) Entry time of Ii(x,y) Exit time of O-i(x,y)
(1,2), (2,1) 0: 00: 00 0: 00: 18
(2,3), (3,2) 0: 00: 00 0: 00: 26
(3,4), (4,3) 0: 00: 10 0: 00: 26
(2,7), (7, 2) 0: 00: 00 0: 00: 18
(2, 8), (8, 2) 0: 00: 00 0: 00: 18
(3, 7), (7, 3) 0: 00: 10 0: 00: 26
(3, 8), (8,3) 0: 00: 10 0: 00: 26
(4, 7), (7, 4) 0: 00: 18 0: 00: 36
(4, 8), (8, 4) 0: 00: 18 0: 00: 36
(4, 5), (5, 4) 0: 00: 18 0: 00: 50
(5, 6), (6, 5) 0: 00: 26 0: 00: 58
(5, 9), (9, 5) 0: 00: 26 0: 00: 50
(6, 9), (9, 6) 0: 00: 36 0: 00: 58
(6, g), (g, 6) 0: 00: 36 ∞

F Goal Node

1 2 3 4 5

6

Start Node (I)

Node 1 = 0: 00: 00 Node 2 = 0: 00: 10 Node 3 = 0: 00 : 18
Node 4 = 0: 00: 26 Node 5= 0:00: 36 Node 6 = 0: 00: 50
Node g = 0: 00: 58

Passing time at each node

Fig. 7 An example representing
calculation of link occupation
time

790 Int J Adv Manuf Technol (2008) 36:780–797

5.5 Order agent

When order agents receive information about requirement
to transfer the supplies from shop-floor controller, OA
passes the information to other agent of the system for
finding and solving the transportation demand. According
to the OTCA instructions, AGVs can load and dispatch the
supplies. It is not possible all the time that AGV agent
executes the order, in some cases; it may lead to deadlock

situation during fulfilling an order. Hence, it is not safe to
execute the order. Order agents are used to prevent such
situations. Concept of virtual order comes into picture when
order is not safe to carry out. In order to execute real order,
AGV is given virtual order to take it to a safe point or an
alternative load and unload point to start the execution of
the real order. Order agent works on the principle of accept
an order rule [19] and is delineated as follows.

AGV 1 AGV 2

a

Intersection

AGV 1

AGV 2

b

AGV 1

Goal Node of AGV 1

Staying AGV

c

AGV 1

Goal Node of AGV 1

Staying AGV

d
Fig. 8 Representation of four different types of collisions (a) Head on collision, (b,c,d) Intersection collision

1

2

3

13

14

15

4 6 7

10

9

AGV 1

AGV 2

Π 1 10_) (1,

Π 2
)15 11,(

5 8

Fig. 9 Determination of
temporary staying node and time
using trajectory planning
algorithm

Int J Adv Manuf Technol (2008) 36:780–797 791

ACCEPT an ORDER RULE The prime concern of an order
agent is to prevent the deadlock situation of an AGV. Order
agent checks every order to see whether the order lays down
an AGV to its safe point or its goal node without putting AGV
into deadlock situation. If the order would result in deadlock
situation then a virtual order is given to an AGVuntil it is safe
to carry out the original order, or the AGV would have to
remain where it is until it could fulfill a virtual or a real order.

Negotiations among agents play a vital role during the
fulfillment of an order. If the blocking situation arises then
AGVs negotiate with each other for the movement of the
AGV. If this fails then the blocked AGV will try to find
another route or dummy destination to go to so that it doesn’t
put itself or other AGVs in a possibility of deadlock.
Negotiation is based on high level contract net protocol.

5.6 AGV agent

Each AGV is associated with an AGV agent. AGV agent
manages AGV movement. These AGV agents manage an
AGV by initiating enquiries with other agents and by
negotiation with other AGV agent. The detailed collabo-
rative structure of proposed AGV agent is discussed in
Sect. 4. An AGV agent makes a decision on the basis of
message sent by OTC agent. AGV agents communicate
with OTC agent at each incident such as AGVs cross the
node, receives supplies and unloading the supplies etc. If
any AGV becomes breakdown or AGVs come into
location to be head-on collision, OTC agent indicates to
the shop-floor controller to recover the AGV or/and to
reschedule the movement plan remained journey of
supplies. Some of the rules associated with AGV agent
are delineated as follows:

– Waiting rule: After arriving at its destination, AGV
performs the operation of loading and unloading. In
order to complete its operation, it has to be allowed to
wait on its current point. A virtual order is given to an
AGV when it is unable to accept an order. If, it cannot
accept the virtual order then it is unable to move
anywhere.

