
ORIGINAL ARTICLE

Two-sided assembly line balancing using an ant-colony-
based heuristic

Adil Baykasoglu & Türkay Dereli

Received: 23 June 2006 /Accepted: 24 October 2006 / Published online: 25 November 2006
Springer-Verlag London Limited 2006

Abstract Two-sided assembly line balancing (ALB) prob-
lems usually occur in plants which are producing large-sized
high-volume products, such as buses, trucks, and domestic
products. Many algorithms and heuristics have been proposed
to balance the well known classical one-sided assembly lines.
However, little attention has been paid to solve two-sided
ALB problems. Moreover, according to our best knowledge,
there is no published work in the literature on two-sided ALB
problems with zoning constraints (2sALBz). In this study, an
ant-colony-based heuristic algorithm is proposed for solving
2sALBz problems. This paper also makes one of the first
attempts to show how an ant colony heuristic (ACH) can be
applied to solve 2sALBz problems. In the paper, example
applications are presented and computational experiments are
performed to present the suitability of the ACH to solve
2sALBz problems. Promising results are obtained from the
solution of several test problems.

Keywords Assembly line balancing .

Two-sided assembly lines . Ant colony optimization

1 Introduction

Assembly lines can be categorized into one-sided and two-
sided lines. Two-sided assembly lines use both (left and
right) sides of the line in parallel. Two-sided assembly line
balancing (ALB) problems usually occurs in plants which
are producing large-sized high-volume products, such as
buses, trucks, and domestic products. The two-sided

assembly line has several features that are distinguished
from those considered in traditional (one-side) line balanc-
ing problems:

– Large-sized products that require assembly operations
on both sides of the products during assembly.

– Several facilities of the line are dedicated to certain
tasks, due to specific requirements, such as size of the
part, type of operation, etc. These types of restrictions
are known as zoning or positional constraints, which
are very common in two-sided assembly lines.

– Thirdly, once a line is designed and installed, the
length of the line or the maximum number of work-
stations does not change during operation. Most of the
traditional methods, however, presume that the line
length can be varied at any time. Even if this
presumption can be valid at the design time of the
line, it may no longer be acceptable at operational time.

A considerable amount of literature is available on solving
traditional ALB problems. Traditional ALB problems are
known as NP-hard combinatorial optimization problems [1].
This is the main reason for the previous researches, including
Talbot et al. [2], Ghosh and Gagnon [3], and Baykasoglu [4],
in developing heuristic solution approaches. Some authors,
including Arcus [5], Johnson [6], and Gunther et al. [7], also
considered positional constraints. However, these approaches
have invariably dealt with one-sided ALB problems. Al-
though two-sided ALB problems are often encountered in the
real world, little attention has been paid to them. Moreover,
as discussed by Falkenauer [8], in most of the ALB studies,
real-world situations are not truly taken into account.

Bartholdi [9] is the first researcher who addressed the two-
sided ALB problems. He suggested a simple assignment
rule, and a major focus is placed on the development and use
of an interactive program assisting humans in building

Int J Adv Manuf Technol (2008) 36:582–588
DOI 10.1007/s00170-006-0861-3

A. Baykasoglu (*) : T. Dereli
Department of Industrial Engineering, University of Gaziantep,
27310 Gaziantep, Turkey
e-mail: baykasoglu@gantep.edu.tr

solutions quickly and incrementally. After Bartholdi [9], Kim
et al. [10] developed a genetic algorithm to solve two-sided
ALB problems. Lee et al. [11] generated an assignment
procedure for two-sided ALB problems, in order to
maximize work relatedness and slackness. One of last papers
which also considers the two-sided ALB problem is
presented by Lapierre and Ruiz [12]. In Lapierre and Ruiz
[12], an enhanced priority-based heuristic is developed to
solve a specific two-sided ALB problem.

Different assembly tasks are carried out on the same
product in parallel at both sides of a two-sided assembly line.
A two-sided assembly line is illustrated in Fig. 1. A pair of
two directly facing workstations, i.e., 1 and 2, is called a
“mated station”, and one of them calls the other a “compan-
ion”. A two-sided assembly line, in practice, can offer a
number of advantages over a one-sided assembly line. These
include shorter line length, reduced throughput time, lower
cost of tools and fixtures, and less material handling [9].

