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Abstract In this work the forward position analysis of
parallel manipulators with identical limbs, type revolute-
prismatic-spherical (RPS), is carried out applying recursive-
ly the Sylvester dialytic elimination method. Afterwards, the
velocity and acceleration analyses of the mechanisms at hand
are addressed using the theory of screws. A numerical
example is provided to prove the efficacy of the chosen
methodology for the kinematic analyses of the mechanisms
under study.
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1 Introduction

According to the notation proposed by IFToMM [1], a
parallel manipulator (PM for brevity) is a mechanism where
the motion of the end-effector, namely the moving
platform, is controlled by means of at least two kinematic
chains. Unlike serial manipulators, not all the kinematic
pairs of a PM are actuated and therefore the presence of
passive kinematic pairs is a typical characteristic of these
mechanisms. On the other hand, due to a compact topology,

PMs are more precise and stiff than their serial counter-
parts, however suffer from a limited workspace, poor
dexterity, and a recurrent problem of the so-called local
singularities. These drawbacks have a direct connection
with the nominal degrees of freedom assigned to the
moving platform, the number of limbs, and the dimensions
of the mechanism.

A 3-RPS parallel manipulator, see Fig. 1, is a mechanism
where the moving platform is connected to the fixed
platform by means of three limbs. Each limb is composed
by a lower body and an upper body connected each other
by means of a prismatic joint. The moving platform is
connected at the upper bodies via three distinct spherical
joints while the lower bodies are connected to the fixed
platform by means of three distinct revolute joints. The
prismatic joints are actuated independently providing three
degrees of freedom over the moving platform.

The 3-RPS parallel manipulator was introduced in Hunt
[2] and has been the motive of an exhaustive research field
where a great number of contributions, encompassing a
wide range of topics, such as kinematic and dynamic
analyses, synthesis, singularity analysis, extensions to
hyper-redundant manipulators, etc., see for instance [3–6].
In particular, screw theory has been proved to be an
efficient mathematical resource for determining the kine-
matic characteristics of 3-RPS parallel manipulators [7–9],
including the instantaneous motion analysis of the mecha-
nism at the level of velocity analysis [10–12].

This paper addresses the kinematics, including the
acceleration analysis, of 3-RPS parallel manipulators. The
forward position analysis is carried out in analytical form
solution using the Sylvester dialytic elimination method.
The velocity and acceleration analyses are approached by
means of the theory of screws. To this end, the velocity and
reduced acceleration states of the moving platform, w.r.t.
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fixed platform, are written in screw form through each one
of the limbs of the mechanism. Finally, the systematic
application of the Klein form to these expressions allows
one to obtain simple and compact expressions for comput-
ing the velocity and acceleration analyses. A numerical
example is provided.

2 Position analysis

Usually the forward position analysis of a 3-RPS parallel
manipulator consists of finding the pose, position and
orientation, of the moving platform w.r.t. the fixed platform
given the limb lengths qi i ∈ {1, 2, 3}. Clearly this problem
is equivalent to the computation of the coordinates of the
centers of the three distinct spherical joints, points
Pi ¼ Xi; Yi; Zið Þi 2 1; 2; 3f g, attached at the moving plat-
form, see Fig. 2.

When the limbs of the parallel manipulator are locked
q
:

i ¼ 0 i 2 1; 2; 3f g, the mechanism becomes into the 3-RS
structure shown in Fig. 2. In order to simplify the analysis,
the reference frame XYZ, attached at the fixed platform, is
chosen in such a way that the points Bi ¼ bXi; 0; bZið Þ
i 2 1; 2; 3f g, denoting the nominal positions of the three
revolute joints, lie on the X-Z plane.

2.1 Closure equations

With reference to Fig. 2, the axes of the revolute joints are
coplanar and three constraints are imposed by these
kinematic pairs as follows

Pi � Bið Þ � bui ¼ 0 i 2 1; 2; 3f g; ð1Þ
where bui ¼ uXi; 0; uZið Þ is the i-th unit vector along the
screw axis of the i-th revolute joint.

