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Abstract In this study, a methodology for PLC implemen-
tation of Supervisory Control Theory is introduced and
realized on a pneumatic manufacturing system. The
implementation methodology resolves the problem of
avalanche effect and enhances program readability. We
use local modular approach, which exploits modular
structure of the plant and of the specifications. Local
modular approach, together with the implementation meth-
odology presented in this study provides an effective way
for synthesizing and realizing supervisors for Discrete
Event Systems (DES) control problems. The resulting
PLC program is also modular in structure, making it
handable for modification and error detection.

Keywords Discrete event systems . Supervisory control
theory . Programmable logic controllers . Supervisor design

1 Introduction

An important portion of today’s manufacturing systems can
be classified as event driven systems or discrete event
systems (DESs). Although it is possible to analyse and
control this class of industrial systems formally, general

methods applied in the industry are intuitive rather than
being formal. For small-sized DES control problems,
intuitive methods may yield practical solutions, but as the
controlled system gets larger and complex, formal methods
need to be applied.

The supervisory control theory (SCT) introduced by
Ramadge and Wonham [1] provides a powerful framework
for control of discrete event systems. The theory enables
synthesis of closed loop control systems for DESs.
Although the SCT has received a wide acceptance in the
academy and some applications of SCT have been reported
in the literature [2–6, 15], it has not been employed in the
industry yet. This is mainly due to the difficulties arising in
physical implementation of SCT [4, 7].

Programmable Logic Controllers (PLCs) have been used
widely in industrial applications for more than 25 years, and
today most of the automated manufacturing systems use
PLCs as control units. Therefore, PLCs can be a potential
physical platform to realize supervisors in the industry.

Finite state automata are used for representing the plant
model and the supervisors in SCT. Implementation of SCT
necessitates an appropriate method for developing a PLC
program corresponding to the automaton that represents the
theoretical supervisor. Therefore implementing the SCT is a
matter of developing an appropriate PLC program, which
will oblige the PLC to behave as an automaton. The
methods for developing PLC codes to fulfill this purpose
and the problems that may arise in doing so are discussed in
[4, 7, 15]. One of the problems frequently encountered in
programming an automaton as a PLC code is related to
undesirable state transitions occurring in the PLC program
which correspond to the theoretical automaton. This
problem is called “avalanche effect” [7]. In this paper, in
order to overcome this problem, we formalize a methodol-
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ogy which was introduced and used in a previous work of
authors [6].

One of the main difficulties arising in SCT implementa-
tions is state-space explosion. System models are generally
built as a combination of subsystems and the number of
states of the global system grows exponentially with the
number of subsystems. Computational complexity caused
by large number of states (may be more than 1020) can
make it impossible to design and implement a supervisor
for a given DES control problem. Therefore some formal
and informal techniques are used to reduce computational
complexity either by reducing sizes of the automata or
using different control structures comprising more than one
supervisor. Informal techniques generally depend on the
designer’s experience and preferences such as ignoring
some of the details (i.e. some of the states of the physical
system) that are not necessary to appear for the given
control problem [4]. Modular control, as a formal method,
allows designing multiple supervisors for which control
action combination is equivalent to a monolithic supervisor
for a given system [12]. In this way, memory used for
storing states of the supervisor can be reduced. Another
formal method, called Local Modular Supervisory Control,
extending the results of [12], reduces computational
complexity and provides significant memory savings by
using multiple supervisors and local models of the plant
[13, 14]. A necessary and sufficient condition for local
modularity is given in this method.

In this study, following some preliminaries of Discrete
Event Systems in Section 2, a methodology for generating
PLC codes corresponding to a given automaton is intro-
duced in Section 3. In Section 4, an implementation of local
modular supervisory control for an educational pneumatic
manufacturing system based on the proposed methodology
is presented and a hierarchical control structure for modular
supervisory control is given. It is shown that modularity
condition holds for the problem at hand. Finally, conclu-
sions are given in Section 5.

2 Preliminaries and notation

Discrete event systems evolve on spontaneously occurring
events. Let ∑ be finite set of the events that drive the
system. The set of all finite concatenations of events in ∑ is
denoted as ∑*. An element in this set is called a string. The
number of events gives the length of the string. The string
with zero length is denoted as ɛ. A subset L⊆∑* is called a
language over ∑. For a string s ∈∑*, s denotes the prefixes
of s and is defined as s ¼ sp 2 Σ� : 9t 2 Σ� spt ¼ s

� �� �
.

Extending this definition to languages we get prefix closure
of a language L denoted as L. A language L satisfying the
condition L ¼ L is said to be prefix closed [8].

An automaton, denoted by G, is a six tuple G=(Q, ∑, f,
Γ, q0, Qm) where Q is the set of states; ∑ is the finite set of
events. f: Q×∑→Q is the partial transition function on its
domain. Γ : Q ! 2Σ is the active event function. Γ(q) is
the set defined for every state of G and represents the
feasible events of q. q0 is the initial state and Qm⊆Q is the
set of marked states representing a completion of a given
task or operation. Automata are generally represented by
state diagrams. Figure 1 shows a simple automaton with
two states. State 0 with a directed line pointing it is the
initial state. State 1 with double circle is the marked state of
the automaton. Directed lines (transitions) represent transi-
tion functions of the automaton. Labels of the transitions
correspond to events. The events associated with all the
transitions from a state give the active event set of that
state.

