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Abstract The classical conjugation and envelope method
is very accurate and effective for forward and inverse
calculations of grinding helical surfaces. However, this
method involves complicated mathematics and requires that
the profiles be continuous. It can also result in undercutting
or interference to the desired surface profiles. In this paper,
a new approach is proposed to simulate the grinding
process of helical surfaces on cutting tools. The paper
begins with the reconstruction of cutter helicoids from
sampled points. Using the recovered helical parameters
from the sample points, the cross-sectional profile of the
cutter surface is derived using a polynomial curve. A
numerical method for calculating the profile of the grinding
wheel required for the cutter surface profile is then
provided. Finally, an optimization method is presented for
solving the problem of inverse calculation to determine the
helical surface profile for a given grinding wheel profile
and setting parameters. The feasibility of the approach is
tested by simulation results, which shows that the proposed
approach can eliminate undesired tool-work interferences
and undercutting.
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1 Introduction

Helical surfaces are often used as rake face or flute in
various cutting tools such as twist drills, hob cutters, and
milling cutters. During a cutter design process, some part of
the cutter geometric surfaces may be determined to give
high cutting performance. To produce such geometrical
surfaces as helical profiles, it is often the case where
reconstructing helical surface from a limited number of
sampled points is made first, followed by the calculation of
a suitable grinding wheel profile to generate the helical
surface. Due to the positioning or setup errors of the
grinding process and the geometrical errors of the dressed
grinding wheel, deviation of the actual helical surface
profile from the desired profile is a major concern. As a
result, it is necessary to calculate the profile of the grinding
wheel and simulate the grinding process to generate the
desired helical surface on a cutter.

Extensive work on grinding helical cutter surfaces has
been carried out [1–4]. Based on the principle of distance
minimization, a numerical method is proposed to machine
helical surfaces with cutting tools bounded by surfaces of
revolution [5]. This method provides a simple, yet very
accurate, means for determination of the tool profile for
completely arbitrary helical surfaces of constant pitch.
Ivanov and Nankov [6] present a generalized analytical
method for forming helical surfaces on all types of
rotational tools. The profile of these surfaces is specified
discretely and there are no limits for its complexity, variety,
and determination in a certain section. When the profile of
the initial tool surface and the parameters determining the
tool orientation towards the workpiece are specified, they
developed a mathematical model for the determination of
the profile of the helical surface [7]. Based on the clearance
as a result of the rotation angle of the return stroke, Xiao et
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al. [8] studied the influence of the meshing clearance on the
performance of conjugate helical surface, such as conjuga-
tion interaction, contact area, continuity of the contact line,
noise level, and smooth running. Mohan and Shunmugam
[9] propose a CAD approach for the simulation of
generation machining and identification of contact lines
between the grinding wheel (or cutter) and workpiece. For
this purpose, the cutter and workpiece are taken as solid
models and the simulation is performed using Boolean
operation to remove unwanted material in an incremental
manner by maintaining the kinematical relationship. Zhang
et al. [10] present an adaptive and intuitive direct method
for drill flute modeling. With this method, the grinding
wheel, with analytically defined profile, is assumed to
move helically around a stationary drill; the flute is
generated by the overlapping part between the wheel locus
and the workpiece.

Generally, mathematic modeling of helical surface
grinding can be classified into two categories: one is to
calculate the profile of the grinding wheel according to a
known helical surface and setting parameters of the
grinding process, and the other is to determine the helical
surface for a given grinding wheel profile and the grinding
setting parameters. As far as the grinding process is
concerned, the latter is an inverse calculation able to
consider the influence of the errors of setup parameters
and grinding wheel profile on the cutter geometrical quality,
and the former is a forward calculation. At this stage of
development, most of the available methods for forward
calculation are based on the theory of conjugation. By
contrast, inverse calculation is often solved based on the
theory of envelope or computer simulation of actual
machining process for cutter helicoid. Although the
conjugation method and envelope method can achieve
accurate solutions, both need analytical descriptions of
surfaces and can cause undercutting in addition to the
complexity of the computation involved. In the computer
simulation approaches, the wheel and the workpiece are
often decomposed into small cubes, so that it is inconve-
nient and imprecise for error estimation in the process of
inverse calculation. Hence, solving the forward and inverse
calculation problems with high accuracy and efficiency is
still a challenge, despite the reported investigations as
reviewed above.