Furthermore, clearly the limb lengths are restricted to

Pi � Bið Þ � Pi � Bið Þ ¼ q2i i 2 1; 2; 3f g: ð2Þ
Finally, three compatibility constraints can be obtained

as follows

P2 � P3ð Þ � P2 � P3ð Þ ¼ a223; ð3Þ

P1 � P3ð Þ � P1 � P3ð Þ ¼ a213; ð4Þ
and

P1 � P2ð Þ � P1 � P2ð Þ ¼ a212: ð5Þ
Expressions (1–5); form a system of nine equations in

nine unknowns given by {X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3}.
It is worth mentioning that expressions (1) were not

considered, in the form derived here, by Tsai [13], and
therefore the analysis reported in that contribution requires
a particular arrangement of the positions of the revolute
joints over the fixed platform accordingly to the reference
frame XYZ. Furthermore, clearly expressions (1) are
applicable not only to tangential 3-RPS parallel manipu-
lators, like the mechanism of Fig. 1, but also to the so-
called concurrent 3-RPS parallel manipulators.

2.2 Analytical form solution

In this subsection expressions (1)–(5) are systematically
reduced into a non linear system of three equations in three
unknowns. Afterwards, a 16th-order polynomial in one
unknown is derived using the Sylvester dialytic elimination
method.

Expressions (1) yields three linear equations given by

Xi ¼ f Zið Þ i 2 1; 2; 3f g: ð6ÞFig. 2 The geometric scheme of a generic 3-RS structure

Fig. 1 Spatial 3-RPS parallel manipulator
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Afterwards, the substitution of (6) into expressions (2)
leads to

Y 2
1 ¼ Pi i 2 1; 2; 3f g; ð7Þ

where pi are second-degree polynomials in Zi.
Finally, the substitution of expressions (7) into expres-

sions (3)–(5) results in

c1Z
2
2 þ c2Z

2
3 þ c3Z

2
2Z3 þ c4Z2Z

2
3 þ c5Z2Z3 þ c6Z2

þ c7Z3 þ c8 ¼ 0

ð8Þ

d1Z
2
1 þ d2Z

2
3 þ d3Z

2
1Z3 þ d4Z1Z

2
3 þ d5Z2Z3 þ d6Z1

þ d7Z3 þ d8 ¼ 0

ð9Þ

e1Z
2
1 þ e2Z

2
2 þ e3Z

2
1Z2 þ e3Z

2
1Z2 þ e4Z1Z

2
2 þ e5Z1Z2

þ e6Z1 þ e7Z2 þ e8 ¼ 0

ð10Þ

where c, d, and e are coefficients that are calculated
accordingly to the parameters and generalized coordinates
of the parallel manipulator.

Expressions (8–10) represent a non-linear system of
three equations in three unknowns given by {Z1, Z2, Z3}.
These equations are similar to those derived in Tsai [13],
however their deduction is simpler due to the inclusion, in
this contribution, of expressions (1).

Please note that only two of the unknowns are present in
Eqs. 8, 9, and 10, and therefore their solution appears to be
an easy task. In fact, Z2 and Z3 can be obtained as functions
of Z1 from (10) and (9), afterwards the substitution of these
variables into Eq.(8) yields a higher non-linear equation in
Z1. However, the handling of such a expression is a
formidable an unpractical task. Thus, an appropriated
strategy is required for solving the system of equations at
hand. Some options are

1. A numerical technique such as the Newton-Raphson
method. It is an effective option, however only one and
imperfect solution can be computed, and there are not
guarantee that all the solutions will be calculated.

2. Using computer algebra like Maple©. An absolutely
viable option that guarantee the computation of all the
possible solutions.

3. The application of the Sylvester dialytic elimination
method. An elegant option that allows to compute all
the possible solutions.