The language generated by G is denoted by L(G) and
defined as L(G)={s ∈∑*: f(q0,s) is defined}. The language
marked by G is denoted by Lm(G) and defined as Lm(G)=
{s∈∑*: f(q0,s)∈Qm}. A DES G is said to be nonblocking if

L Gð Þ ¼ Lm Gð Þ. Product and parallel composition opera-
tions are defined for expressing two forms of joint
behaviour of multiple automata that operate concurrently.
Product of two automata, say G1 and G2 is denoted as
G1XG2 and represents the synchronous behaviour of the
two automata. Thus, an event occurs in the resulting
automata if and only if it occurs in both automata. The
generated and marked languages of the resulting automaton
will be L(G1 X G2)=L(G1)∩ L(G2) and Lm(G1 X G2)=
Lm(G1)∩ Lm(G2), respectively. Parallel composition of
automata G1 and G2 is denoted as G1||G2. In the resulting
automaton common events occur synchronously, while the
other events occur asynchronously. Therefore, if the event
sets ∑1 and ∑2 of the automata are equal then parallel
composition of G1 and G2 will be equivalent to the product
of G1 and G2 [8].

The supervisory control theory (SCT) uses formal
languages to model the uncontrolled behaviour of discrete
event systems and specifications for the controlled behav-
iour. The objective is to restrict the behaviour of the system
to a desired behaviour, which is represented by the
specifications. This is done by disabling some events to
prevent the occurrence of some undesired strings in the
system. The decision of which event will be disabled is
made by another simultaneously executing system, called
the supervisor which is also represented by an automaton.
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cFig. 1 A simple automaton
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The active event set associated with a state of the supervisor
includes the events that are allowed to occur in the
corresponding state of the controlled system.

In SCT, events are divided into two classes as control-
lable events and uncontrollable events. The set of control-
lable events is denoted by ∑c, while ∑uc represents the
uncontrollable event set. The supervisor has no effect on
uncontrollable events, which means that the supervisor
cannot prevent an event of ∑uc from happening. The
existence of a supervisor is guaranteed if the desired
language satisfies a condition. This condition is called as
the controllability condition and defined as K∑uc \M � K
where K is the language that will be generated under the
control of the supervisor and M is the language generated
by the uncontrolled system.

The behaviour of a DES G, under the control of supervisor
S is denoted by L(S/G). A language K is called Lm(G)-closed
when the language satisfies the condition K ¼ K \ Lm Gð Þ. If
the desired behaviour K⊆Lm(G) is controllable and Lm(G)-

closed, then K ¼ L S=Gð Þ ¼ Lm S=Gð Þ, and this means that
the controlled behaviour is nonblocking.

Modular Supervisory Control guarantees nonblocking of
DES controlled by multiple supervisors if the modularity
condition \

i
Lm Si=Gð Þ ¼ \

i
Lm Si=Gð Þ, holds. Local Modular

Control approach extends this result to exploit the modular-
ity of the controlled system G. When a DES G is given as a
composition of Gloc,j, j=1,...,m, local modularity condition

which is given as m
j¼1Lm Sloc;j

�
Gloc;j

� ���� ¼ m
j¼1Lm Sloc;j

�
Gloc;j

� ���� is
equivalent to global modularity [13, 14]. While modelling a
system as a combination of subsystems, local modular
approach uses product system representation (PSR) of the
global system [12, 14]. In the PSR, subsystems are modelled
by asynchronous automata.

To help reading, a summary of notations is given in
Table 1.

In the next section, we develop a methodology which
enables expressing a given automaton in logical domain, in
particular as a PLC program.

3 Expressing automata in logical domain

In order to realize a given automaton using PLCs, states,
events and state transition functions of the automaton should
be defined in PLC language. IEC 61131-3 standard defines
the graphical and textual languages for PLCs [9]. Among
these, Ladder Diagram (LAD) is a graphical language
which is traditionally preferred by the practitioners.
Therefore, we will use LAD to program a given state
machine. For detailed information about PLCs and Ladder
Diagram, the interested reader is referred to [10, 11].

States, events and state transition functions of an autom-
aton are simply mathematical sets, and a PLC is a device

performing programmed logical expressions of Boolean
valued signals in a cyclic manner. Therefore, a convenient
method to represent these sets of the automaton in the PLC
environment is needed. States can be represented by memory
bits. If a memory bit corresponding to a state of the automaton
is set, this means that the realized automaton is in that state.
Events are assumed to be momentary in DES theory.
Intuitively, this assumption can be met by using rising and
falling edges of sensor signals. Falling and rising edges of a
signal is detected by comparing the logical value of the signal
between previous and current scan cycle. If a change from
logical false to true (true to false), rising edge (falling edge)
will output a value of logical true for one scan cycle time,
which is the shortest possible period in the PLC environment.
The next step is to define transition functions in the PLC
language. This can be done using Boolean AND operations
and SET/RESET functions. Boolean AND operation is used
for memory bits representing the current state and memory
bits representing the events which cause a transition from this
state. The result of AND operation determines whether the
transition condition is satisfied. If satisfied, current state is
reset and next state is set by the use of SET/RESET functions.
An example is given in Fig. 2. In the LAD program of
Fig. 2b, q1, q2 and q3 are memory bits representing the states
of the automaton in Fig. 2a, while σ1, σ2, σ3 and σ4

correspond to signals whose rising edge represents the
events of the automaton.