This paper aims at providing a digital method to deal
with various issues associated with the forward and inverse
calculations in grinding helical surfaces. The major differ-
ence of the proposed method from the conjugation or
envelope method as well as other computer simulation
methods is that a new and simple mathematic model is
established based on constrained optimization. The solution
strategy proposed in this paper is shown in Fig. 1. Since
sampling from a given cutter helical surface is essential for

rapid cutter design and manufacturing, the reconstruction of
the helical surface is discussed first. Then a method of
calculating the profile of the grinding wheel is given.
Subsequently, a mathematical model for geometric simula-
tion of helical surface grinding is established. Finally, the
feasibility of the proposed method is verified by simulation
experiments with its advantages amply demonstrated.

Nomenclature

a Unit vector of the cutter axis
A Distance between rotational axis z1 of the helical

surface and axis z2 of the grinding wheels
B Rotation matrix
CCS Cutter coordinate system
d Distance from a point to a given surface
i,j,k Unit vector attached to frame axes
L Contact point between the helical surface and the

grinding wheel
L* Project point of the contact point L in the axis of

the grinding wheel
n Unit normal vector
O1,O2 Original points of coordinate systems
p Position vector (non-parametric form)
p Helical parameter, p=H/(2π), H, is the pitch of

the helical surface
R Position vector (parametric form)
t Reference parameter
V Velocity vector
WCS Wheel coordinate System

Sampled points from a given 
helical surface 

Recovering helical 
parameters by instantaneous 

motion method 

Fitting sectional 
profile of the 

helical surface 

Helical surface generation Position parameters 

Wheel profile Numerical simulation

Interferance? 
>Specified error? Finish

YesNo

Fig. 1 Strategy of grinding helical surface
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α,β Grinding wheel installation angles in different
coordinate directions

ϕ Helical angle
Γ Plane

2 Helical surface reconstruction

Compared to sculptured surface reconstruction, recovering
a helical surface from sampled points is very complicated
due to the difficulties in determining the helical surface
parameters. A cylindrical helicoid surface with a constant
pitch is often formed by some profile curve that rotates
uniformly around the cylindrical axis and, at the same time,
traverses in the direction parallel to the cylindrical axis.
Therefore, in this paper the reconstruction of the cutter
helicoid surface is implemented in two steps. The first step
is to find the pitch and the screw axis represented by a unit
direction vector together with its normal position vector.
The second step involves recovering the cross-sectional
profile of the helical surface.

The problem of effectively identifying helical surface
from sampled points is often solved using the instantaneous
motion method or differential motion analysis method. As
shown in Fig. 2, for a given sampled point Pi; i ¼
1; 2; � � � ; n, let ni be the estimated normal vector at point
Pi in the helical surface, respectively. Considering a
uniform screw motion of the point Pi in the helical surface,

let v(Pi) denote the velocity vector of that point, then the
uniform screw motion has a velocity vector field with the
form

v Pið Þ ¼ cþ c� Pi ð1Þ

The vector pair c; cð Þ means the rotational axis of the
helical surface has a direction vector c and passes through
point P with c ¼ c� P. Thus, the issue of identifying screw
parameters can be converted into finding a motion with
velocity field characterized by c; cð Þ to ensure that the
velocity vectors v(Pi) at points Pi forms an angle αi close to
π/2 with the normal vector ni. According to [11], we can
have

min c; cð Þ ¼
Xn
i¼1

c � ni þ c � nið Þ2 ð2Þ

with ni ¼ di � ni; ck k2 ¼ 1. The solution of the above
minimization equation is a generalized eigenvector
corresponding to the smallest generalized eigenvalue. From
the solution vector c; cð Þ of the minimization equation, the
axis vector a; að Þ and the helical parameter p of the screw
motion can be calculated as

a ¼ c

ck k ; a ¼ c� pc

ck k ; p ¼ c � c
c2

ð3Þ

Once the screw parameters are known, the subsequent
task is to derive the equation of the helical surface.
However, due to the non-coincidence of the coordinate
axis of the measuring system and the screw axis, the
equation of the helical surface will be rather complicated. In
this case, a new coordinate system is established for the
convenience of expressing the equation of the desired
helical surface. By assuming that the original point of the
coordinate system is O0, the z axis is along the direction of
vector a, and the y axis is along the direction of the vector
P� �O0ð Þ � a, the coordinates of each sampled point can
be given as

xi ¼ Pi �O0ð Þ � h1; yi ¼ Pi �O0ð Þ � g1; zi ¼ Pi �O0ð Þ � a

h1 ¼ Pi �O0ð Þ � a
Pi �O0ð Þ � aj j ; g ¼ h1 � a

h1 � aj j
ð4Þ

where point P* is a sampled point. In the new coordinate
system, the equation of the helical surface is defined as
follows

