
ORIGINAL ARTICLE

The use of mixture experiments in tolerance
allocation problems

Ali Kemal Şehirlioğlu & Cenk Özler

Received: 14 July 2005 /Accepted: 2 August 2006 / Published online: 20 December 2006
# Springer-Verlag London Limited 2006

Abstract The response surface methodology (RSM) ap-
proach can be used to determine the optimal component
tolerances in an assembly. Frequently, response surface
designs such as Box-Behnken design and central composite
design are used in tolerance allocation problems. In this
article, mixture experiments, which are essentially con-
structed for designing a blend composition, are proposed
instead of response surface designs in order to observe the
cost values. Also some advantages and disadvantages of
mixture designs are discussed.
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1 Introduction

Some products are composed of parts or components
manufactured on different processes. In practice, tolerances
of assembled products are specified according to functional
requirements and tolerances of individual components. One
of the most widespread methods for selecting the optimum
tolerances is to formulate the tolerance allocation problem
as a nonlinear optimization problem, using some manufac-
turing cost-tolerance functions to estimate a functional
relationship between manufacturing cost and component

tolerance. A summary of several cost-tolerance models is
given in Kim and Cho [1]. In their study, they proposed a
response surface design such as central composite or Box-
Behnken design to estimate the manufacturing cost-toler-
ance function. In a similar paper, which was written by
Jeang [2], a total cost function, which is the sum of
manufacturing cost and quality loss, is proposed instead of
manufacturing cost.

In this study, mixture designs, which are a special class
of response surface designs are proposed to estimate cost-
tolerance functions as an alternative to central composite
and Box-Behnken designs. This study is organized as
follows. First, a review of the response surface design
model, which is previously proposed by Kim and Chou [1],
is given. Mixture experiments, designs and their adaptation
to tolerance allocation problems are discussed. Then, some
possible advantages of mixture designs to CCD and BBD
are discussed and an example using a mixture design is
illustrated. In the last section, a brief conclusion is drawn.

2 Reviewing the studies about the use of response
surface designs for tolerance allocation

Kim and Chou [1] formulate the tolerance allocation
problem as minimize

h t1; t2; :::; tkð Þ
subject to

t1 þ t2:::þ tk � T stack � up constraintð Þ

li � ti � ui; i ¼ 1; 2; :::; k

design parameter constraintð Þ
ð1Þ
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where ti is the tolerance of the ith component, T is stack- up
tolerance, li and ui are the lower and upper bounds of
interest on ti, respectively, and η(t1, t2, ..., tk) is the cost-
tolerance function which its functional form is unknown.

In most industrial problems, the true functional form of
the cost-tolerance relationship for each component is
usually unknown. Therefore, Jeang [2] and Kim and Cho
[1] propose response surface methodology (RSM) for
analyzing the tolerance allocation problem statistically.
RSM is a combination of statistical and mathematical
techniques useful for modelling and analysis of the
relationship between the response variable and several
input (or design) variables. In RSM, the true and probably
complex relationship between the response variable and
input variable is approximated by a first or second order
polynomial function. The comprehensive details for RSM
can be found in [3, 4] and [5]. The predicted first order
response function ŷ can be written as

by ¼ bb0 þXk
i¼1

bbixi ð2Þ

where bb0 and bbi are estimated coefficients, which are found
through the least squares method and xis are the coded
input variables. First order response surfaces designs,
such as factorial or fractional factorial designs, can be
used to obtain the estimated coefficients. Furthermore,
the predicted second order response function can be
written as

by ¼ bb0 þXk
i¼1

bbixi þX
i�j

Xbbijxixj ð3Þ

where bbij are estimated coefficients associated with second
order (quadratic when i= j and interaction when i≠ j) effects.
Second order designs such as Box-Behnken or central
composite designs can be used to obtain the estimated
coefficients.