3.1 The avalanche effect problem

Although the above approach is straightforward and easy to
apply, it may yield an incorrect realization depending upon
the structure of the given automaton. This incorrect

Table 1 Summary of notations

Symbol Description

G=(Q, ∑, f, Γ,
q0, Qm)

An automaton G with state set Q, event set ∑ set
of state transition functions f, set of active events
Γ initial state q0, set of marked events Qm

L(G) Language generated by automaton G
Lm(G) Language marked by automaton G
s Prefixes of string s
L Prefix closure of a language L
G1×G2 Product of automata G1 and G2

G1||G2 Parallel composition of automata G1 and G2

L(G1)∩L(G2) Language obtained by product of automata G1

and G2

L(G1)||L(G2) Language obtained by parallel composition of
automata G1 and G2

L(S/G) Language generated by a system G under the
supervision of supervisor S

Lm(S/G) Language marked by a system G under the
supervision of supervisor S
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behavior is due to the occurrence of undesirable state
transitions of the realized automaton and is called avalanche
effect problem [7]. Consider the automaton and its LAD
realization in Fig. 2 and suppose that the automaton in
Fig. 2a is in state q1; therefore bit q1 is set in its LAD
realization. On the occurrence of event σ1, the automaton
transits to state q2 and PLC program sets q2, resets q1.
Normally, the automaton stays in state q2 until another σ1

event occurs. However, when the second network is
executed just after the first network, the PLC program of
Fig. 2b will immediately jump to q3, since q2 is set and
rising edge value of signal σ1 is still true. Therefore, the
behavior of the PLC realization in Fig. 2b is incorrect. We
can conclude from this example that, for a given automa-
ton, if successive occurrence of an event causes successive
state transitions, the avalanche effect problem is inevitable
with the programming approach described above.

In [7] a methodology based on reversing the order of
ladder diagram networks for solving this problem is
discussed. However, this methodology is highly dependent
upon the problem at hand, and may fail in some cases. As
an example, a simple automaton which may be used for
detecting event pairs of σ1 is given in Fig. 3. Obviously, σ1

causes the avalanche effect problem: when state q1 is
active, an occurrence of σ1 causes a transition to q2 and
then back to q1 in the same PLC cycle. If the method
described above is utilized, arranging the networks in
reverse order prevents a transition back to q1, but in this
case the problem occurs when state q2 is active: A σ1 event
causes a transition to q1 and then back to q2. This example

shows that the method based on reversing the networks
fails when there exist transitions between two states of an
automaton in both directions with the same event.

In Sect. 3.2, we introduce a methodology for realizing a
given automaton which constitutes a general solution for
the avalanche effect problem in a systematic way and
provides an advantage in program readability and memory
saving in many cases.

3.2 Methodology for PLC realization

When SET and RESET functions are used, these functions
appear in more than one network to program all transition
conditions related to a single state. For example, in Fig. 2b,
transition conditions of state q2 necessitate using SET or
RESET functions four times. Apparently, this reduces
program readability. Furthermore, depending upon the
PLC being used, SET and RESET functions may occupy
a considerable amount of program memory in the PLC as
compared to the standard bit logic operations. In this
subsection we will develop a programming technique
which does not use SET and RESET functions and renders
a PLC program without avalanche effect problem. In the

σ 1 

σ 1 

q1 q
2 

Fig. 3 An automaton with ava-
lanche effect problem
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following, we will introduce the methodology in a formal
way. The methodology will also be considered from a
practical point of view within the examples provided in this
section.

As a first step toward the development of the method-
ology, we will try to realize SET and RESET functions by
standard bit logic operations. Let us denote the SET
condition of a logic variable q by S, and RESET condition
by R. Representing current and next values of q by q(k) and
q(k+1), respectively, it can easily be shown that the logic
function

q k þ 1ð Þ ¼ S þ q kð Þ:R0 ð1Þ

can be used to set q by S, and to reset it by R, where “+”
corresponds to OR, “.” corresponds to AND operations, and
R′ means inverse of R. This logic function can be used for
realization of the rules defined by state transition function
of a given automaton. In order to translate state transition
function into logical domain in terms of SET (S) and
RESET (R) conditions of Eq. 1, some definitions will be
given below. In these definitions, we use the index sets Iq=
{1,2,...,Nq} and Is ¼ 1; 2; :::;Nsf g for states and events of
the automaton, respectively.

Definition 1 Given an automaton with state transition
function f: Q×∑→Q, where Q ¼ q1; q2; :::qNq

� �
is the set

of states and
P ¼ s1; s2; :::; sNsf g is the set of events. We

define State Index Set for Transition Conditions to State qi
by

ISq ið Þ ¼ j 2 Iq
��9k 2 Is ; f qj; sk

� � ¼ qi
� �

; 8i 2 Iq ð2Þ

Note that, ISq(i) is the set of indices of the states from
which a transition to state qi is feasible.

Definition 2 Given an automaton with state transition
function f: Q×∑→Q, where Q ¼ q1; q2; :::; qNq

� �
is the

set of states and ∑ ¼ σ1;σ2; :::; σNσf g is the set of events.
We define Event Index Set for Transition Conditions to
State qi by

ISs ið Þ ¼ j 2 Is j9k 2 Iq; f qk ; s j

� � ¼ qi
� �

; 8i 2 Iq ð3Þ

Similar to Definition 1, ISs ið Þ represents the set of
indices of events by which a transition to state qi is
possible.