In this contribution the last option was selected and in
what follows the results will be presented.

With the purpose to eliminate Z3, expressions (8) and (9)
are rewritten as follows

P1Z
2
3 þ P2Z3 þ P3 ¼ 0 ð11Þ

P4Z
2
3 þ P5Z3 þ P6 ¼ 0 ð12Þ

where P i 2 1; 2; 3f g are second-degree polynomials in Z2
while P i 2 4; 5; 6f g are second-degree polynomials in Z1.

After conducted mathematical manipulation, the term Z2
3

is eliminated from (11) and (12). With this action, two
linear equations in two unknowns, the variable Z3 and the
scalar 1, are obtained. Casting in matrix form such a
expressions it follows that

M1
Z3
1

� �
¼ 0

0

� �
ð13Þ

where

M1 ¼ P1P5 � P2P4 P1P6 � P3P4

P3P4 � P1P6 P3P5 � P2P6

� �

It is evident that expression (13) is valid if, and only if,
det M1=0. Thus

det M1¼P7Z
4
2 þ P8Z

3
2 þ P9Z

2
2 þ P10Z2 þ P11¼ 0 ð14Þ

where P ii 2 7; 8; 9; 10; 11f g are fourth-degree polynomials
in Z1, and the first step of the Sylvester dialytic elimination
method finishes with the computation of this eliminant.

In order to solve (14) it is necessary to take into proper
account Eq. 5. Clearly, this equation can be rewritten as
follows

P12Z
2
2 þ P13Z2 þ P14 ¼ 0 ð15Þ

where P ii 2 12; 13; 14f g are second-degree polynomials in
Z1. It is very tempting to assume that the non-linear system
of two equations formed by (14) and (15) in two unknowns,
Z1 and Z2, can be easily solved obtaining first Z2 in terms of
Z1 from Eq. 15 and later substituting it into Eq. 14.
However, when one realize this apparent evident action
with the aid of computer algebra, an excessively long
expression is derived, and its handling is a hazardous task.
Thus, the application of the Sylvester dialytic elimination
method is a more viable option, however such a procedure
requires of a little of experience for obtaining the
corresponding coefficients.

As an initial step, in order to avoid extraneous roots, it is
strongly advisable the deduction of a minimum of linear
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equations. For example, the term Z4
2 is eliminated multi-

plying Eq. 14 by P12 and Eq. 15 by P7Z
2
2. The subtraction

of the obtained expressions leads to

P13P7 � P12P8ð ÞZ3
2 þ P14P7 � P12P9ð ÞZ2

2

� P12P10Z2 � P12P11

¼ 0: ð16Þ
Thus, expressions (15) and (16) represent a linear system

of two equations in four unknowns, Z3
2 ; Z

2
2 ; Z2; 1

� �
and

therefore it is necessary the search of two additional linear
equations. An equation is easily obtained multiplying
Eq. 15 by Z2. In fact

P12Z
3
2 þ P13Z

2
2 þ P14Z2 ¼ 0: ð17Þ

The search of the fourth equation is more elusive, for
details the reader is referred to Tsai [13]. To this end,

multiply (14) by P12Z2 þ P13 and (15) by P7Z3
2 þ P8Z2

2

and substract the resulting expressions to finally obtain

P12P9�P7P14ð ÞZ3
2 þ P12P10þP13P9�P9P14ð ÞZ2

2

þ P12P11 þ P13P10ð ÞZ2 þ P13P11

¼ 0: ð18Þ
Casting in matrix form expressions (15)–(18) it follows

that

M2

Z3
2

Z2
2

Z1
2
1

2
664

3
775 ¼

0
0
0
0

2
664

3
775 ð19Þ

where

M2 ¼
0 P12 P13 P14

P13P7 � P12P8 P14P7 � P12P9 �P12P10 �P12P11

P12 P13 P14 0
P12P9 � P7P14 P12P10 þ P13P9 � P8P14 P12P11` þ P13P10 P13P11

2
664

3
775:

Once again, expression (19) is valid if, and only if, det
M2=0. This eliminant yields a sixteenth-order polynomial
in the unknown Z1. It is worth mentioning that expressions
(14) and (15) have the same structure of those derived by
Innocenti and Parenti-Castelli [14] for solving the forward
position analysis of the Stewart platform mechanism.
However, this work differs from that contribution in that,
while in this contribution the application of the Sylvester
dialytic elimination method finishes with the computation
of the determinant of a 4×4 matrix, the contribution of
Innocenti and Parenti-Castelli [14] finishes with the
computation of the determinant of a 6×6 matrix.

Once Z1 is calculated, Z2 and Z3 are calculated,
respectively, from expressions (15) and (12). Afterwards,
the remaining components of the coordinates, Yi and Xi, are
computed directly from expressions (7) and (6). It is
important to mention that in order to determine the feasible
values of the coordinates of the points Pi, the signs of the
corresponding discriminants of Z2, Z3 and Yi must be taken
into proper account. Of course, We can ignore this last
recommendation if the non-linear system equations formed
by expressions (8–10), is solved by means of computer
algebra like Maple©.

Finally, once the coordinates of the points P1, P2, and P3
are calculated, the geometric center of the moving platform
expressed in the reference frame XYZ, vector rC=O, results in

rC=O ¼ P1 þ P2 þ P3ð Þ=3: ð20Þ

3 Velocity analysis

In this section the velocity analysis of the 3-RPS parallel
manipulator is carried out using the theory of screws which
is isomorphic to the Lie algebra e(3). This section applies
well known screw theory; however, for readers unfamiliar
with this mathematical resource, some appropriated refer-
ence are provided at the end of this work.

The mechanism under study is a spatial mechanism;
thus, the Lie algebra involved requires that dime(3)=6. In
order to satisfy the dimension of the subspace spanned by
the screw system for each limb, the 3-RPS parallel
manipulator can be modelled as a 3-R*RPS parallel
manipulator, see Huang [11], in which the revolute joints
R* are fictitious kinematic pairs where the corresponding
joint rates are all equal to zero.

Let ω=(ωX, ωY, ωZ) the angular velocity of the moving
platform, w.r.t. fixed platform, and vO=(vOX, vOY, vOZ) the
translational velocity of the point O, see Fig. 3, where both
three-dimensional vectors are expressed in the reference
frame XYZ, see Fig. 3. Then, the velocity state VO=(ω, vO),
also known as the twist about a screw, of the moving
platform w.r.t. fixed platform, can be written, see Sugimoto
[15], through each one of the limbs as follows

0w
i0
1 $

1
i þ1 w

i1
2 $

2
i þ2 w

i2
3 $

3
i þ4 w

i4
5 $

5
i þ5 w

i5
6 $

6
i ¼ VO

i 2 1; 2; 3f g (21)
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where, in particular, 1wi
2 ¼ q

:

i is the joint rate velocity of the
i-th actuated prismatic joint, while 0wi

1 ¼ 0 is the joint rate
velocity of the i-th imaginary revolute joint, in the same
limb. Furthermore, in order to simplify the computation of
the Plücker coordinates of the fictitious kinematic pairs,
these are placed at the origin O of the reference frame XYZ
with their axes along the Y axis.

With these considerations in mind, in what follows the
inverse and forward velocity analyses of the mechanism
under study are easily obtained using the theory of screws.