A two-sided assembly line is different to the traditional
one-sided assembly lines. In a two-sided assembly line, tasks
have restrictions on their operation directions. In a two-sided
assembly line, some tasks can be performed on both sides of
the assembly line, but some tasks can only be performed on
one side of line (right or left). Therefore, assembly tasks are
grouped into three types: L (left), R (right), and E (either). For
example, in a car assembly line, such tasks as installing fuel
tanks, air filters, and toolboxes are L-type tasks because these
can be more easily performed from the left-hand side of the
line; meanwhile, mounting batteries, air tanks, and mufflers
are usually carried out from the right-hand side and, thus, are
R-type tasks. E-type tasks include assembling axles, propeller
shafts, and radiators, which do not have any preferred
operation directions [10]. Similar examples can be seen in
assembling large refrigerators, locomotives, etc.

In a two-sided assembly line, interference between tasks
that are performed on the opposite sides of the line has to be
taken into account. This is mainly because tasks on the
opposite side can interfere with each other through prece-
dence constraints, which might cause idle time (in cases
where a workstation needs to wait for a predecessor task to

be performed at the opposite side of the line). Therefore,
balancing the line needs to take into account the sequence-
dependent completion time of tasks, unlike a one-sided
assembly line [10].

According to our best knowledge, there is no published
work in the literature on two-sided ALB problems with
zoning constraints (2sALBz). In this study, an ant colony
optimization (ACO) [13] based heuristic algorithm is
proposed for solving 2sALBz problems. This paper also
makes one of the first attempts to show how an ant colony
heuristic (ACH) can be applied to solve 2sALBz problems.

2 Two-sided assembly line balancing problems
with zoning constraints (2sALBz)

In this study, a two-sided ALB problem is considered with
zoning (positional) constraints. The objective is to mini-
mize the number of workstations and, where possible,
maximize the work relatedness. Work relatedness is an
index which represents the degree of assignment of related
tasks to the same workstations. Maximizing work related-
ness where possible has some practical advantages. If
related tasks are assigned to the same workstations, then
work efficiency, quality, and worker satisfaction can
improve. The index of work relatedness as given by

Agrawal [14] is used in this study: wr ¼ n

,Pn
j¼1

snj; where

n is the total number of workstations and snj is the number
of connected networks representing the precedence rela-
tions of tasks assigned to station j. Moreover, it is assumed
that the cycle time is predetermined. The constraints of the
problem are precedence constraints, cycle time constraints,
and zoning constraints. The precedence diagram that is
shown in Fig. 2 illustrates an example of the two-sided
ALB problem, which is obtained from Lee et al. [11]. A
circle indicates a task. Each task is associated with a label

(ti, d), where ti is the ith task processing time and d=(L, R,
or E) denotes the preferred operation direction.

PRODUCT FLOW

WORKSTATION 1

WORKSTATION 6

WORKSTATION 5

WORKSTATION 4

WORKSTATION 3

WORKSTATION 2

Fig. 1 A two-sided assembly
line

Int J Adv Manuf Technol (2008) 36:582–588 583

Zoning constraints indicate which tasks must be assigned
to the same workstation and which tasks must not be assigned
to the same workstation. Tasks are defined to be self-
containing, useful work elements. Nevertheless, because of
safety, skill, or equipment requirements, wemaywish to assign
pairs of tasks to the same workstation. We let ZS be the set of
task pairs that must be assigned to the same workstation. On
the other hand, certain tasks may not be allowed to take place
at the same workstation. We let ZD be the set of task pairs
that cannot be performed at the same workstation.

Several assumptions are made when using positional
constraints. Firstly, it is assumed that tasks which must be
assigned to the same workstation follow each other. In the
ZS set, all tasks’ immediate precedence must be a member
of this ZS set, except the first precedence task. Secondly,
tasks that cannot be performed at the same workstation
cannot be performed at the same workstation pair in the
two-sided ALB problem. For example, welding and
painting tasks cannot be performed at the same work-
stations because of the risk of fire danger. So, in a two-
sided problem, these tasks cannot be performed at the same
workstation pair due to the proximity of these stations.
Consider the problem as shown in Fig. 3. Tasks 1, 3, 4 and
tasks 6, 7, 8 can be a ZS set, but tasks 10, 12, 13 cannot be
a ZS set, since one of the immediate predecessors of the
13th task (9th task) is not in the ZS set.