R t;ϕð Þ ¼ B1r tð Þ þ pϕk ð5Þ
where rotation matrix B1¼ cosϕ sinϕ

� sinϕ cosϕ

� �
, k=[0 0 1]T, and

the cross-sectional profile of the helical surface r tð Þ ¼
x tð Þy tð Þ½ �T .
In the process of designing and analyzing cutter

helicoids such as drill flutes, the profile in a cross section

p
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a

x

y

o 

z

v(Pi)

θ

θ

Fig. 2 Instantaneous motion of a point in a helical surface
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normal to the cutter axis is often approximated as a
polynomial curve. To fit the cross-sectional profile, surface
points in the cross section and the location of the cross
section plane must be gained in advance. However,
sampled points from a given cutter helicoid are discrete; it
is not sure that these points are exactly in the plane. Hence,
to acquire these cross-sectional points, uniform screw
motion analysis of a point will be used to deal with this
situation. Without losing generality, let the cross-section
plane pass through the point P0 in the screw axis, then the
equation of the plane can be written as

a � P� P0ð Þ ¼ 0 ð6Þ
Thus, the points used to fit the curve in the plane can be
given as intersectional points of the plane and helices
formed by the screw motion of the sampled points Pi.
These points have the following expressions

rj xi tð Þ; yi tð Þð Þ ¼ B�1
1 Pi � pϕkð Þ; j ¼ 1; 2; � � � ;m ð7Þ

where B
�1
1 ¼ cosϕ � sinϕ

sinϕ cosϕ

� �
, ϕ ¼ a � Pi � P0ð Þ=p Given a

set of sectional points Pc
i xi tð Þ; yi tð Þ; 0ð Þ in the plane, an

operation of coordination transformation has to be per-
formed first for the simplification of fitting process. As
shown in Fig. 3, the origin of the new coordinate system

can be fixed at the point P0, the z axis aligns with the screw
axis, and the x axis is along the direction of the vector
Pc
max � P0. Pmax is the most outward point among sectional

points. i,j and k are unit vectors along the positive x,y and z
directions of the coordinate system, respectively. The
equation of the cross-sectional profile can be assumed to
take the form of

r x; yð Þ ¼ xiþ
Xq
i¼1

bix
ij ð8Þ

where the coefficient q is determined according to the
geometric complexity of the cross-sectional profile of the
cutting tool, and the coefficients bi can be determined by
solving over-determined linear equations, i.e.,

Xq
i¼1

bix
i
j ¼ yj; j ¼ 1; 2; � � � ;m ð9Þ

Essentially, the fitting criterion of the above linear
equations is to minimize the errors along the direction of
y axis. Uniformly rotating the cross-sectional curve about
the axis a and proportionally translating it parallel to a at
the same time, the desired cutter helicoid can be derived as

R t;ϕð Þ ¼ x t;ϕð Þiþ y t;ϕð Þjþ z t;ϕð Þk

¼ t cosϕ�
Xn
i¼1

bit
i sinϕ

 !
iþ t sinϕþ

Xn
i¼1

bit
i cosϕ

 !
jþ pϕk

ð10Þ

In addition, if the cross-sectional profile of the cutter
helicoid consists of many segments from different curves,
piecewise polynomial curves or spline curve can be used to
recovery the desired profile from the given cross-sectional data.

3 Calculation of grinding wheel profile

To calculate the profile of the grinding wheel required for the
desired cutter helicoid surface, two coordinate systems are
first established. As shown in Fig. 4, {01, x1, y1, z1} is the
cutter coordinate system (CCS). The z1axis is coincident
with the given cutter axis. {02, x2, y2, z2} is a local
coordinate system associated with the grinding wheel, or
wheel coordinate system (WCS). The z2axis is coincident
with the axis of the grinding axis. α and β are the installation
angles of the grinding wheel, or wheel position parameters,
to specify the wheel position, where α is the angle of
rotation from X1 axis to X2 axis about the Z1 axis in the cutter
frame CCS, and β is the angle of rotation from the Z1 axis to
Z2 axis about the X1 axis after the first rotation transforma-
tion. Both angles are considered positive if anticlockwise
when looking down the rotation axis towards the origin. A is
the distance between the original point O1 and O2. Axis y1
and y2 are determined according to the right-hand system.