– Follow other rules: In order to avoid deadlock, AGVs
are allowed to follow OTC agent and hence the
situation results in greater efficiency of the system.

The following section describes the implementation
aspect of the proposed framework.

6 Implementation aspect of the proposed model

With the development of agent-based technology, recently a
number of agent development tools have been reported and

some are now commercially available. Java is employed to
develop the architecture of present agent-based system.
Each agent developed, in this research is based on the
underlying framework of Java Agent Template Lite
(JATLite), which is a prototype agent environment devel-
oped by Stanford’s agent-based environment group at
http://www.java.stanford.edu/. It is a set of lightweight
Java packages that can be used to build multi-agent system.
JATLite facilitates the construction of agent, which can
send and receives the message using the emerging Stanford
communication language KQML [43]. It provides the basic
information in which an agent registers with an agent
message router using a name and password to connect / dis-
connect from the internet, send and receives message,
transfer files and invoke other programs or actions on the
various computers where they are running.

The wide use of agent technology in industry depends
upon the availability of development tools and a platform
that protect developers from the need to develop basic
functionality of each system. Such tools and platform, in
turn, presume the existence of standards that reflect the
agreement of developers on what basis the functionality
should be presented. Some efforts have been devoted to
provide standards for agent-based systems, but no accepted
standard can be found for developing agent-based manu-
facturing systems. KQML is intended as a common
communication language for agent with KIF [44] as a
common content format. KQML as ACL is used here.
Some traditional standards have also been used in agent-
based system development, such as the common object
request broker architecture (COBRA) for inter-agent com-
munication and STEP [45] for providing the semantics of
messages in manufacturing application. Currently, two
consortia have focused on formalizing standards specifical-
ly to support agents. These are the Foundation for
Intelligent Physical Agents (FIPA) and the National
Industrial Information Infrastructure Protocols (NIIIP).
FIPA establishes in 1996 as a worldwide consortium,
promotes the development of a specification of generic
agent technologies that maximizes the interoperability with
in and across an agent-based application. FIPA has already
produced version −1 of its set specification called FIPA 98.
NIIIP is a consortium of US companies formed to develop
open industry software protocols that will make it possible
for manufacturers and their supplier to operate effectively
in a collective way so that they were part of the same
enterprise.

7 Experimental scenario

Experiments were conducted with the intention of
analyzing the capability of proposed agent-based frame-

792 Int J Adv Manuf Technol (2008) 36:780–797

http://www.java.stanford.edu/

work. Three experimental scenarios with different com-
plexity have been presented to show the robustness of
the proposed approach. For the first case, a test problem
has been conceived to represent the layout of the AGV
system, which maps the scenario described by [15]. In
this scenario, the layout consists of 16 links, nodes
represent a parking place of an idle vehicle from where a
pick up and drop off load can be carried out to a respective
work station or any other important areas like battery
storage etc. in order to carry out the entire transportation
assignment, three AGVs are used. The situation was
simulated to find out the feasible, collision free path for
third AGV from initial node 10 to goal node 4 via pickup
(intermediate node) 9.

The second experiment has been conceived with
increased complexity to determine the computational
burden of the proposed framework. The simulation run
was carried out for a model guidepath with increased
number of nodes and links compared to that of previous
one. The model guide path tested in the simulation is
delineated in Fig. 10.

The specifications related to the guide path are described
as follows:

– Number of links=186 (unidirectional)
– Number of links=372 (bidirectional)
– Number of vehicle=3
– Number of nodes=174
– Maximum vehicle speed Vmax=1.0 m/s (for both

directions)
– Acceleration αacc=deceleration αdec=1.0 m/s2

– Velocity parameter (η)=1(straight link), 0.5 (curved
link)

The main task here is to find the computational response
time. In this case, motion planning has been decided for
AGV 3, after the scheduling of AGV 1 and AGV 2. The
path of AGV 1 was from node 3 to node 7, and AGV 2 is
scheduled for station 4 to station 6. The task is to find the
schedule of AGV 3 from start node to goal node such that
conflict-free minimum time motion can be achieved. In this
case, computational response time varies as the number of
potential collision increase. Experimental condition has
been simulated for various start and goal node to find out
the worst case scenario of AGV 3.