Definition 3 Given an automaton with state transition
function f: Q×∑→Q, and active event function
Γ : Q ! 2Σ , where Q ¼ q1; q2; :::; qNq

� �
is the set of states

and ∑ ¼ σ1;σ2; :::; σNσf g is the set of events. The follow-
ing index set corresponds to the Index Set of Events That

Cause a Transition from State qj to State qi and is defined
by

ITs i; jð Þ ¼ k 2 Is jsk 2 Γ qj
� � ^ k 2 ISs ið Þ� �

; 8 i; jð Þ
2 ISq � ISq ð4Þ

Notice that, ITs i; jð Þ may be empty for some combina-
tions of i and j.

Definition 4 Given an automaton with state transition
function f: Q×∑→Q, and active event function
Γ : Q ! 2Σ , where Q ¼ q1; q2; :::; qNq

� �
is the set of states

and ∑ ¼ σ1;σ2; :::; σNσf g is the set of events. Event Index
Set for Transition Conditions from State qi is defined by

IRσ ið Þ ¼ j 2 Iσjσj 2 Γ qið Þ� �
; 8i 2 Iq ð5Þ

In the following, we give an example to clear the
meaning of the definitions.

3.2.1 Example 1

Consider again the automaton in Fig. 2a. State and event
index sets of the automaton can be picked as Iq={1,2,3} and
Iσ ¼ 1; 2; 3; 4f g, respectively. By using Definitions 1
through 4 for state q2, the following index sets can be
obtained:

State Index Set for Transition Conditions to State q2:
ISq(2)={1,3},

Event Index Set for Transition Conditions to State
q2 : ISσ 2ð Þ ¼ 1; 3; 4f g, Index Set of Events That Cause a
T r a n s i t i o n f r om S t a t e q j (∀ j ∈ I q ) t o S t a t e
q2 : ITσ 2; 1ð Þ ¼ 1f g; ITσ 2; 2ð Þ ¼ φ; ITσ 2; 3ð Þ ¼ 3; 4f g,

Event Index Set for Transition Conditions from State
q2 : IRs 2ð Þ ¼ 1; 2f g.

It has to be noted that, although the definition of an
automaton includes the initial state and the set of marked
states, we have not taken them into consideration in the
above definitions, since we are primarily focused on state
transitions. However, for a complete realization of a given
automaton, initial state should also be taken into account.
As we will discuss shortly, initial state can easily be
programmed by setting a memory bit at the start-up of the
PLC. For the case of marked states, there is nothing to do in
the realization stage, since marked states are used for the
validation purposes in the design procedure rather than
realization.

Note also that, for simplicity, we use the same notations
for the elements (i.e. events and states) of a given
automaton and their corresponding logic variable represen-
tations as in the example of Fig. 2. The meaning of the
notation can be distinguished from the context or from the
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domain of the mathematical expression in which it appears.
In the following, we will be working in logical domain.
Therefore all of the notational symbols correspond to logic
variables and “+” (or the summation operator ∑) represents
logical OR operation, and “.” (or the multiplication operator
∏ ) represents logical AND operation as in Eq. 1. In the
following two definitions, we will derive the expressions of
SET and RESET conditions for a state of a given
automaton.

Definition 5 The Logical Expression of SET Condition for
State qi is given by

Si kð Þ ¼
X

j2lSq ið Þ
qj kð Þ:s i; jð Þ ð6Þ

where k stands for the kth time instant and,

s i; jð Þ ¼
X

n2ITs i;jð Þ
sn ð7Þ

is the event representing the equivalent effect of events that
cause a transition from state qj to state qi.

Definition 6 The Logical Expression of RESET Condition
for State qi is defined as

Ri kð Þ ¼
X

j2IRs ið Þ
s j kð Þ ð8Þ

Having defined logical expressions of SET and RESET
conditions for state qi, it is now possible to use Eq. 1 in
order to obtain a logic function of state qi:

qi k þ 1ð Þ ¼ Si kð Þ þ qi kð Þ:R0
i kð Þ ð9Þ

The logic function given by Eq. 9 can easily be
programmed using LAD language. Representing the logic
variables qi(k+1) and qi(k) by the memory bits Qi and qi,
respectively, the PLC program in Fig. 4 can be used to
realize Eq. 9. The memory bits qi and Qi can be considered
as the logic representation values of state qi for the current
and next PLC scan cycles, respectively. Notice from Fig. 4
that, memory bits Qi and qi are synchronized at the end of
the LAD, in order to transfer the value of Qi to qi.

3.2.2 Example 2

Recall the automaton given in Example 1 and consider
again state q2. The following can be obtained according to
Definitions 5 and 6:

S2 kð Þ ¼
X

j2ISq 2ð Þ
qj kð Þ:s 2; jð Þ

¼ q1 kð Þ:s1 þ q3 kð Þ: s3 þ s4ð Þ ð10Þ

R2 kð Þ ¼
X

j2IRs 2ð Þ
s j kð Þ ¼ s1 þ s2 ð11Þ

Using Eqs. 10 and 11 together with Eq. 9, the logic
function for state q2 is obtained as

q2 k þ 1ð Þ ¼ q1 kð Þ:s1 þ q3 kð Þ: s3 þ s4ð Þ
þ q2 kð Þ: s1 þ s2ð Þ0 ð12Þ

or,

q2 k þ 1ð Þ ¼ q1 kð Þ:s1 þ q3 kð Þ: s3 þ s4ð Þ
þ q2 kð Þ:s 0

1:s
0
2 ð13Þ

Similarly, the logic functions for state q1 and state q3 can
be obtained as

q1 k þ 1ð Þ ¼ q2 kð Þ:s2 þ q1 kð Þ:s 0
1 ð14Þ

and

q3 k þ 1ð Þ ¼ q2 kð Þ:s1 þ q3 kð Þ:s 0
3:s

0
4 ð15Þ

Using Eqs. 13, 14 and 15, the PLC program corres-
ponding to the given automaton can be developed as in
Fig. 5a. The memory bits representing the events in the
PLC programs of Fig. 5 are assumed to be obtained by
falling or rising edges of corresponding sensor signals.