1

X0

Z0

Pj

P0

Y0

Helical surface

Γ

Fig. 3 Coordinate frame assignment
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The profile of the grinding wheel for machining a cutter
helicoid surface is usually derived using the theory of
conjugation. The mathematics involved in this method is
quite complex, resulting in difficulties in calculations, and
to some extent the advantage of computer simulation is not
taken into account in this approach. Hence, there is a need
for a digital method that will be robust and easy in handling
conjugate questions. In the process of grinding, cutter
helicoid surfaces such as drill flutes, the geometric shape of
the contact line between the grinding wheel, and the helical
surface are constant. Likewise, the normal vector of the
helical surface at the contact line must intersect with the
axis of the grinding wheel. Using these geometric proper-
ties, the profile of the grinding wheel can be easily derived
by a computer simulation method.

For a helix R(t0, ϕ) in the helical surface, the normal
vector n(t0, ϕ) of the helical surface at the helical curve can
be given as

n t0;ϕð Þ ¼ Rt � Rϕ

� ��
Rt � Rϕ

�� �� ð11Þ

Let a line denoted by L1 be parallel to the normal vector
n(to,ϕ) and pass through the point R(to,ϕ). Similarly, the
line L2 aligns with the wheel axis. If the distance of the two
lines is equal to zero, the line L1 must intersect with the line
L2. In this case, the exact angle ϕ corresponding to the
contact point of the helix and the wheel surface can be
derived.

In the grinding wheel coordinate system WCS, a point in
the helical surface and its normal vector can be transformed
as the following equation

Sw ¼ B βð ÞB αð ÞR t0;ϕð Þ � Ai;

nw ¼ B βð ÞB αð Þn t0;ϕð Þ ð12Þ

where

B βð Þ ¼
1 0 0

0 cos β sinβ

0 � sinβ cosβ

2
64

3
75: B αð Þ ¼

cosα sinα 0

�sinα cosα 0

0 0 1

2
64

3
75

If a plane passing through the grinding wheel axis is
parallel to the normal vector, the vector npw of the plane can
be written as follows

npw ¼ nw � b; b ¼ 001½ �T ð13Þ
Thus, the distance of the line L1 and the wheel axis
becomes the distance from a point in the line L1 to the plane
that passes through the wheel axis which can be written as

d ¼ npw � Sw ð14Þ
Hence, when the distance d is equal to zero, the point Sw in
the helix becomes one contact point between the helix and
the wheel surface. The exact angle ϕ at the contact point
can be gained by solving the following equation

dðϕÞ ¼ ðxðt0;ϕÞAÞnyu
� ðyðt0;ϕÞ cos β � zðt0;ϕÞ sin βÞnxu ¼ 0

ð15Þ

By substituting the analytical solution ϕ* into the above
equation into Eq. (10), the contact point between the helix
and the grinding wheel can be determined. However, the
above equation cannot be easily solved and the following
solution procedure is used. Since the distance d is a signed
distance and changes continuously, the bisection method
can be recursively used until the computing accuracy is
controlled within a specified value. For a given set of
parameters ti of the cutter helicoid surface, a set of contact
points qi can be used to model the profile of the grinding
wheel. Let R(h) represent the distance from the contact
point qi to the axis of the grinding wheel, which can be
written as

R hið Þ ¼ qi � o1ð Þ � gj j ð16Þ
where hi is the z2-axis coordinate of the contact point in the
grinding wheel system, so that

hi ¼ qi � o1ð Þ � g
Then a polynomial curve can be fitted to the points
hi;R hið Þð Þ; i ¼ 0; 1; � � � ; k to form the profile of the
grinding wheel as

R hð Þ ¼
Xg
i¼1

dih
i ð17Þ

To represent the grinding wheel as a rotation surface profile,
the following equation is used

x1 ¼ R hð Þ cos q; y1 ¼ R hð Þ sin q; z1 ¼ h ð18Þ

α 

X2

Z2

O2

A 

O1

X1

Y1

Y2

Z1

β 

CCS

WCS 

Fig. 4 Coordinate systems for machining: CCS denotes cutter frame,
WCS denotes wheel frame
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4 Geometric simulation model