The inverse velocity analysis consists of finding the joint
rate velocities of the parallel manipulator, given the velocity
state of the moving platform w.r.t. fixed platform. Accord-
ingly to expression (21), it follows that

Ωi ¼ J�1
i VO ð22Þ

therein Ji ¼ 0$1i
1$2i

2$3i
4$5i

5$6i
� �

is the i-th Jacobi-
an matrix of the corresponding limb and Ωi ¼
0wi

1 1wi
2 2wi

3 3wi
4 4wi

5 5wi
6

� �T
is the i-th matrix of

joint rate velocities.
On the other hand, the forward velocity analysis consists

of finding the velocity state of the moving platform, w.r.t.
the fixed platform, given the joint rate velocities
q
:

1; q
:

2; q
:

3

n o
. In this analysis the Klein form of the Lie

algebra e(3) plays a central role.
Given two elements $1 ¼ bs1; sO1ð Þ and $2 ¼ bs2; sO2ð Þ of

the Lie algebra e(3), the Klein form, {*;*}, is defined as
follows

$1; $2f g ¼ bs1 � sO2 þbs2 � sO1 ð23Þ

where the dot denotes the usual inner product operation of
the three dimensional vectorial algebra.

Applying the Klein form of the screw 4$5i to both sides
of expression (21), and taking into account that 0wi

1 ¼ 0,
the reduction of terms leads to

VO;
4 $5i

� � ¼ q
:

i i 2 1; 2; 3f g: ð24Þ

A similar result is obtained chosen the screw 3$4i as the
cancellator screw. Indeed

VO;
3 $4i

� � ¼ 0 i 2 1; 2; 3f g: ð25Þ

Casting in matrix form expressions (24) and (25), the
velocity state VO can be calculated from the expression

JΔð ÞTVO ¼ Q
:

ð26Þ
wherein J ¼ 4$51

4$52
4$53

3$41
3$42

3$43
� �

is the Jaco-
bian matrix of the manipulator Q

:

¼ q
:

1 q2
: q

:

3

h
0 0 0:�T is the matrix of generalized joint rate velocities
Δ ¼ 0 I3

I3 0

� �
is an operator of polarity defined by the identity

matrix I3.

Finally, once the angular velocity of the moving platform
and the translational velocity of the point O fixed at it are
calculated, the translational velocity of the center of the
moving platform, vC, is calculated using classical kinemat-
ics. Indeed

vC ¼ vO þ ω� rC=O ð27Þ

4 Acceleration analysis

In this section the acceleration analysis of the parallel
manipulator is carried out by means of the theory of screws.

Let w
: ¼ w

:
X ;w

:
Y ;w

:
Zð Þ the angular acceleration of the

moving platform, w.r.t. fixed platform, and aO ¼
aOX ; aOY ; aOZð Þ the translational acceleration of the point
O, where both three-dimensional vectors are expressed in
the reference frame XYZ, see Fig. 3. The reduced
acceleration state AO ¼ w

:
; aO � w� vOð Þ, or accelerator

for brevity, of the moving platform w.r.t. fixed platform can
be written, for details see Rico and Duffy [16], through
each one of the limbs as follows

A0 ¼0 w
: 0
1$

1 þ1 w
: 1
2$

2 þ2 w
: 2
3$

3 þ3 w
: 3
4$

4 þ4 w
: 4
5$

5

þ5 w
: 5
6$

6 þ $Liei

i 2 1; 2; 3f g

ð28Þ

Fig. 3 A limb with its infinitesimal screws

602 Int J Adv Manuf Technol (2008) 36:598–605



where $Liei is the i-thLie screw, which is calculated as
follows

$Liei ¼ 0ω
0
1$

1
1ω

1
2$

2 þ :::þ5 ω
5
6$

6
� �
þ 1ω

1
2$

2
2ω

2
3$

3 þ ::: þ5 ω
5
6$

6
� �

þ ::: þ 4ω
4
5$

5
5ω

5
6$

6
� �

and the brackets � �½ � denote the Lie product.
Following the trend of Sect. 3, the inverse acceleration

analysis, or in other words the computation of the joint rate
accelerations of the parallel manipulator given the acceler-
ator of the moving platform w.r.t. fixed platform, can be
calculated, accordingly to expression (28), as follows

Ω
:

i ¼ J�1
i AO � $Lieið Þ; ð29Þ

where Ω
:

i ¼ 0w
: i
1 1w

: i
2 2w

: i
3 4w

: i
5 5w

: i
6

h iT
.