It has to be noted that, from a practical point of view, it
is straightforward to apply Definition 5 and Definition 6
together with the Eqs. 9, 10 and 11 in order to obtain the
PLC program of the given automaton. Let us interpret the
PLC program in Fig. 5a which is obtained as a realization
of the automaton given in Fig. 2a. It is apparent from the
automaton that a transition to state q1 takes place if “q2 is
active and σ2 occurs”. Clearly, the first two series contacts
(q2 AND σ2) in NW1 correspond to this expression. In fact,
the same logical expression is obtained if the SET condition
given by Definition 5 is applied. Again, it is apparent from
the automaton that, state q1 stays active as long as “the
automaton is in state q1 and σ1 does not occur”. The other
two series contacts (q1 AND σ1′) in NW1 realizes this
expression. This expression corresponds to the one that can
be obtained from Definition 6 and the logic function given
in Eq. 9. Naturally, these two series contact groups (q2

Si

Riqi

(  )
Qi

Qi

(  )
qi

Fig. 4 LAD corresponding to log-
ic function given by Eq. 10

378 Int J Adv Manuf Technol (2008) 36:373–385



AND σ2 & q1 AND σ1’) are connected in parallel to transit
to state q1 and to keep it active. Similarly, NW2 expresses
the fact that (1) “a transition to q2 takes place if q1 is active
and σ1 occurs, or q3 is active and σ3 or σ4 occurs”; (2) “q2
stays active if the automaton is in state q2 and neither σ1

nor σ2 occurs”. Similar considerations can be made for state
q3. To summarize, the main idea of the methodology is to
obtain the conditions of transition to a state and keep it
active. This practical interpretation may be used for
programming the conditions defined formally above and
may allow the programmer to apply the methodology in a
straight-forward manner.

Recall that, the automaton we have been considering in
Examples 1 and 2 has the problem of avalanche effect with
the programming approach discussed in Section 3.1. Now,
let us reconsider the PLC program given in Fig. 5a
corresponding to this automaton. Assume that the autom-
aton is in state q1, and therefore, logical value of memory
bit q1 is true. On the occurrence of event σ1, Q2 becomes
true, but this does not effect the value of Q3 in the next
network, since Q3 is effected by q2, not by Q2. In the next
PLC cycle, q2 becomes true, but now σ1 is false, because it
is obtained by rising or falling edge functions.

The discussion above shows that, this methodology
guarantees a PLC program free of avalanche effect
problem. The methodology can successfully be adapted to
allow SET and RESET functions as in Fig. 5b. However, as
mentioned previously, using SET and RESET functions
reduces program readability and may necessitate a larger
amount of program memory. Indeed, Q2 is SET or RESET
in four different networks in the PLC program of Fig. 5b,
while in Fig. 5a, a single network corresponds to each of

the memory bits Q1, Q2 and Q3. Furthermore, for Siemens
S7-200 PLCs as an example, the sizes of PLC programs in
Fig. 3a and b are 73 bytes and 103 bytes, respectively.

The PLC program of Fig. 5a corresponds to a complete
realization of the automaton in Fig. 2, except for the initial
state. Initial state can be realized in two different ways. One
method is to make use of special memories signaling the
startup of the PLC. For example, a special memory bit
which has the value of logical true for the first PLC scan
cycle only is addressed by SM0.1 in Siemens S7 200 PLCs.
Like S7-200, many PLCs support special memories or
program bocks that indicate the first PLC scan. However, if
the PLC does not support this kind of facility, the PLC
program part given in Fig. 6 using memory bits M0, M1
and M2 can be used to detect the PLC initialization.
Though the given program detects the second PLC scan,
practically it can be assumed that the memory bit M2 signs
the startup of the PLC program by issuing a pulse for one
scan time. It should be noted that the memory bits used in
Fig. 6 must not be of retentive type, since in that case it
might be impossible to detect a change to logic 1 in the
value of bit M1.

In the other method, we propose to use a simple idea
expressed as “the automaton is in initial state if it is not in
any of the states”. Formally, this expression can be written
in logical domain as

q0 k þ 1ð Þ ¼
Y

i2Iqr
q0i kð Þ ð16Þ

where Iqr ¼ iji 2 Iqn jf g; qj ¼ q0
� �

, q0 represents the ini-
tial state of the given automaton G=(∑, Q, f, Γ, q0, Qm),
and qi, i ∈ Iq={1,2,...,Nq} are the states of the automaton
indexed by the index set Iq. We will see in the following
example that this method can not only be used for realizing
the initial state, but also for programming all of the
transitions regarding the initial state.