3 The ant colony algorithm for 2sALBz problems

Notation

n Number of tasks
cs Ant colony size
m Index for ant (1≤m≤cs)
i Index for task (1≤i≤n)
k, R, L Indexes for station (1≤k≤n), R=right station

index, L=left station index
q Queue no (1≤q≤n)
List A={} Candidate task(s) list A
List B={} Candidate task(s) list B
nc Number of candidate tasks in candidate list B
a(i) 0 if the ith task is not assigned to a station; 1

if the ith task is assigned but not finished; 2 if
the ith task is assigned and finished

WQ(q) Number of the task assigned to the qth queue
(1≤WQ(q)≤n)

f(m, i, q) Pheromone variable (1 if the ith task is
assigned to the qth queue by the mth ant; 0
otherwise)

gf(i, q) Global pheromone quantity for assigning the
ith task in the qth queue

pw(i) ith task positional weight
wr(i) ith task work relatedness index
tf Total pheromone quantity
tpw Total positional weight value
twr Total work related index value
r(i) ith task selection probability
p(l) Cumulative probability (lYi)
x(i, k) Binary decision variable (1 if the ith task is

assigned to the kth station; 0 otherwise)
xb(i, k) Binary decision variable (the best solution)
of(m) mth ant’s objective function value
aof Average objective function value
α Importance rate of global pheromone quantity

of decision (1≤α≤1)
β Importance rate of decision without

pheromone (1≤β≤1)
δ Importance rate of positional weight (1≤δ≤1)
θ Importance rate of work related index

(1≤θ≤1)

3.1 The algorithm

The basis of the proposed solution procedure consists of four
steps. In the first step, the opening of the station pairs (right
and left) is performed. In the second step, determination of the
available tasks list which can be assigned to the current
stations pair without violating the constraints is performed.
Afterwards, a task is selected randomly from this set by using

1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

(6, E)

(4, R)

(5, R)

(4, E)

(7, E)

(4, L)

(8, R)

(9, E)

(2, L)

(5, E)

(4, E)

(3, E)

(4, E)

(6, E)

(5, L)

(6, E)

(Cycle Time =22)

Fig. 3 Precedence diagram and positional constraints

1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

(6, E)

(4, R)

(5, R)

(4, E)

(7, E)

(4, L)

(8, R)

(9, E)

(2, L)

(5, E)

(4, E)

(3, E)

(4, E)

(6, E)

(5, L)

(6, E)

(Cycle Time =22)

Fig. 2 Precedence diagram

584 Int J Adv Manuf Technol (2008) 36:582–588

the ant colony algorithm. Finally, the selected task is assigned
to an appropriate station according to the rules and constraints.
In order to find the solution, these four steps are repeated until
all of the tasks have been assigned to the stations:

Repeat

Step 1: opening of new stations
Step 2: determine available tasks which can be
assigned
Step 3: select task by using the ant colony algorithm
Step 4: selected task is assigned to the station

Until (all tasks have been assigned)

These steps are graphically shown in Fig. 4.
The solution procedure which is given above will be

repeated until the target solution is found or the ant number

reaches the ant colony size. So, in this procedure, every ant
builds a solution. After an ant has generated a solution, the
global solution is updated according to the current solution:

Repeat

Solution procedure
Update the global solution

Until (any number reaches ant colony size or the
optimum solution is found)

The ant procedure is repeated until the target solution is
found or the iteration number reaches the iteration limit:

Repeat

Ant procedure
Evaporation of the pheromone

Until (the target solution is found or the iteration number
reaches the iteration limit)

3.2 Pseudo code of the ant colony heuristic

START
Repeat

1. Set the initial values, start iteration.
Repeat

2. Create a new ant (m=m+1), set initial values (R=1,
L=2, q=1).
Repeat

3. Form the candidate task(s) list A. Check all
tasks. If a task isn't assigned (ai=0), and its
immediate precedence tasks are assigned (aj>0 j∈IPi)
and it can be processed at the current station pair
(positional constraint), then add the task to list A (List
A={i}).

3.1. If list A is empty, then go to step 4.2 (open new
stations).
4. Form the candidate task(s) list B. Check the tasks in
list A for cycle time availability. If a task is eligible for
assignment to a station in the current pair (right or left
station) by satisfying the cycle time constraint, then
add this task to list B. If a task has to be processed with
other tasks (positional constraint), this task’s process-
ing time is assumed to be equal to the total of the tasks
in the group.