The inverse calculation of conjugate motion for grinding
helical surface is to derive the envelope surface of the
moving wheel with a uniform screw motion relative to the
tool blank (or workpiece). In this case, the motion
parameters, and the profile of the grinding wheel are
known. However, in most cases, calculating the envelope
surface is not the final step, as the calculation may be
unable to take into account all system parameters that affect
the ground profile details due to the complexity of the
problem. As a result, it is often necessary to undertake a
geometric simulation to study the machined profile and its
quality by incorporating such factors as grinding wheel
installation or setup errors into the grinding process. Based
on such a simulation, the validity of the parameter setting as
well as the undercutting phenomenon that may exist in all
enveloping processes can be detected and possible remedial
measures can be taken. Thus, a good geometric simulation
approach that is easy to perform and is able to handle such
phenomena as undercutting is necessary in studying the
machining of helical surfaces.

Aiming at establishing a model for predicting geometri-
cal errors of the ground surface, a geometric simulation
method is provided here so as to get direct evaluation about
the status of the grinding process. The method based on
constrained optimization can be given an intuitive interpre-
tation. According to the motion relations between the
grinding wheel and the cutter surface (or workpiece), the
grinding process can be regarded as that the cutter is
stationary while the grinding wheel helically moves itself
about the cutter axis at a rotation angle of ϕ and a pitch of
p. When ϕ=0, the grinding wheel is in the status of initial
setting position of the wheel and the cutter. For a given
point in the helical surface, a pole is assumed to pass
through the point and align with the normal vector of the
surface at that point. Accordingly, grinding is viewed as a
process in which the pole is cut progressively by the cutter.
At the time, when the cutter no longer contacts the pole, the
length of the pole becomes smallest. Thus the proposed
simulation model can go beyond the limit existing in the
envelope method. It should be noted that the final surface
maybe is not the resulted surface generated by a pure
conjugate action. In order to find a proper position of the
helically moving wheel so as to cut the pole to the shortest
length, the problem can be treated as an unconstrained
optimization process. However, directly calculating the
length of the pole left involves the calculation of the
intersectional point between a line and a rotation surface
with a cross-sectional profile expressed by a polynomial
curve. Such a calculation is very difficult to make. Owing
to the complicity of calculation, the issue of line-surface
intersection is converted into an optimization problem with

constraints. Hence, the simulation model for error calcula-
tion of grinding helical surface is essentially a constrained
optimization process.

As shown in Fig. 5, Γ is a plane that passes through the
wheel axis. For a given line, L is a point in the line. The
line segment LL* is normal to the wheel axis. If the length
of the line segment LL* is equal to the wheel radius at that
position, the point L must be at the intersection of the line
and the wheel surface. In this case, the mathematic model
for calculating the error reduces the complicity of compu-
tation. When the wheel helically moves around the cutter
axis, the normal vector of the plane, the vector of the wheel
axis and the original point O1 can be transformed into

Ot
1 ¼ B αð Þ�1 B βð Þ�1O1 þ Ai

� �
; ntp ¼ B αð Þ�1B βð Þ�1np

at ¼ B αð Þ�1B βð Þ�1a

ð19Þ

where I=[1 0 0]T. At this moment, for an arbitrary point P
in the cutter surface and its associated normal vector n, the
line equation can be expressed as

L ¼ Pþ tn ð20Þ

When the wheel moves to a proper position, the wheel
surface will intersect with this line. Given a point L* in the
line with the following expression

L� ¼ Pþ t�n ð21Þ

the distance from the intersectional point to the wheel axis
can be written as

d ¼ L� �Ot
2

� �� a
�� �� ð23Þ

L*

O2

Z2
2

L

n 
P 

h −
Γ 

Fig. 5 Model for intersectional point calculation
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It follows that if the point L* is the intersectional point
of the line and the wheel surface, the distance must be equal
to the radius of the wheel at that position. Let l ¼
L� �Ot

2

� � � a, the error model at the point can be
established as follows

min ϕ; t�ð Þ d ¼ t� s:t: L� �Ot
2

� �� a
�� ���Xn

i

bi L� �Ot
2

� � � a� �
i ¼ 0

ð23Þ

This is a constrained optimization question that can be
solved by various optimization algorithms. The normal
vector used in Eq. (20) is the normal vector of the reference
surface. The reference surface is usually the ideal cutter
helicoid. Then the error model is established based on the
reference surface. Therefore, once a reference surface point
is given, the unit normal vector is determined in advance,
so it has no relationship with the whole optimization
process. The purpose of using constrained optimization is
to avoid the computational complexity of directly using the
envelope method.