In Kim and Cho [1]’s study by and xis are regarded as
manufacturing cost and coded form of component toler-
ances tis, respectively where coding formula can be written
as

xi ¼ 2ti � ui þ lið Þ
ui � li

; i ¼ 1; 2; :::; k: ð4Þ

When the true cost-tolerance function is approximated
by a second order polynomial model, the tolerance
allocation problem given in Eq. (1) can be rewritten as
follows: Minimize

by ¼ bb0 þXk
i¼1

bbixi þX
i�j

Xbbijxixj

subject to:

Xk
i¼1

xi ui � lið Þ þ ui þ lið Þ
2

� T stack � up constraintð Þ

�1 � xi � 1 ; i ¼ 1; 2; :::; k: design parameter constarintsð Þ
ð5Þ

In both Kim and Cho [1]’s and Jeang [2]’s studies, it is
emphasized that the second order response surface designs
such as Box-Behnken and central composite designs can be
used to estimate the coefficients of a second order
polynomial model. In the following sections, mixture
designs, which are essentially used to obtain the best
mixture (or formulation) where a product is composed by
several ingredients, are proposed as an alternative to second
order response surface designs and some advantages of
mixture designs are discussed.

3 The use of mixture experiments for tolerance
allocation

3.1 Review of mixture experiments

Amixture experiment is an experiment in which the response
is a function of the proportions of the components present
only in the mixture and is not a function of the total amount
of the mixture. The general purpose of mixture experimen-
tation is to make possible estimates, through a response
surface exploration of the properties of an entire multi-
component system from only a limited number of observa-
tions. Unlike the usual response surface problem where the
concomitant variables represent quantitative amounts, in the
mixture problem, the components represent proportions of a

Fig. 1 Simplex factor space for k = 3

770 Int J Adv Manuf Technol (2008) 35:769–777



mixture or composition. These proportions must be nonneg-
ative and if expressed as fractions of the mixture, they must
sum to unity. For example, suppose there are k components
in the system under study. If we represent the proportion of
the ith component in the mixture by xi, then

0 � xi � 1; ð6aÞ

Xk

i¼1
xi ¼ 1 ð6bÞ

The factor space containing the k components may be
geometrically represented by the interior and boundaries
(vertices, edges, faces) of regular (k −1) dimensional
simplex. The vertices will represent mixtures consisting of
single components and interior points will be the result of
combining all the components. Figure 1 displays the factor
space for k=3.

In general predicted linear and quadratic mixture models
are: Linear:

by ¼Xk
i¼1

bixi ð7Þ

Quadratic:

by ¼Xk
i¼1

bixi þ
XXk

i<j

bijxixj ð8Þ

Because of the restriction x1 + x2 + ... + xk=1, quadratic
terms biix2i and the constant term b0 are removed from the
standard polynomial models.

Scheffe [6] introduced simplex lattice designs for mixture
experiments and developed polynomial models, which have
exactly the same number of terms as there are points in the
associated designs. The designs, consisting of a symmetrical
arrangement of points, are referred to as {k, m} lattices.
Corresponding to the points in a {k, m} lattice, the
proportions used for each of the k components have the
m+1 equally spaced values from 0 to 1, that is, xi=0, 1/m,
2/m,...,1 and all possible mixtures with these proportions for
each component are used. The number of points in a {k, m}

lattice is
mþk � 1

m

 !
and the lattice designs are character-

ized by their simplicity of construction. The details about
lattice designs can be found in [7].

Frequently, one is not completely free to explore the
entire simplex because of certain additional restrictions
(physical and economic) that are placed on some or all
components lower and upper bounds,

0 � ai � xi � bi � 1 ð9Þ
Constraints (6b) and (9) can produce either of two types

of experimental regions. One type of region is a result of
the special situation where all of components are bounded
above or all the components are bounded below or, in some
instances, the components are all bounded above and below
and have equal ranges. The resulting space has k vertices
and is a simplex in terms of pseudo components. For this
case, the recommended design for the quadratic model is
the pseudo component simplex design, recommended by
Kurotori [8].

Fig. 2 An example of a con-
strained region
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In most mixture problems, constraints (6) and (9)
produce an irregular hyper polyhedron, which is a subspace
of the k−1 dimensional simplex. An example of such a
constrained region is drawn in Fig. 2. McLean and
Anderson [9] recognized that the simplex designs were not
generally applicable when both upper and lower limits were
placed on the components and recommended the extreme
vertices design. Crosier [10] presents a formula for calcula-
tion the number of vertices of any constrained region. When
fitting the second order mixture model (8), generally support
points consist of a subset of the extreme vertices of the
region, edge centroids, or face centroids (if k≥7), and
centroids of some of the r-dimensional flats (if 3≤k≤6,
then 2≤r≤k−1; and if k≥7, then 3≤r≤k−1). A centroid of
an r-dimensional flat (r≤k−1) is the average of all the
vertices, which lie on the same constrained plane [7]. Snee
and Marquardt [11], McLean and Anderson [9], Piepel [12],
and Nigam et al. [13] discuss several algorithms that can be
used to determine the coordinates of the extreme vertices
of the constrained region and suggest formulas for
calculating the number of vertices and higher dimensional
boundaries of the region. Practically, these designs can
easily be constructed in statistical packages such as SAS or
MINITAB. SAS and MINITAB packages can select a
subset of the extreme vertices and convex combinations of
the vertices as design points, depending on D-optimality or
A-optimality criteria of designs. Comprehensive details for
mixture experiments are in [7].