3.2.3 Example 3

Figure 7a shows the network which can be replaced by
NW1 of Fig. 5a in order to realize initial state q1 when a
Siemens S7-200 PLC is utilized. Notice that, the only
difference from NW1 of Fig. 5a is the addition of special
memory bit SM0.1 as a parallel contact.

M1

M0

M0

(  )
M1

M2
P (  )

Fig. 6 PLC program used for
detecting PLC initialization
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Fig. 5 LADs with (a) and without (b) SET, RESET functions for the
automaton in Example 2



The program in Fig. 7b is the LAD realization of the
following logical expression obtained by using Eq. 16.

q1 k þ 1ð Þ ¼ q02 kð Þ:q03 kð Þ ð17Þ
Again, logic variables qi (k+1), and qi (k) are represented

by Qi and qi, respectively. Note that, the network of Fig. 7b
can not only be used for realizing the initial state q1, but
also for state transitions regarding q1. Indeed, replacing NW
1 of the PLC program in Fig. 5a with the NW in Fig. 7b
will cause no harm to the realization of state transition
rules, since the new network sets Q1 whenever none of the
states are set. This means that, Q1 will be set when a
transition to q1 is necessary. Therefore, applying the
realization rule of Eq. 16 for the initial state provides
additional simplification on the PLC realization.

Having defined the realization rules of state transition
and initial state of a given automaton, the formal summary
of the proposed methodology can now be given through the
following steps:

i. Determine the state and event index sets Iq and Is for
the given automaton,

ii. Apply Definitions 1 to 4 in order to derive the index
sets necessary for transition conditions,

iii. Obtain the logical expressions of SET and RESET
conditions by using Definitions 5 and 6,

iv. Program the initial state either by using PLC’s memory
bit signaling the start up or by using Eq. 16,

v. Program state transition rules of the automaton obtained
in Step (iii) by using the LAD program given in Fig. 4.

As considered previously in Example 2, practical
interpretations of the methodology may be used to apply
the procedure summarized above in a straight-forward way
for manual programming. However, the formal setting of
the methodology above may enable developing algorithms
or computer programs that can be used to generate the
corresponding PLC program automatically for a given
automaton.

Besides being a general solution for the avalanche effect
problem, the proposed methodology provides a systematic
way which allows the programmer to develop the PLC code
without having to make “intelligent decisions” regarding

the avalanche effect as opposed to the standard direct
transition method mentioned in Section 3.1 [7]. In fact, the
proposed methodology can be applied without caring for
the avalanche effect.

It has to be noted that, for the cases without avalanche
effect problem, it is not necessary to use an additional
memory bit for each state. The proposed methodology can
effectively be used with one memory bit for each state in
these cases. Moreover, for the cases with avalanche effect
problem, it is possible to use one memory bit for the states
which are not related to the problem. As an example, for the
PLC realization of the automaton given in Fig. 2, two
memory bits are necessary for state q2 (namely q2 and Q2

bits) but one memory bit is enough for states q1 and q3.
Therefore, once the avalanche effect problem is detected, it
is possible to decrease the number of memory bits by using
one memory bit for the states which are not related with the
problem. However, this necessitates making “intelligent”
decisions.

Another important property of the proposed methodolo-
gy is that, the network structure of the obtained PLC
program corresponds to the realized automaton state by
state. This means that, each network corresponds to a
unique state, and is enough to completely define the
transition conditions of that state. As an example, in
Fig. 5a, NW1, NW2 and NW3 completely and uniquely
define the transition rules of states q1, q2 and q3,
respectively. This feature is important to detect errors and
realize modifications. In standard transition method using
SET and RESET functions, in order to understand the
transition conditions of a given state, one must detect all the
SET and RESET functions regarding that state and then
combine the obtained information in order to reveal the
transition conditions of the state.

Moreover, in standard direct transition method, the
number of the SET and RESET functions is twice of the
number of transitions, since each transition must use a SET
function and a RESET function. For some PLCs, SET and
RESET functions occupy a considerable amount of pro-
gram memory as compared to standard bit logic operations.
For example, in Siemens S7-200 PLCs, one SET or RESET
function occupies 7 bytes of program memory while a
standard bit logic operation occupies 2 bytes. PLC
programmers often experience the problem of program
memory shortage and generally the only solution is to use
an upper model PLC, which costs higher. One of the main
motivations of the proposed methodology is to avoid using
SET and RESET functions, hence to provide memory
economy. Up to our experience in various cases, especially
depending on the number of transitions in the given
automaton, comparisons of the two methods show that the
proposed methodology provides memory savings up to
30%.

(  )
Q1q2 q3

(a) (b)

q2 σ 2

q1 σ 1

(  )
Q1SM0.1

Fig. 7 Initial state realizations of Example 3
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In the following section we apply the methodology
obtained in this section for the supervisory control of a
pneumatic manufacturing system.

4 The pneumatic system

The pneumatic system (SMC-MAP 205) shown in Fig. 8 is
a flexible automation mini-cell built for educational
purposes comprising pneumatic manipulators and a PLC
(Siemens S7-200). It demonstrates the assembly of a rotary
mechanism composed of a base, a bearing, a shaft and a
cover. Assembly of the rotary mechanism is carried out by
means of three manipulators and four cylinders. We will
call the manipulators as Manipulator E, H and K.
Manipulator E is used for picking up the bearing and
inserting it into the base. Manipulator H carries out the
process necessary for the assembly of the shaft by picking
up and placing it inside the previously inserted bearing. The
task of Manipulator K is to pick up and place the cover
onto the base after the shaft is inserted into the bearing. The
four cylinders are called Cylinder A, B, C and D.