The above-mentioned constrained optimization can be
converted into an unconstrained optimization by introduc-
ing the Lagrange multiplier. Usually it is necessary to give
the initial parameters for performing the unconstrained
optimization procedure. The accuracy and efficiency of the
optimization operation depend very much on the validity of
the initial parameters. Since deviations between the real
surface and the desired surface are very small, the initial
parameters can be set at the position where the wheel axis
intersects with the pole. In this case, the optimization will
be convergent to a minimum at several iterations. By
performing the optimization operation for each of the
sampled points, a set of errors between the ground surface
and the desired helical surface can be derived.

5 Numerical examples

To testify the mathematic model and numerical simulation
method given in the previous section for helical surface
profiling, an Archimedean helical surface is used as an
example to demonstrate the process of helical surface
reconstruction and grinding.

5.1 Helical surface reconstruction

Two hundred points are sampled from the Archimedean
helical surface. To imitate the measuring behavior of a
coordinate measuring machine (CMM), each point P is
perturbed randomly by the following equation with ξ=
0.005 [12]

P0 ¼ Pþ ξ
ex; ey; ez
� �Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ e2y þ e2z

q ð24Þ

where ex, ey and ez are randomly chosen numbers that vary
from −1 to 1. The normal vector at each point in the surface
is calculated according to a local surface-fitting method.
According to formula (2), the following matrix can be
derived

B ¼ MT M; M ¼
n1 n1 � P1

n2 n2 � P2i

..

. ..
.

n200 n200 � P200

2
6664

3
7775 ð25Þ

B is a symmetric and non-negative definite 6×6 matrix.
From this matrix, the eigenvector corresponding to the
smallest generalized eigenvalue can be calculated. Thus,
according to Eq. (3), the screw parameters are subsequently

Table 1 Comparison of theoretical helicoids surface and reconstructed helical surface

Parameter Value Parameter Value

Number of sampled points from
helical surface

200 Simulated sampling error ±0.005 mm

Theoretic screw axis vector (0, 0, 1) Helical parameter 9.0
Recovered screw axis vector (0.000417, −0.000002, 1.000000) Recovered helical parameter 8.998746
Minimum diameter of cylindrical
helicoid

50.0 mm Maximum diameter of cylindrical helicoid 70.0 mm

Theoretical installation angle α 45° Theoretical installation angle β 18°
Installation angle error Δα 0.1146° Installation angle error Δβ 0.1146°
Minimum diameter of wheel 41.61 mm Maximum diameter of wheel 58.54 mm
Fitting error of the wheel profile 0.02 μm
Axial distance A 50 mm
Axial distance error 0.03 mm
Number of helix 10 The axis distance of the wheel

start point from the origin
27.932269 mm
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given. With regard to the cross-sectional profile of the
helical surface, it can be reconstructed by helically moving
the points into a fixed plane according to Eqs. (4)∼(9),
finally the reconstructed helical surface is expressed by
Eq. (10). The test data and results of reconstructing the
helical surface are illustrated in Table 1. It can be noticed
that the recovered screw parameters are very close to their
theoretical values within negligible errors. It may be
deduced from this example that the reconstruction strategy
proposed in this paper is feasible and accurate.

5.2 Forward and inverse calculation of grinding helical
surface

The setting parameters for grinding the helical surface for
this example are shown in Table 1. The theoretical
installation angle α=45° and β=18°. The distance between
the rotation axis of the helical surface and the axis of the
grinding wheel is set A=50 mm. These theoretical installa-
tion parameters are often determined after several adjust-
ments or trials to avoid interference between the helicoid
surface and the grinding wheel. The forward calculation to
derive the profile of the grinding wheel is performed first.
According to Eq. (14), the problem of conjugate contact
between the helical surface and the grinding wheel is
converted into an intersectional problem of a family of
helix and the wheel axis based on the foregoing analysis. In
the calculation, the number of helix is set at ten, and the
grinding wheel contact point in each helix is computed.
Consequently, a third degree polynomial curve is fitted to
these contact points. As shown in Table 1, the maximum
fitting error is less than 0.02 μm. It can be seen that the
grinding wheel has a complicated profile and its fitting
accuracy is very high when using a third-degree polynomial
curve. The resulted profile of the grinding wheel is
represented graphically as shown in Fig. 6.