For the third experiment, a guide path from real world
industrial scenario has been modeled. In this scenario,
robustness of the proposed approach is shown via increased
efficiency of the AGV system. Hence, the important
performance measure of this AGV system is the number
of order completed. Deadlock occurrence and flowablity of
system is also of prime interest. The layout is large in
surface area and represents the scenario of a manufacturing

plant. From the implementation point of view, some
assumptions are made which are described as follows:

1. All AGVs are in the system and travelling to a load and
unload station. There is no idle AGV at a workstation
or home station.

2. There is always an order for AGVs to collect or drop.
3. Multiple pick-up and delivery are avoided. After

completion of a delivery, a new order has been selected
from predefined orders. There is no waiting time except
the computational response time that the code takes to
move from completion of an order to new one.

4. Buffer capacity of load stations is assumed to be
infinite.

5. For illustration maximum velocity of AGV is assumed
as 1 m/sec, and Velocity parameter (η)=1(straight link),
0.5 (curved link).

Initially, the numbers of AGVs were taken as six. The
numbers of AGVs were decreased as the experiment
proceeds. The last simulation was carried out for two
AGVs. Numbers of AGV were decreased with a view to
serve for fewer orders and reduced interference/collisions.
The simulation carried out was compared with industrial
material handling simulation package.

8 Results and discussions

Simulation run has been carried out for the three selected
experimental scenario. The code was developed in Java.
The PC used for this simulation is of 256 RAM and
256 MB of virtual RAM with 1.8 GHz and Windows XP
environment.

For the first experimental scenario, optimal result is
achieved. In this case {(10 9),(9 8), (8 7), (7 4)} is referred
to as optimal path. OTC agent chooses this path to
complete the associated task with it. This Path is also
referred as conflict- and deadlock-free path. Hence, AGV 3
will start from initial node 10 pick up job at intermediate
node 9 and dropping off the job to final node 4. Its total
journey time was 161 seconds. The computational response
time was .01 second. Hence a total of 161.01 second was
used by AGV 3 to complete the given task.

Second experimental scenario was the example of a
complex guide path. In this case, computational response
times for various starts, and a goal node is determined for
AGV 3. Table 2 represents the computation time required
for motion planning of AGV 3 for various combination of
start and goal node. It is evident from the table that for the
worst case scenario, computational time of the proposed
approach is .22 second. It reveals the fact that these times
are well with in the range of the intervals of vehicles

Int J Adv Manuf Technol (2008) 36:780–797 793

request in the most practical multiple automated guided
vehicle system (MAGVs). Hence, this can be applied to real
world application.

For the third scenario, a comparative study is made on
the basis of efficiency of the system. For the present

purpose, efficiency may be defined as number of deliveries
per hour. A real comparison between the control system
used in industry and proposed AGV framework is not
feasible; hence, a simulation package (AutoMod) is used to
simulate the performance of the actual AGV system used in
the industry while comparing it with proposed approach. It
is found that for the given layout, deadlock and collision
occur more frequently using the simulation package.

10

5

6

7

8

9

2

4

3

1

a ath Load or Unload Station

Fig. 10 Model guide path used in experimental scenario 2 to test the computational burden of proposed approach

Table 2 Computational response time for various start and goal node

Start station Goal station Computational response time (Sec)

Station 1 Station 10 0.14
Station 2 Station 10 0.12
Station 3 Station 10 0.22
Station 4 Station 10 0.18
Station 10 Station 1 0.12
Station 10 Station 2 0.12
Station 10 Station 3 0.1
Station 10 Station 4 0.14
Station 5 Station 9 0.16
Station 6 Station 1 0.08
Station 5 Station 3 0.11

0

5

10

15

20

25

30

2 3 4 5 6
Number of AGVs

N
u

m
b

er
 o

f
o

rd
er

 s
er

ve
d

 p
er

h

o
u

r

AutoMod

Proposed
Agent based
Framework

Fig. 11 Comparative study of number of order served/hour for given
layout

794 Int J Adv Manuf Technol (2008) 36:780–797

Whereas, simulating with proposed agent-based controller,
deadlock- and collision-free minimum time motion is
achieved. Figure 11 represents the comparative study of
the number of deliveries/hour using these two controllers. It
is evident from the Fig. 11 that the number of orders served
using proposed controller for less number of AGVs (up to
5) is more. As number of vehicle increases it remains
nearly same. This is due to the fact that as time passes
deadlocks were removed in practical application. However,
working of the proposed approach on such a complex guide
path in real world application is considerable success. It is
seen from the graph that lower number of AGVs result in
higher rate of deliveries and conflict-free path, where as
deadlock occurs frequently in the real system. Table 2
shows the deadlock occurrence rate in the real system.