Cylinder A is used for feeding the base to the test point.
Cylinder C tests a possible incorrect position of the base.
The task of Cylinder B is to move the tested base to the
assembly point. Finally, Cylinder D is used for ejecting the
assembled mechanism. If the base fails the test carried out
by Cylinder C, then Cylinder D ejects the base before the
assembly process begins.

Figure 8b gives a schematic representation of the system.
The supply mechanisms of the components are beyond the
scope of this study and we assume that the components are
supplied by a mechanism not modelled here.

The order of assembly is as follows. First a base arrives at
the assembly point. Then a bearing is inserted into the base.
Following insertion of the bearing a shaft is inserted into the
bearing. And finally, a cover is placed onto the base.

The original control algorithm provided by the vendor
allows only one rotary mechanism in an assembly process.
Also, picking up and insertion operations of the compo-
nents are done sequentially causing additional decrease in
efficiency. The purpose of this study is to minimize the
average time spent during the manufacturing of an
assembled mechanism by an efficient operation. There are
two steps to increase efficiency: One is to allow the system
to work on more than one product simultaneously, and the
other is picking up a supplied component immediately,
therefore making the component ready for assembly before
insertion/placement operation of the component begins. It is
also necessary to prevent a possible collision of the product
components, i.e. bases.

4.1 Modelling and control

The model of the uncontrolled system can be built in
different levels depending upon the control purpose. A low
level model gives detailed information of the system such
as sensor readings, actuator status and deals with opera-
tional procedures [5, 15]. However, this kind of modelling
is not suitable for large-scale control problems, since the
model may become extremely large. Therefore, in this
study modelling is done at a higher level, which defines
start and end operations of subsystems. Each of the lower
level control algorithms responsible for operating its
corresponding subsystem is also developed using formal
methods [5].

Fig. 8 The pneumatic system (a), schematic representation (b)
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In the modelling stage, decomposition of the global system
into subsystems exploits physical decomposition of the
system. Therefore, there are seven models corresponding to
the four cylinders and the three manipulators. Also there are
four more models, which describe existence and absence of
the supplied components.

Figure 9a shows the cylinder models. For x∈{A,B,C,D},
the controllable event αX represents the start operation,
while the uncontrollable event βX represents the end
operation of the corresponding subsystem. The uncontrol-
lable events βBO and βBNO appearing in the model of
cylinder C represent the test results of the base. If the base
position is correct then event βBO is generated, if not event
βBNO is generated.

Manipulator models are given in Fig. 9b. There are two
different start and end operations defined for each manip-
ulator. The first start operation is denoted by αY1, Y∈{E,H,
K}, and this matches to start of picking up operation for the

corresponding assembly component. The second start
operation is denoted by αY2 and represents start of
insertion/placement operation of the component. βY1 and
βY2 are used to denote the end of picking up and insertion/
placement operations, respectively. Figure 9c shows the
automaton models of component existence and absence.
The uncontrollable events br, sh, bs and cv correspond to
the existence of bearing, shaft, base and cover, respectively.

Cylinder models and manipulator models together with
component existence/absence models represent the Com-
posed System Representation [14] of the global system. In
the Product System Representation, the following subsys-
tem models should be obtained by parallel compositions.

GAbs ¼ GA Gbs;GEbr ¼ GEk kGbr

GHsh ¼ GH Gsh;GKcv ¼ GKk kGcv

Fig. 9 (a) Cylinder, (b) Manip-
ulator, (c) Component existence
models
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Fig. 10 (a) Ordering, (b) Prepa-
ration, (c) Collision protection
specifications



There are three groups of generic specifications
corresponding to the desired behaviour of the system. The
first group of specifications, shown in Fig. 10a, are called
ordering specifications (OS) and manages the operation of
subsystems in desired order. Depending upon the test result
obtained by Cylinder C, Manipulator E or Cylinder D may
be started following the end operation of Cylinder B. This
choice is done by OS2 and OS5. The second group of
specifications forces the manipulators to pick up the
supplied component immediately and make the components
ready for the next mode of operation, which is called
insertion/placement operation. These specifications are
called preparation specifications (PS) and are given in
Fig. 10b. The last group of specifications shown in Fig. 10c
prevents possible collision of two bases, which may occur
in the test point or assembly point. These specifications are
called collision protection specifications (CPS).

As a next step in the local modular control approach,
local models and the automata that mark the local
specifications of the system are built as in Table 2. The
computations necessary for Table 2 and verification of

controllability and modularity have been performed by
UMDES-LIB which is a software package developed at the
University of Michigan for performing operations on finite
state machines (available at http://www.eecs.umich.edu/
umdes).

It can be shown that each local specification is
controllable with respect to its corresponding local system.
Therefore, supervisors Sloc,x, x={a0,a1,a2,a3,a4,a5,a6,b0,
b1,b2,c0,c1}, can be computed directly from their respec-
tive local specifications.

Local specifications are obtained by parallel composition
of generic specifications and local system models. There-
fore, in the realization stage, when generic specifications
are considered as local supervisors and are operated in
parallel with the corresponding local systems, it is
guaranteed that the resulting behaviour will be equivalent
to the behaviour determined by local specifications.
Figure 11 shows three of the 12 local supervisors as an
example. The labels appearing on some of the states of the
supervisors correspond to enabling signals of the control-
lable events as defined in Section 4.2.