3.2 Adaptation of mixture experiments to tolerance
allocation problems

One advantage of using mixture experiments for tolerance
allocation problems is that they require fewer runs than
classical response surface designs such as central composite
or Box-Behnken designs. A comparison of number of runs
for mixture design, central composite design and Box-
Behnken design for second order model is given at Table 1.

Another advantage of mixture experiments appears when
the cost function includes only manufacturing costs. In such
cases, the solution of the tolerance allocation problem turns
out on the assembly tolerance T. In mixture experiments all
of the design points are on the

Pk
i¼1 xi ¼ 1 (i.e.,Pk

i¼1 ti ¼ T ), where xi=ti / T. On the other hand, when
response surface designs such as CCD or BBD are used to
estimate the cost function, some design points fall outside
the plane or prism defined by

Pk
i¼1 ti ¼ T related to the

constraints on the tis.
BBD and CCD are advantageous designs regarding their

orthogonality and rotatability properties, especially when a
second order model is used. However, when mixture designs
are utilized these advantages diminish because of the
component constraints and high linear dependencies can
occur. One disadvantage of the linear dependency is the
increase in the variance of bi’s and by’s. In order to avoid this
undesirable, techniques like best subset selection, stepwise
regression, forward elimination, and backward elimination
can be employed. By this way model estimates may have
better properties. Therefore, predicted cost values may have
lower prediction variance when mixture designs are used. An
example related to this situation is given in the next section.

When the cost function includes quality loss together
with manufacturing cost, the solution of the tolerance
allocation problem turns out anywhere on the region
defined by

Pk
i¼1 ti � T (i.e.,

Pk
i¼1 xi � 1). In such cases,

if a slack variable is added, the optimum solution turns out
on the

Pkþ1
i¼1 xi ¼ 1. In this situation, even though the

number of components and the number of design points
increase, this does not lead to a serious disadvantageous
case for k=3 and k=4 shown in Table 1.

Table 1 The Number of design points of three different designs for
second order model

Number of
components

Mixture
design

CCD Box-Behnken
design

3 6−9** 15 13
4 10*** 25* 25
5 21 27* 41
6 48 45 49

*with half fractional factorial
**minimum number of design points is 4 and number of parameter is 6
*** minimum number of design points is 9 and number of parameter is 10
Source: R. A. McLean, and V. L. Anderson, (1966)

Fig. 3 A portion of a steering
mechanism
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3.3 An illustrative example

Figure 3 shows an example of a portion of a steering
mechanism, which consists of components X1, X2, X3, and
X4. The associated component tolerances are t1, t2, t3, and
t4. The tolerance for assembly is 5.0 mm. The constraints
on the component tolerances are given in Table 2. The
constrained region, i.e., feasible region, which depends on
the constraints on the component tolerances, is drawn in
Fig. 4. The objective is to allocate the assembly tolerance
optimally between the components X1, X2, and X4 such that
the component tolerances give minimum manufacturing
cost. In this problem the tolerance for component X3 is
0.2 mm and fixed. So assembly tolerance can be accepted
as 4.8 mm (i.e., t1 + t2 + t4 ≤ 4.8 mm).

In this example, the extreme vertices design is used to
obtain the data. To obtain the design points, approximation
function and analysis of variance results, SAS software is
used. The associated design points, which are found by
using mixture design command in MINITAB and the

results of the planned experiments, are given in Table 3.
For constructing the mixture design for second order
model, “Type of Design” is selected as “Extreme vertices”
and “Number of replicates for the whole design” is selected
as “2”. After the experiments are carried out, resulting cost
values are obtained as can be seen in Table 3.