Deadlock occurrence rate is the ratio of number of
deadlocks predicted and the number of orders served. This
is the systematic measure of conflict resolution.

Tables 3 and 4

9 Conclusion and future scope

The main aim of this research is to resolve some of the
complex issues concerning the collision and deadlock
avoidance with minimum time motion planning pertaining
to operational control of AGVs in an FMS. This paper
presents an multi-agent-based framework representing zone
controlled AGV environment incorporating various issues
like path generation, link occupation time, collision and
deadlock avoidance, suggests the waiting node and time
estimation, positioning of the idle AGVs, identification of
pickup and drop off nodes associated with an optimal and
conflict-free path selection. How intelligent agent-based
framework can be used to overcome the shortcoming
associated with current approach have been discussed. Six
types of agents have been proposed; each agent is
associated with some rule base and algorithms. SFP and
KSFP algorithms are used by GP agent to generate K
shortest path. JTD agent generates LOT. The ZC agent
takes care of collision and deadlock avoidance. OTC agent
acts as a decision-maker and determines the overall motion
planning of the system. Order agent takes care of accepting
and rejecting an order or to generate virtual order. AGVs
are managed by an AGV agent. In order to show the
robustness of the proposed intelligent agent-based frame-
work, three experimental scenarios with increased com-
plexity are considered. Simulation result shows that
proposed framework provides an optimal path, less com-
putational burden and higher efficiency. Hence a proposed
agent-based controller could be a viable alternative to a
large and/ or complex and difficult to design AGV system.
A rule-based system is advocated to address the continuous

Table 3 Deadlock formation rate with regard to the number of AGVs
used in real system

Number
of AGVs

Number of order
served/hour

Number of
deadlocks
predicted

Deadlock
formation rate

2 14 8 0.57
3 17 14 0.82
4 19 24 1.26
5 24 32 1.32
6 26 39 1.5

Table 4 Input and output sequence dataflow in MAS

Step Dataflow Message type Performative Operation

1 OA-IA Demand for transportation of
supplies

Request Information of transportation requirement goes into the
multi-agent system

2 IA-GPA Request for present situation
of AGVs

Request Request to AGVs to provide the information of its location
and status

3 GPA-AGVA AGVs information Update_info Collect the information about present location of all AGVs
4 IA-JTDA Manipulation of link

occupation time of each
AGVs

Manipulate Calculation of link occupation time as shown in Fig. 7.

5 IA-ZCA Trajectory planning of AGVs Trajectory_plan Trajectory planning of all feasible paths
6 IA-OTCA Decision of shortest feasible path Shortest_path Evaluation of shortest and collision- free path
7 OTCA-AGVA AGV traffic control Control Communicate with AGVs at crossing of each and every

node
8 AGVA-OTCA Fault occurrence Agv_fault When a breakdown occurs, AGV agent informs the OTCA
9 OTCA-shop-floor

controller
Inform to shop-floor
controller for fault recovery

Fault_recovery Report to the shop-floor controller

10 Shop-floor controller
instructs the order
agent

Transportation information about
loading stations to target station

Shop-floor controller instructs the order agent to reschedule
the transportation plan for supplies (which could not be
reach its destination)

Int J Adv Manuf Technol (2008) 36:780–797 795

routing of AGV, while negotiating unexpected interruptions
on certain edges (like mechanical failure of any movable
AGV). Manual operator is adopted on these occasions to
counter any failure in its progress.

We propose few future research areas also. It is expected
that the control approach proposed here could also be
applicable in another context like a transportation network.
A developing agent-oriented framework with automated
rule generation using an evolutionary neuro-fuzzy system
to negotiate the conflict and interruption related to
operating control of AGV, increasing the efficiency of the
proposed approach for larger number of AGVs in FMS.