At this point, it might be interesting to calculate the
supervisor that would be realized if a monolithic supervisor
design approach had been taken. This monolithic supervi-
sor would be obtained by calculating the parallel compo-
sition of the 12 local supervisors. Calculations by the
software tool show that this monolithic supervisor would
have 20992 states, and approximately 200000 transitions.
This calculation shows that in many cases it might be
impossible to design and realize a supervisory control
application if a monolithic approach is taken.

To show tha t l o c a l modu l a r i t y cond i t i on
m
j¼1Lm Sloc;j

�
Gloc;j

� ���� ¼ m
j¼1Lm Sloc;j

�
Gloc;j

� ���� holds for the prob-

lem at hand, it is necessary to perform several operations on

Table 2 Local systems and local specifications

Local System Model Local Specification

Gloc,a0=GAbs||GC Hloc,a0=OS0||Gloc,a0

Gloc,a1=GB||GC Hloc,a1=OS1||Gloc,a1

Gloc,a2=GB||GC||GEbr Hloc,a2=OS2||Gloc,a2

Gloc,a3=GEbr||GHsh Hloc,a3=OS3||Gloc,a3

Gloc,a4=GHsh||GKcv Hloc,a4=OS4||Gloc,a4

Gloc,a5=GB||GC||GD||GKcv Hloc,a5=OS5||Gloc,a5

Gloc,b0=GAbs Hloc,b0=PS0||Gloc,b0

Gloc,b1=GEbr Hloc,b1=PS1||Gloc,b1

Gloc,b2=GHsh Hloc,b2=PS2||Gloc,b2

Gloc,b3=GKcv Hloc,b3=PS3||Gloc,b3

Gloc,c0=GAbs||GB Hloc,c0=CPS0||Gloc,c0

Gloc,c1=GB||GD Hloc,c1=CPS1||Gloc,c1
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Fig. 11 Three of local supervisors Fig. 12 Control system structure
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automata corresponding to local supervisors and local
system models. Local modularity condition is expressed
based on marked languages. Therefore, all the calculations
have been performed using the automata corresponding to
these languages. For the computation of automata that
correspond to local languages under the control of super-
visors, the executable “par_comp.exe” of UMDES_LIB has
been used.

For a nonblocking automaton, the prefix closure of the
language marked by the automaton is equal to the
language generated by the automaton. And for a coacces-
sible automaton, prefix closure of the marked language
always equals the generated one, since a coaccessible
automaton is always nonblocking [8]. This fact has been
applied to calculate the prefix closures of the marked

languages given in the modularity condition by using
executable “co_acc.exe”. The executable “par_comp.exe”
is used to calculate the parallel compositions appearing in
the modularity condition. As a last step “equiv.exe” of
UMDES_LIB has been used to check if the modularity
condition holds.

4.2 Implementation

In the implementation stage, we use the structure shown in
Fig. 12. In this structure, modular supervisors constitute the
highest level of hierarchy and they interact with the low-
level control algorithms, which define the operational
procedures of the real system. The task of low-level
interface is to convert responses obtained as sensor signals

384 Int J Adv Manuf Technol (2008) 36:373–385

Fig. 13 PLC programs for modu-
lar supervisor Sloc,c0 and low-level
control code for Cylinder A



into events and to convert low-level enabling signals into
physical outputs that drive the real system.

Modular supervisors update their states when the high-
level events occur. When modular supervisors update their
states, they also update the enabling signal information sent
to low-level control algorithms. Low-level control algo-
rithms send high-level events corresponding to these
enabling signals back to modular supervisors as soon as
the enabling signals are processed by the plant. This feed
back structure for high-level events ensures that modular
supervisors update their states only if the plant processes
the enabled signals. This is also compatible with SCT,
which assumes that events are generated by the plant.

We will explain the realization methodology on supervi-
sor Sloc,c0 shown in Fig. 11 using the methodology
introduced in Section 3.2. Figure 13 shows the ladder
diagrams related with the supervisor Sloc,c0. In Fig. 13a,
state transition of Sloc,c0 is programmed. Notice that it is not
necessary to program the self loop of the automaton.
Figure 13b shows the LAD program which generates Sloc,
c0’s enabling signal for αA. The LAD given Fig. 13d is
programmed to enable αA if both of Sloc,b0 and Sloc,c0
enables it. Figure 13c shows the state transition program
code of the low-level control algorithm for Cylinder A. As
can be seen from the code, when transition to A2 occurs by
the enabling signal en_A, αA is generated. Note that the
events A_f and A_b correspond to forward and backward
positions of cylinder A and are obtained in the interface by
rising edges of sensor signals.

5 Conclusion

In this paper, a formal methodology which enables
expressing a given state machine in logical domain has
been introduced and applied for supervisory control of a
pneumatic manufacturing system. We have used local
modular approach, which exploits modular structure of the
system and of the specifications. A hierarchical control
structure using the presented implementation methodology
is introduced. The introduced methodology constitutes a
general solution for the problem of avalanche effect,
enhances program readability and provides considerable
memory savings in many cases. In particular, the approach
used for the implementation methodology could be consid-

ered as a new definition of automata in a logical domain.
Such a definition of automata would be very useful as it
would skip the need of a translation to logical domain
where realization generally takes place.
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