For full quadratic model in Eq. (8), by using stepwise
regression methods, the approximation function is found as

by ¼ �51:6x1 � 82:7x2 þ 90:8x3 þ 445x1x2

þ 229x1x3: ð10Þ
The optimum solutions are: x1=0.6667, x2=0.2500,

x3=0.0833 (i.e., t�1 ¼ 3:2, t�2 ¼ 1:2, t�4 ¼ 0:4). The predicted
manufacturing cost at optimum tolerance solutions is 39.38.

When mixture experiments are used, all of the experi-
mental design points will be on the feasible region.
However, when BBD or CCD is used, a number of design
points may fall outside of feasible region. When experi-
ments on such points are run, it is also possible to observe
some parts that may not be assembled since the total of
component tolerances exceeds assembly tolerance.

For the same example, BBD and CCD can also be
constructed as it can be seen in Tables 4 and 5. There are
some points which exceed the assembly tolerance value for
both designs. Feasible region defined by

Pk
i¼1 ti ¼ T and

design points for BBD, CCD and mixture design can be
shown in Fig. 5. In addition, it can be seen from Table 5,
when CCD and coding formula (4) are used, at axial design
points (design points 9–14), individual component toler-
ance constraints are exceeded. This situation may also lead
to functional problems of assemblies. Furthermore, accord-
ing to design point 9, tolerance of component 1 should have
a negative value, which is impossible in practice. When our
loss function deals with both manufacturing costs and
assembly costs utilization of CCD may not be feasible
because assembly tolerances can not be meet for some
design points.

A low variance of a predicted value, i.e., Var(by ), is a
much desired property of a statistically efficient model. For
a tolerance allocation problem, when the cost function
includes only manufacturing costs, mixture designs may

Table 2 The constraints on the component tolerances

Component
name

Component
code

Minimum
tolerance

Maximum
tolerance

Datum 1 t1 0.8 mm 3.2 mm
Datum 1 t2 0.4 mm 1.2 mm
Datum 1 t3 0.2 mm 0.2 mm
Datum 1 t4 0.4 mm 1.2 mm

Fig. 4 The constrained experimental region

Table 3 Experimental design and results of experiments

t1 t2 t4 x1 x2 x3 Y

rep1 rep2

3.2 0.4 1.2 0.6667 0.0833 0.2500 45 44
3.2 1.2 0.4 0.6667 0.2500 0.0833 40 39
2.8 1.2 0.8 0.5835 0.2500 0.1665 51 52
3.2 0.8 0.8 0.6667 0.1665 0.1665 42 41
2.4 1.2 1.2 0.5000 0.2500 0.2500 60 61
2.8 0.8 1.2 0.5835 0.1665 0.2500 56 55
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give a better distribution for prediction variance than CCD
and BBD on the assembly tolerance T. In order to explain
the case, in our example, some component tolerance values,
where the assembly tolerance is always exactly 4.8, are
determined and shown in Fig. 6. To explore the prediction
variances over the subregion which is illustrated in Fig. 6,
the prediction variances on the vertices and edges (i.e.,
mixture design points), on the centroid of this simplex
region, and on the midpoints of the lines between the
mixture design points and centroid of the region, are
examined. The reason for selecting these points is to
investigate their model performances in terms of prediction
variances, not just on the border of the feasible region, but

also inside and in the center of the area. Prediction variance
values (Var(by ) / σ2) and standardized prediction variance
values (NVar(by ) / σ2) at these component tolerance values
are given in Tables 6 and 7. Here σ2 is the variance of y’s
and N is the total number of observations. Models for BBD
and CCD are determined as full second order models in
order to have best rotatability and orthogonality properties.
A second order model with three components is given
below:by ¼ b1x1 þ b2x2 þ b3x3 þ b12x1x2 þ b13x1x3

þ b23x2x3 þ b11x
2
1 þ b22x

2
2 þ b33x

2
3: ð11Þ

Calculation formulas for prediction variance are given in
the Appendix. In this example, for most of the component
tolerance values (except design point 3 for both CCD and
BBD, and design point 5 for only CCD) mixture design
gives lower prediction variance than BBD and CCD. It is a
fact that a mixture design augmented with center points
gives better results by means of prediction variance, and this
fact is obvious regarding the results in the last column of
Table 6. In addition, prediction variance values for mixture
design are closer to each other. On the other hand, prediction
variance values for BBD have a wider spread. For this
example, it can be said that, mixture design give a better
distribution for prediction variance than BBD and CCD.