4.1. If list B is empty, then go to step 4.2 (open new
stations). Else, go to step 5.
4.2. Open new stations pair (R=R+2, L=L+2) and go
to step 3.

Open new stations
Right and Left

Unassigned tasks
1,........,n

Available tasks
x,........,z

Selected task
x

Assigned station
(x, st)

Rules and Costraints

THE ANT COLONY ALGORITHM

Rules and Constraints

Fig. 4 Steps of the proposed algorithm

Int J Adv Manuf Technol (2008) 36:582–588 585

5. Determine all tasks’ selection probability in candidate
list B according to the global pheromone quantities, work
relatedness, and positional weight values of the tasks:

tf ¼ P
i2list B

gf i; qð Þ; twr ¼ P
i2list B

wr ið Þ;

tpw ¼ P
i2list B

pw ið Þ

r ið Þ
i2list B

¼ gf i; qð Þ � að Þ þ pw ið Þ � dð Þ þ wr ið Þ � qð Þ þ bð Þ
a � tfð Þ þ b � ncð Þ þ d � tpwð Þ þ q � twrð Þð Þ

6. Select a task randomly from list B according to the
selection probabilities:

pðlÞ ¼ pðl � 1Þ þ rðiÞ l ¼ 1; . . . ; nc i 2 list B

ðpð0Þ ¼ 0; pðncÞ ¼ 1Þ

Generate a random number, randZ(0, 1). Choose the
ith task whose cumulative probability satisfies p(l-1)≤
rand≤p(l).
7. Assign the selected task to the appropriate station. If
the task assembly side is right (left), then assign the
task to the right (left) station. If the task assembly side
is either, then go to step 7.1 (select task) and assign the
task to the selected station (x(i, k)=1, i=selected task,
k=selected station).

7.1. Select the station which can finish the task earlier.
If the finishing time of the stations are equal, then
randomly select a station.
8. Deposit pheromone (f(m, i, q)=1. Update variables
(WQq=i, ai=1). Increase the queue number, q=q+1.

8.1. If the selected task has to be processed with some
other tasks (a group of tasks), then select a task from
the group according to the precedence order and go to
step 7.
Until (all of the tasks are assigned to stations)
9. Update global pheromone quantities:

gf i; qð Þ ¼ f m; i; qð Þ þ gf i; qð Þ

10. Calculate the objection function value of the
current ant’s solution. If it is better than the global
optimum, then update the best solution as the current
ant's solution and update the global optimum as the
current ant's solution objective function value. If of
(m)<best solution, then best solution=of(m). For all
tasks (i) and stations (k), xb(i, k)=x(i, k).

Until (ant number reaches ant colony size)
11. Determine the ant(s) which did not find improving
solutions. Evaporate the pheromone which was depos-
ited by these ants:

aof ¼
Xcs
m¼1

of mð Þ
 !,

cs

" #

If of(m)>aof, then for all tasks (i) and queues (q):

gf i; qð Þ ¼ gf i; qð Þ � f m; i; qð Þ

Until (iteration number reaches iteration limit)
END

Table 1 Results of the computational study for two-sided assembly
line balancing (ALB) problems without zoning constraints

Problem Cycle
time

GA Group
assignment

ACO CPU time
(s)

P9 3 6 – 6 <1
4 5 – 5 <1
5 4 – 4 <1
6 3 – 3 <1

P12 5 6 – 6 <1
6 5 – 5 <1
7 4 – 4 <1

P24 20 8 – 8 <1
25 6 – 6 <1
30 5 – 5 <1
35 5 – 5 <1
40 4 – 4 <1

P65 326 – 17 17 <1
381 – 15 15 <1
435 – 13 13 <1
490 – 12 12 <1
544 – 10 10 2.48

P148 204 – 27 26 4.39
255 – 21 21 15.64
306 – 18 18 50.91
357 – 15 15 3.78
408 – 14 14 2.19
459 – 13 12 180.76
510 – 11 11 15.05

P205 1133 – 23 24 451.14
1322 – 20 22 449.27
1510 – 20 18 288.2
1699 – 16 18 448.28
1888 – 16 15 177.84
2077 – 14 14 7.06
2266 – 13 12 131.3
2454 – 12 12 6.99
2643 – 12 11 68.54
2832 – 10 10 303.63

586 Int J Adv Manuf Technol (2008) 36:582–588

4 Computational study

Two types of computational work are carried out. In order
to be able to make a comparison with the existing
algorithms, the test problems are solved without any
positional constraints in the first computational study. In
the second part, positional constraints are added to the
problem, and these problems are solved. The ant algorithm
is programmed in Visual Basic 5.0 and tested on a Pentium
III, 1.6 GHz, 256 MB RAM personal computer.