References

1. Stecke KE, Solberg JJ (1983) Loading and control policies for a
flexible manufacturing system. Int J Prod Res 19(5):481–490

2. Maxwell WL, Muckstatd JA (1982) Design of automated guided
vehicle systems. IIE Trans 14:114–124

3. Jennings NR, Wooldridges M (1995) Applying agent technology.
Appl Artif Intell 9:357–369

4. Tanchoco JMA, Sinriech D (1992) Osl-optimal single-loop guide
paths for AGVS. Int J Prod Res 30:665–681

5. Egbelu PJ, Tanchoco JMA (1986) Potential fore bidirectional
guide path for an automated guided vehicles based systems. Int J
Prod Res 24:1075–1097

6. Egbelu PJ (1987) The use of non simulation approaches in
estimating vehicle requirements in an automated guided vehicles
based transport system. Mater Flow 4:17–32

7. Viswanadham N, Narahari Y, Johnson TL (1990) Deadlock
prevention deadlock avoidance in flexible manufacturing sys-
tem using Petrinet models. IEEE Trans Robot Autom 6
(6):713–723

8. Kumar RR, Singh AK, Tiwari MK (2004) A fuzzy based
algorithm to solve the machine loading problems of an FMS and
its neuro fuzzy petri net model. Int J Adv Manuf Technol 23(2–
3):318–341

9. Rajotia S, Shanker K, Batra JL (1998) A semi-dynamic time
window constrained routing strategy in an AGV system. Int J
Prod Res 36(1):35–50

10. Lee CC, Lin JT (1995) Deadlock prediction and avoidance based
on Petri nets for zone-control automated guided vehicle systems.
Int J Prod Res 33:3249–3265

11. Reveliotis SA (2000) Conflict resolution in AGV systems. IIE
Trans 32:647–659

12. Broadbent AJ, Besant CB, Premi SK, Walker SP (1985) Free
ranging AGV systems: promises, problems and pathways,
problems and pathways. Proceedings of the 2nd International
Conference on Automated Material Handling UK, pp 221–
237

13. Tagaboni, F, Tanchoco JMA (1988) A LISP-based controller for
free ranging automated guided vehicle systems. Int J Prod Res
26:173–188

14. Chang WK, Tanchoco JMA (1991) Conflict-free shortest time
bidirectional AGV routing. Int J Prod Res 29:2377–2391

15. Narshimhan R, Batta R, Karwan M (1998) Routing automated
guided vehicles in the presence of interruption. Int J Prod Res
37:653–681

16. Oboth CR, Batta R, Karwan M (1999) Dynamic conflict-free
routing of automated guided vehicle. Int J Prod Res 37:2003–
2030

17. Choi KH, Kim SC, Yook SH (2000) Multi-agent hybrid shop
floor control system. Int J Prod Res 38:4193–4203

18. Lu TP, Yih H (2001) An agent based production control
framework for multiple line collaborative manufacturing. Int J
Prod Res 39:2155–2176

19. Wallace A (2001) Application of AI to AGV control agent: agent
control of AGVs. Int J Prod Res 39:709–726

20. Lim JK, Lim JM, Yoshimoto K, Kim KH, Takahashi T (2002)
A construction algorithm for designing guide paths of auto-
mated guided vehicle systems. Int J Prod Res 40(15):3981–
3994

21. Fanti MP (2002) Event-based controller to avoid deadlock and
collision in zone control AGVS. Int J Prod Res 40(6):1453–
1478

22. Lee JH, Lee BH, Choi MH (1998) A real time traffic control
scheme of multiple AGV systems for collision free minimum time
motion: a routing table approach. IEEE Trans Syst Man Cybern,
Part A, Syst Humans 28(3):347–358

23. Kim BI, Graves RJ, Heragu SS, Onge AS (2002) Intelligent agent
modeling of an industrial warehousing problem. IIE Trans
34:601–612

24. Uzam M (2004) The use of Petrinet reduction approachfor an
optimal deadlock prevention policy for FMS. Int J Adv Manuf
Technol 23(3–4):204–220

25. Huang J, Palekar US, Kapoor SG (1997) A labeling algorithm for
the navigation of automated guided vehicles. Trans ASME J Eng
Ind 115:315–321, Aug 1997

26. Miller RK (1987) Automated guided vehicles and automated
manufacturing. Dearborn, MI, Soc Manufact Eng

27. Fisher M (1994) Representing and executing agent based systems.
In: Proceedings of the ECAI’94 Workshop on agent theories.
Architecture and languages. Springer, Berlin Heidelberg New
York, pp 307–323