4 Further discussion and conclusion

In both Jeang [2] and Kim and Cho [1]’s studies, it is
emphasized that, with RSM, optimum component toler-

Table 5 Rotatable central composite design with two center points for k=3

Design Point t1 t2 t4 T x1 x2 X3

1 0.8 0.4 0.4 1.6 −1 −1 −1
2 3.2 0.4 0.4 4.0 1 −1 −1
3 0.8 1.2 0.4 2.4 −1 1 −1
4 3.2 1.2 0.4 4.8 1 1 −1
5 0.8 0.4 1.2 2.4 −1 −1 1
6 3.2 0.4 1.2 4.8 1 −1 1
7 0.8 1.2 1.2 3.2 −1 1 1
8* 3.2 1.2 1.2 5.6 1 1 1
9** −0.01815 0.8 0.8 1.58185 −1.68179 0 0
10* 4.01815 0.8 0.8 5.61815 1.68179 0 0
11*** 2.0 0.12728 0.8 2.92728 0 −1.68179 0
12*** 2.0 1.47272 0.8 4.27272 0 1.68179 0
13*** 2.0 0.8 0.12728 2.92728 0 0 −1.68179
14*** 2.0 0.8 1.47272 4.27272 0 0 1.68179
15 2.0 0.8 0.8 3.6 0 0 0
16 2.0 0.8 0.8 3.6 0 0 0

*At these points assembly tolerance exceeds 4.8
**At this point tolerance of component 1 should be a negative number, and practice it’s impossible.
***At these points, individual tolerances are either not met or exceed although assembly tolences are met.

Table 4 Box-Behnken design for k = 3

Design point t1 t2 t4 T x1 x2 x3

1 2.0 0.8 0.8 3.6 0 0 0
2 2.0 1.2 1.2 4.4 0 1 1
3* 3.2 0.8 1.2 5.2 1 0 1
4 2.0 0.8 0.8 3.6 0 0 0
5 0.8 0.8 0.4 2.0 −1 0 −1
6 3.2 0.4 0.8 4.4 1 −1 0
7 2.0 0.8 0.8 3.6 0 0 0
8* 3.2 1.2 0.8 5.2 1 1 0
9 0.8 0.4 0.8 2.0 −1 −1 0
10 0.8 1.2 0.8 2.8 −1 1 0
11 3.2 0.8 0.4 4.4 1 0 −1
12 0.8 0.8 1.2 2.8 −1 0 1
13 2.0 0.4 1.2 3.6 0 −1 1
14 2.0 0.4 0.4 2.8 0 −1 −1
15 2.0 1.2 0.4 3.6 0 1 −1

*At these points assembly tolerance exceeds 4.8
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ances can be determined, based on the predicted manufac-
turing cost or total cost values. In their studies, they
proposed using the response surface designs such as BBD
or CCD to determine predicted cost functions. In this
article, the use of mixture designs for tolerance allocation is
demonstrated.

There are several advantages of using mixture designs
instead of BBD or CCD. First, when mixture designs are
preferred, fewer design points are required than are required
for BBD or CCD. Second, all design points in the
experimental design are on the feasible region. When
BBD or CCD is used, some or many of the design points
can fall outside of the feasible region. This situation may
lead to larger variances of the predicted cost values on a

large part of the region defined by assembly tolerance T.
Additional constraints at component tolerances can be
exceeded which may result in functional problems on
assemblies.

Using CCD designs reveals extra disadvantages. When
CCD is constructed with the coding formula (4) proposed
by Kim and Cho [1], some design points may require
negative tolerances as we have seen in illustrative example
because of the design parameter constraints on the
component tolerances. This problem can be handled in
two ways: a coding formula other than proposed by Kim
and Cho [1] could be used, or ±! values on axial design
points could be chosen as ±1.

Fig. 6 Some tolerances on the
constrained region. °Design
points. +Some points on feasible
region defined by

Pk
i¼1 ti ¼ T

Fig. 5 Experimental design
points for BBD,CCD and mix-
ture design and the feasible
region defined by

Pk
i¼1 ti ¼ T
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Using the mixture designs also reveals some disadvan-
tages. When the linear dependence between the factors is
strong, variance inflation factor (VIF) values would be
large and predicted cost values would have large variances.
To handle this problem, model fitting methods such as
stepwise regression, forward elimination or backward
elimination can be used.