In the computational studies, six test problems, which
are available in the literature, are used. The test problems
P9, P12, P24 are taken from Kim et al. [10], P65, P205 are
taken from Lee et al. [11], and P148 is taken from Bartholdi
[9]. In these data sets, there are no positional constraints.

Therefore, the positional constraints are generated in this
work for the test problems, which are listed in Table 3.

The test problems are solved with various cycle times. In
total, 34 tests are made. The solutions are compared with
the published results. The results are tabulated in Table 1.
In Table 1, a comparison is also given with the results of
Kim et al.’s genetic algorithm (GA) [10] and Lee et al.’s
group assignment procedure [11]. Comparisons are made in
terms of the number of stations found by the algorithms. In
Kim et al. [10] and Lee et al. [11], only the average results
are given. Therefore, we also used the average number of
stations for our comparisons. If the average number is not
an integer value, then the maximum integer number which
is smaller than the average station number is taken (e.g.,
17.7→17, 12.1→12, etc.).

In the second part of the computational study, the
positional constraints are generated hypothetically. Again,
34 tests are generated. The results are shown in Table 2.
The zoning constraints are shown in Table 3.

For the two-sided ALB problem without positional
constraints, the proposed algorithm found the same results
for 25 problems, in six test problems it performed better, and
only in 3 test problems slightly worse solutions are obtained.

5 Discussion and conclusions

There are many algorithms and solution procedures to
balance the well known classical one-sided assembly lines.

Table 2 Results of the computational study for two-sided ALB
problems with zoning constraints (2sALBz)

Problem Cycle
time

Without
zoning
constraints

CPU
time
(s)

With
zoning
constraints

CPU
time
(s)

P9 3 6 <1 7 <1
4 5 <1 6 <1
5 4 <1 4 <1
6 3 <1 3 <1

P12 5 6 <1 6 <1
6 5 <1 5 <1
7 4 <1 5 <1

P24 20 8 <1 8 <1
25 6 <1 6 <1
30 5 <1 5 <1
35 5 <1 5 <1
40 4 <1 4 <1

P65 326 17 <1 17 3.52
381 15 <1 15 <1
435 13 <1 13 2.78
490 12 <1 12 <1
544 10 2.48 10 1.85

P148 204 26 4.39 26 10.32
255 21 15.64 21 3.64
306 18 50.91 18 463.39
357 15 3.78 18 2.06
408 14 2.19 15 2.02
459 12 180.76 13 465.92
510 11 15.05 11 6.76

P205 1133 24 451.14 25 264.32
1322 22 449.27 22 264.31
1510 18 288.2 19 270.34
1699 18 448.28 18 264.28
1888 15 177.84 16 263.91
2077 14 7.06 16 266.76
2266 12 131.3 14 259.72
2454 12 6.99 14 258.44
2643 11 68.54 13 259.79
2832 10 303.63 12 258.85

Table 3 The zoning constraints for the test problems

Test
problem

Set of task pairs

P9 ZS: {6, 9}
ZD: {3, 9}

P12 ZS: {1, 4}
ZD: {3, 5}

P24 ZS: {1, 11}; {7, 10}
ZD: {14, 24}

P65 ZS: {3, 23, 24}; {31, 32}; {36, 37}
ZD: {10, 30}; {46, 56}

P148 ZS: {90, 111, 112}; {11, 12, 13}; {29, 31}; {37, 38};
{40, 41}; {50, 51}
ZD: {70, 30}; {8, 145}; {55, 71}; {147, 143}; {108,
102}; {125, 122}; {48, 110}

P205 ZS: {7, 8, 9, 10, 11, 12}; {20, 21, 22, 23}; {30, 31, 32};
{37, 38, 39}; {2, 3}
ZD: {25, 27}; {29, 33}; {35, 110}; {93, 109}; {114,
174}; {144, 154}; {156, 190}; {77, 88}; {87, 100};
{40, 70}