28. Jennings NR, Wooldridge M (1998) Application of intelligent
agents. In: Jennings NR, Wooldridge MJ (eds) Agent technology
foundation, applications and markets. Springer, Berlin Heidelberg
New York, pp 3–28

29. Davidsson P, Astor E, Ekdah LB (1994) A framework for
autonomous agent based on the concept of anticipatory systems.
Proceedings of cybernetics and systems’94, vol. II. World
Scientific, Singapore, pp 1427–1434

30. Maes P (1995) Modeling adaptive autonomous agents. In:
Langton CG (ed) Artificial life: an overview. MIT Press,
Cambridge, MA, pp 135–162

31. Nwana HS, Ndumu DT (1997) An introduction to agent
technology in software agents and soft computing. In: Nwana
HS, Azami N (eds) Towards enhancing machine intelligence.
Springer, Berlin Heidelberg New York, pp 3–26

32. Huang C-Y, Nof SY (2000) Formation of autonomous agent
networks for manufacturing systems. Int J Prod Res 38(3):607–
624

33. Wooldridge M, Jennings NR (1995) Intelligent agents: theory and
practice. Knowl Eng Rev 10:115–152

34. Jennings NR, Wooldridge M (2000) Agent-oriented software
engineering. Handbook of agent technology. AAAI/MIT Press

35. Lou P, Zhou Z, Chan YP, Xi W (2004) Study on multi-agent
based. Agile Supply Chain 23(3–4):197–204

36. Singh SP, Tiwari MK (2002) Intelligent agent framework to
determine the optimal conflict-free path for an automated guided
vehicle system. Int J Prod Res 40(16):4195–4223

37. Mondal S, Tiwari MK (2002) Application of autonomous agent
network to support the architecture of a Holonic manufacturing
system. Int J Adv Manuf Technol 20:931– 942

38. Mondal S, Tiwari MK (2003) Formulation of mobile agents for
integration of supply chain using the KLAIM concept. Int J Prod
Res 41(1):97–119

796 Int J Adv Manuf Technol (2008) 36:780–797

39. Pierce AR (1975) Bibliography on algorithms for shortest path,
shortest spanning tree, and related circuit routing problems
(1956–1974). Networks 5:129–149

40. Dung DA, Grover WD, MacGregor MH (1994) Comparison of k-
shortest paths and maximum flow routing for network facility
restoration. IEEE J Sel Areas Commun 12(1):88–99

41. Katoh N, Ibaraki T, Mine H (1982) An efficient algorithm for K
shortest simple paths. Networks 12:411–427

42. Topkis DM (1988) A K shortest path algorithm for adaptive
routing in communications networks. IEEE Trans Commun 36
(7):855–859

43. Finin T, Fritzon R, McKay D, McEntire R (1993), KQML
language and protocol for knowledge and information
exchange. Technical Report, University of Maryland,
Baltimore

44. Genesereth MR, Fikes RE (1992) Knowledge interchange format.
Version 3.0 reference manual. Technical Report Logic-92-1,
Computer Science Department, Stanford University, Palo Alto,
CA [http://www.cs.umbc.edu/agents/kse/kif]

45. Bjork B, Wix J (1991) An introduction to STEP. Technical
Report, VTT Technical Research Center of Finland and WixMe-
Lelland Ltd, UK

Int J Adv Manuf Technol (2008) 36:780–797 797

http://www.cs.umbc.edu/agents/kse/kif

	Development of an intelligent agent-based AGV controller for a flexible manufacturing system
	Abstract
	Introduction
	Literature review
	Shop-floor environment
	Background information on agent technology
	Definition of agent
	Agent properties and types
	Agent-based architecture of AGVs
	Communication protocols used in agent network
	Agent’s functionality
	Agent-based system architecture

	Agent interaction approaches
	GP agent
	Shortest feasible path (SFP) algorithm
	KSFP Algorithm

	Journey time database (JDT) agent
	Zone controller agent (ZCA)
	LOT rule
	Intersection node rule
	Trajectory planning

	Online traffic controller agent
	Order agent
	AGV agent

	Implementation aspect of the proposed model
	Experimental scenario
	Results and discussions
	Conclusion and future scope
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