To testify the influence of position or setting parameters
on the ground surface in the inverse calculation with a
given grinding wheel profile, the deviations of installation
angle is set Δα=0.1146° and Δβ=0.1146°, respectively. In
the Archimedean helical surface, the contact line between
the grinding wheel and the helical surface is used to
examine the deviations of the ground surface from the ideal

surface as a result of the errors of position parameters. Ten
points are sampled from the contact line to establish the
error-calculation model. The axis distance of the wheel start
point from the origin is shown in Table 1, and the origin is
just the point O1 in the coordinate system WCS. The
individual and combined effects of the wheel setting angle
errors on the grinding errors have been calculated and are
shown in Fig. 7. From this figure, it can be seen that the
deviations of two installation angles have a different
influence on the accuracy of the ground surface, where
error curve (a) shows the ground surface errors caused by
the deviations of the installation angle α, which is almost
constant as the axial distance of the grinding wheel
changes, the error curve (b) presents the machined errors
caused by the installation angle β, which shows that the
error increases with the axial distance of grinding wheel,
and the error curve (c) shows the combined effect of the
two installation angle errors on the machined surface errors
at selected points. It can be seen that the effects of the

Fig. 6 Interference of helicoid and grinding wheel
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Fig. 7 Machining errors due to deviations of position parameters
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Fig. 8 Machining errors due to deviations of grinding wheel profile
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wheel installation angles on the helical surface accuracy are
significant, and proper measures must be taken to reduce
these setup errors. Other major factors that affect the
machined profile error are the dressed grinding wheel
profile error and the distance error between the tool axis
and the wheel axis. It is common that a complex profiled
grinding wheel is dressed in such a way that the wheel
profile is made of some circular or linear segments, rather
than the desired complex profile. Such an approximation
will result in geometrical errors in the helical surface
grinding. As illustrated in Fig. 8, error curve (a) shows that
when the distance error is 0.02 mm, the corresponding
machining error is approximately 0.012 mm. On the other
hand, if the wheel profile is reduced by 0.02 mm along the
radial direction of the grinding wheel as a result of the
dressing error, the resulting helical surface profile error is
shown in error curve (b). Although this error is smaller than
the wheel error, it is still significant. Figure 9 shows the
combined effects of positioning parameter error and profile
error on the machining error. From error curves (a), (b), and
(c) it can be seen that although the value of each kind of
error stays constant, the machining error varies dramatically
due to the change of error direction. If these errors become
significant in affecting the machining errors, an alternative
strategy is to make machining errors caused by angle errors,
distance error, and dressing error be counteracted as possible
as we can. Error curve (c) shows that if suitable directions
are chosen of position errors and profile errors the
machining errors can be controlled within a specified value.

6 Conclusions

A new simulation model has been presented for the
generation of helical surface profiles found in cutting
tools, such as milling cutters, twist drills, and hob cutters.

This model can be used to determine the required grinding
wheel profile for a desired helical surface and a given set
of grinding wheel setting parameters, as well as the helical
surface profile for a given grinding wheel profile and
setting parameters. Compared to the classical conjugation
and envelope methods, the proposed simulation model can
take into account the effects of the various errors of
grinding wheel profile and wheel setting parameters on the
accuracy of the helical surface profile found in cutting
tools. In addition, the numerical simulation approach
based on constrained optimization eliminates the need to
evaluate the enveloped surface, therefore, greatly reducing
the complexity of the calculation. On the other hand,
although the conventional simulation process can be
performed in the conventional software package, its
accuracy depends on the incremental value or the number
of sample points selected for the motion parameter and the
decomposition size of the cutter surface and the grinding
wheel surface. A large number of sample points will
increase the computation accuracy and the time as well.
Compared to the conventional simulation method, the
proposed method does not have such limitations and
provides some benefits to the cutter design and manufac-
ture. Parameters needed for grinding can be selected and
readjusted according to the simulation results. Besides, the
model has the ability to deal with envelope case and non-
envelope case. The numerical examples have proven that
the provided simulation procedure can be successfully
conducted on a PC with adequate calculation accuracies.
Generally, the simulation model provided in this paper is
closer to the real cutter surface machining. Also, it can be
applied to other cases with complicated conjugation
action. Relative motion between the cutter surface and
the wheel is not only limited to helical motion. However, it
still needs further research.
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