ZS=Zone Same: the set of tasks pairs that must be assigned to the
same workstation
ZD=Zone Different: the set of tasks pairs that cannot be performed on
the same workstation

Int J Adv Manuf Technol (2008) 36:582–588 587

However, little attention has been paid to solving two-sided
ALB problems. This might be due to the complexity of the
problem. Unlike one-sided assembly lines, the sequence-
dependent finish times of tasks need to be taken into
account in balancing two-sided assembly lines. There are
just a few studies in the literature that have proposed
solution approaches to the two-sided ALB problem. These
studies are based on GAs and the group assignment
heuristic. In the previous researches, there is also not
enough consideration given to zoning and positional
constraints.

In this study, an ant-colony-based heuristic algorithm is
proposed for solving 2sALBz problems. This paper makes
one of the first attempts to show how an ACH can be
applied to solve 2sALBz problems. In this paper, example
applications are presented and computational experiments
are performed to present the suitability of the ACH to solve
2sALBz problems. Promising results are obtained from the
solution of test problems without zoning constraints, which
are collected from the literature. For the constrained case,
no published results are available for direct comparison.
Therefore, some of the test problems are converted into
constrained problems and then solved. The present study
can be extended in several ways. The problem can be
modeled and solved as a multiple-objective optimization
problem by taking into account several other criteria, such
as load balancing and smoothing. An extensive parameter
analyses study can be performed to compare the perfor-
mance of several algorithms from different perspectives.
Real-life case studies can provide very useful research
contributions, and bus and truck assembly factories are very
good candidates for this purpose.

References

1. Gutjahr AL, Nemhauser GL (1964) An algorithm for the line
balancing problem. Manage Sci 11(2):308–315

2. Talbot FB, Patterson JH, Gehrlein WV (1986) A comparative
evaluation of heuristic line balancing techniques. Manage Sci 32
(4):430–454

3. Ghosh S, Gagnon RJ (1989) A comprehensive literature review
and analysis of the design, balancing and scheduling of assembly
systems. Int J Prod Res 27(4):637–670

4. Baykasoglu A (2006) Multi-rule multi-objective simulated anneal-
ing algorithm for straight and U type assembly line balancing
problems. J Intell Manuf 17(2):217–232

5. Arcus AL (1963) An analysis of a computer method of
sequencing assembly line operations. PhD dissertation, University
of California, Berkeley, California

6. Johnson RV (1983) A branch and bound algorithm for assembly
line balancing problems with formulation irregularities. Manage
Sci 29(11):1309–1324

7. Gunther RE, Johnson GD, Peterson RS (1983) Currently
practiced formulations for the assembly line balance problem. J
Oper Manag 3(4):209–221

8. Falkenauer E (2005) Line balancing in the real world. In: Bouras
A, Gurumoorthy B, Sudarsan R (eds) Proceedings of the
International Conference on Product Lifecycle Management
PLM’05. Inderscience, Geneva, Switzerland, pp 360–370

9. Bartholdi JJ (1993) Balancing two-sided assembly lines: a case
study. Int J Prod Res 31(10):2447–2461

10. Kim YK, Kim Y, Kim YJ (2000) Two-sided assembly line balancing:
a genetic algorithm approach. Prod Plan Control 11(1):44–53

11. Lee TO, Kim Y, Kim YK (2001) Two-sided assembly line
balancing to maximize work relatedness and slackness. Comput
Ind Eng 40(3):273–292

12. Lapierre SD, Ruiz AB (2004) Balancing assembly lines: an
industrial case study. J Oper Res Soc 55(6):589–597

13. Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms
for discrete optimization. Artif Life 5(2):137–172

14. Agrawal PK (1985) The related activity concept in assembly line
balancing. Int J Prod Res 23(2):403–421

588 Int J Adv Manuf Technol (2008) 36:582–588

	Two-sided assembly line balancing using an ant-colony-based heuristic
	Abstract
	Introduction
	Two-sided assembly line balancing problems with zoning constraints (2sALBz)
	The ant colony algorithm for 2sALBz problems
	The algorithm
	Pseudo code of the ant colony heuristic

	Computational study
	Discussion and conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