Whereas the forward acceleration analysis, or in other
words the computation of the accelerator of the moving
platform w.r.t. fixed platform given the joint rate accel-
erations q

::

1; q
::

2; q
::

3

n o
of the actuated prismatic joints, are

calculated by means of the expression

JΔð ÞTAO ¼ Q
::

ð30Þ
where

Q
::

¼

q
::

1 þ 4$51; $Lie1
� �

q
::

2 þ 4$52; $Lie2
� �

q
::

3 þ 4$53; $Lie3
� �

3$41; $Lie1
� �
3$42; $Lie2

� �
3$43; $Lie3

� �

2
66666664

3
77777775

It is interesting to mention that Eq. 30 does not require
the values of the passive joint rate accelerations of the
parallel manipulator.

Finally, the translational acceleration of the moving
platform, vector aC, expressed in the reference frame
XYZ results in

aC ¼ aO þ ω� ω� rC=O
� �þ ω

: �rC=O ð31Þ
where the translational acceleration aO is calculated from
the dual part of the accelerator, AO, as follows

aO ¼ D AOð Þ þ w� vO:

5 Case study. Numerical example

In this section a numerical example, using SI units, is
solved with the aid of computer codes.

The unitary vectors bui are chosen as follows

bu1 ¼ 1; 0; 0ð Þbu2 ¼ �0:5; 0;�0:866ð Þbu3 ¼ �0:5; 0; 0:866ð Þ
while the vectors Bi are given by

B1 ¼ 0; 0; 2:0ð Þ
B2 ¼ 1:5; 0;�1:0ð Þ
B3 ¼ �1:75; 0;�1:0ð Þ

on the other hand the moving platform has the following
dimensions

a12 ¼ 2:0 a13 ¼ 1:5 a23 ¼ 2:0

whereas the generalized coordinates are chosen as follows

Table 1 The feasible coordinates of the spherical joints

P1, P2, P3

Sol. 1 (0., 1.138655536 i, −3.128014862) (15.08245784, 14.86543493 i, −8.842065726) (−17.85236191, 18.04078203 i, −10.29697570)
Sol. 2 (0., 17.75590589 i, 20.44646833) (16.20218815, 16.22374830 i, −9.488561286) (−16.45136447, 16.36849769 i, −9.488085723]
Sol. 3 (0., 21.89006684 i, 24.45384213) (−2.934387619, 1.103981869 i, 1.560269988) −14.27560916, 13.74557801 i, −8.231875959)
Sol. 4 (0., 3.579698670 i, −4.149328628) (−3.690328142, 3.304522427 i, 1.996725255) −6.188370085, 2.452731251 i, −3.562569333
Sol. 5 (0., 4.562–0.479 i, −0.304–0.948 i) (−1.643+0.144 i, 3.447+0.175 i,0.814–0.083 i) (−1.660–0.312 i, 4.513+0.008 i, −0.948–0.180 i)
Sol. 6 (0., 4.562+0.479 i, −0.304+0.948 i) (−1.643–0.144 i, 3.447–0.175 i,0.814+0.083 i) (−1.660+0.312 i, 4.513–0.008 i,−0.948+0.180 i)
Sol. 7 (0., 4.861291225, 0.8304498164) (1.152600116, 4.983882229, −0.7994226997) (−0.6930235387, 4.331325336, −0.3897364542)
Sol. 8 (0., 3.565519210, −1.505292108) (1.240471996, 4.991011150, −0.8501570417) (−0.5482428734, 4.280694434, −0.3061448461)
Sol. 9 (0., 3.688434531, −1.375714844) (1.455855068, 4.999740152, −0.9745121637) (0.1504572482, 3.928648499, 0.09726169066)
Sol. 10 (0., 4.909208763, 1.051491000) (−1.490603781, 3.615919956, 0.7266765480) (0.4549873986, 3.710428415, 0.2730874126)
Sol. 11 (0., 4.114835463, −0.8404452309) (−1.319598476, 3.794688888, 0.6279436931) (0.6499629272, 3.545437155, 0.3856598887)
Sol. 12 (0., 4.833152888, 0.7191279669) (1.234355126, 4.990582032, −0.8466253617) (0.6676262098, 3.529399906, 0.3958580888)
Sol. 13 (0., 19.77956134 i, 22.40174127) (15.04836408, 14.82389339 i, −8.822381107) (2.318048019, 1.347470430 i, 1.348757517)
Sol. 14 (0., 3.349063202 i, −4.017991719) (−3.805785544, 3.540578701 i, 2.063386573) (2.848851993, 2.819515293 i, 1.655226324)
Sol. 15 (0., 3.012146316 i, −3.837210415) (6.760025091, 3.448336756 i, −4.036965988) (3.006854961, 3.149709196 i, 1.746452056)
Sol. 16 (0., 3.913964557 i, 8.349733739) (−3.620476000, 3.155874741 i, 1.956394919) 3.023486763, 3.183082382 i, 1.756054713)
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q1 ¼ 5:0þ 0:25 sin t;
q2 ¼ 5:0þ 0:50 sin t;
q3 ¼ 4:5þ 0:35 sin t:

0 � t � 2π

Thus, the moving platform begins its motion at the time
t=0 and 2π seconds later returns to its original pose.

With these data the sixteenth polynomial in Z1 results in

� 1:359431245� :631756980Z1 þ 3:486893135Z2
1 þ 3:695332610Z3

1

� :187738864Z4
1 � 4:832016789Z5

1 � 4:948034544Z6
1 þ :200209266Z7

1

þ 2:781561234Z8
1 þ 1:44465504Z9

1 þ :209159657Z10
1 � :259999949e� 1Z11

1

þ :6979845384e� 2Z12
1 þ :2060075678e� 3Z13

1 þ :604272936e� 4Z14
1

� :393584570e� 5Z15
1 þ :6694771747e� 7Z16

1 ¼ 0:

Thus, the solution of this polynomial, in combination
with expressions (1)–(5), yields the 16 solutions of the
forward position analysis, which are listed in Table 1.

Finally, taking the solution 8 of Table 1 as the initial
configuration of the parallel manipulator, the most repre-
sentative numerical results obtained for the forward
velocity and acceleration analyses are shown in Figs. 4, 5,
6 and 7.

Fig. 4 Time history of the angular velocity of the moving platform

Fig. 5 Time history of the angular acceleration of the moving
platform

Fig. 6 Time history of the translational velocity of the center of the
moving platform

Fig. 7 Time history of the translational acceleration of the center of
the moving platform
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6 Conclusions

In this work the kinematics, including the acceleration
analysis, of 3-RPS parallel manipulators has been success-
fully approached by means of screw theory. Firstly, the
forward position analysis was carried out using recursively
the Sylvester dialytic elimination method, such a procedure
yields a 16-th polynomial expression in one unknown, thus
all the possible solutions of this initial analysis are
systematically calculated. Afterwards, the velocity and
acceleration analyses are addressed using screw theory. To
this end, the velocity and reduced acceleration states of the
moving platform, w.r.t. fixed platform are written in screw
form through each one of the three limbs of the manipu-
lator. In particular, simple and compact expressions were
derived in this contribution for solving the forward
kinematics of the spatial mechanism by taking advantage
of the concept of reciprocal screws via the Klein form of
the Lie algebra e(3). The obtained expressions are simple,
compact and can be easily translated into computer codes.
Finally, in order to exemplify the versatility of the chosen
methodology, a case study was included in this work.
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