Appendix

Calculation formulas for prediction variance

In general, predicted tolerance - cost model can be written
in matrix notation as,by ¼ Xb ðA:1Þ

where by is N × 1 vector of predictor cost values, X is the N
× p matrix representing the design settings used as well as
the columns necessary to accommodate the assumed model,
and b is a p × 1 vector of estimated coefficients. Let x be an
arbitrary point that is located in the design region, and let f
(x) the appropriate expansion of x to accommodate the
assumed model. The fitted response at the arbitrary point x
is given by

by ¼ f xð Þ0b: ðA:2Þ

The variance of the predicted response value at the point
x is

Var byð Þ ¼ s2f xð Þ0 X 0Xð Þ�1f xð Þ: ðA:3Þ

Table 7 Standardized prediction variance values for some component tolerances on the T=4.8, which are presented in Fig. 6

Points t1 t2 t4 BBD* ccd* Mixture design** Mixture design***

1 3.2 0.4 1.2 20.9375 10.7194 4.9893 5.806245
2 3.2 1.2 0.4 20.9375 10.7194 4.9893 5.806245
3 2.8 1.2 0.8 7.2955 5.4044 5.9998 6.030119
4 3.2 0.8 0.8 5.9375 5.4211 2.0220 2.306245
5 2.4 1.2 1.2 8.5918 4.8810 5.9999 6.939655
6 2.8 0.8 1.2 20.9375 10.7194 5.9998 6.030119
7 2.933 0.933 0.933 4.8468 5.7232 2.5056 2.081372
8 3.0665 0.6665 1.0665 7.4465 5.9513 2.2786 2.214234
9 3.0665 1.0665 0.6665 6.4616 5.4260 2.2786 2.214234
10 3.0665 0.8665 0.8665 5.1731 5.6293 1.6121 1.43597
11 2.8665 1.0665 0.8665 4.9424 5.4311 3.3891 2.978169
12 2.8665 0.8665 1.0665 5.7563 5.8652 3.3891 2.978169
13 2.6665 1.0665 1.0665 5.0840 5.2094 2.6755 2.483276

* For these designs, full second order model which is defined by Eq. (11) is used
** For this design, model defined by Eq. (10) is used
*** Design which augmented with two center points

Table 6 Prediction variance values for some component tolerances on the T=4.8 which are presented in Fig. 6

Points t1 t2 t4 BBD* ccd* Mixture design** Mixture design***

1 3.2 0.4 1.2 1.395833 0.669963 0.415775 0.414732
2 3.2 1.2 0.4 1.395833 0.669963 0.415775 0.414732
3 2.8 1.2 0.8 0.486368 0.337777 0.499983 0.430723
4 3.2 0.8 0.8 0.395833 0.338817 0.168497 0.164732
5 2.4 1.2 1.2 0.572788 0.305065 0.499988 0.49569
6 2.8 0.8 1.2 1.395833 0.669963 0.499983 0.430723
7 2.933 0.933 0.933 0.323123 0.357699 0.208799 0.148669
8 3.0665 0.6665 1.0665 0.496432 0.371957 0.189887 0.15816
9 3.0665 1.0665 0.6665 0.430773 0.339128 0.189887 0.15816
10 3.0665 0.8665 0.8665 0.344872 0.351829 0.134341 0.102569
11 2.8665 1.0665 0.8665 0.329495 0.339445 0.282421 0.212726
12 2.8665 0.8665 1.0665 0.383754 0.366575 0.282421 0.212726
13 2.6665 1.0665 1.0665 0.338936 0.325587 0.222956 0.177377

* For these designs, full second order model, which is defined by Eq. (11) is used
** For this design, model defined by Eq. (10) is used
*** Design which augmented with two center points
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Since σ2 is generally unknown and beyond the control of
experimenter, in most study, it is preferred to work with the
quantity

Var byð Þ
s2

¼ f xð Þ0 X 0Xð Þ�1f xð Þ: ðA:4Þ

It is common in RSM to scale criteria such as the
prediction variance by the total number of observations, N.
Scaled quantity

N � Var byð Þ
s2

¼ N � f xð Þ0 X 0Xð Þ�1f xð Þ ðA:5Þ

is also called standardized prediction variance. It is
important to note that, the prediction variance depends
only on the design points and the form of the assumed
model (through f(x)) and the specific location of x.
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