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Abstract A hybrid system is constructed in this study for
wafer-lot-output time prediction and achievability evalua-
tion, which are critical tasks for a wafer fab (fabrication
plant). In the first part of the hybrid system, a look-ahead
self-organization map fuzzy-back-propagation network
(SOM-FBPN) is constructed to predict the output time of
a wafer lot. Compared with traditional approaches in this
field, the look-ahead SOM-FBPN has three advanced
features: incorporating the future release plan, classifying
wafer lots, and incorporating expert opinions. According to
experimental results, the prediction accuracy and efficiency
of the look-ahead SOM-FBPN were significantly better
than those of many existing approaches. In the second part
of the hybrid system, a set of fuzzy inference rules (FIRs)
are established to evaluate the achievability of an output
time forecast, which is defined as the possibility that the
fabrication on the wafer lot can be finished in time before
the output time forecast. Achievability is as important as
accuracy and efficiency but has been ignored in traditional
studies. With the proposed methodology, both output time
prediction and achievability evaluation can be concurrently
accomplished.
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1 Introduction

Predicting the output time for every lot in a wafer fab is a
critical task not only to the fab itself, but also to its
customers. After the output time of each lot in a wafer fab
is accurately predicted, several managerial goals (including
internal due-date assignment, output projection, ordering
decision support, enhancing customer relationship, and
guiding subsequent operations) can be simultaneously
achieved [6]. Predicting the output time of a wafer lot is
equivalent to estimating the cycle (flow) time of the lot,
because the former can be easily derived by adding the
release time (a constant) to the latter.

There are six major approaches commonly applied to
predicting the output/cycle time of a wafer lot: multiple-
factor linear combination (MFLC), production simulation
(PS), back propagation networks (BPN), case-based rea-
soning (CBR), fuzzy modeling methods, and hybrid
approaches. Among the six approaches, MFLC is the
easiest, quickest, and most prevalent in practical applica-
tions. The major disadvantage of MFLC is the lack of
forecasting accuracy [6]. Conversely, a huge amount of data
and lengthy simulation time are two disadvantages of PS.
Nevertheless, PS is the most accurate output-time predic-
tion approach if the related databases are continuingly
updated to maintain enough validity, and it often serves as a
benchmark for evaluating the effectiveness of another
method. Considering both effectiveness and efficiency,
Chang et al. [5] and Chang and Hsieh [3] both forecasted
the output/cycle time of a wafer lot with a BPN having a
single hidden layer. Compared with MFLC approaches, the
average prediction accuracy measured with the root mean
squared error (RMSE) was considerably improved with
these BPNs. For example, an improvement of about 40% in
the RMSE was achieved in Chang et al. [5]. On the other
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hand, much less time and fewer data are required to
generate an output time forecast with a BPN than with PS.
Chang et al. [4] proposed a k-nearest-neighbors based case-
based reasoning (CBR) approach which outperformed the
BPN approach in forecasting accuracy. In one case, the
advantages were up to 27%. Chang et al. [5] modified
the first step (i.e. partitioning the range of each input
variable into several fuzzy intervals) of the fuzzy modeling
method proposed by Wang and Mendel [19], called the
WM method, with a simple genetic algorithm (GA) and
proposed the evolving fuzzy rule (EFR) approach to predict
the cycle time of a wafer lot. Their EFR approach
outperformed CBR and BPN in prediction accuracy. Chen
[6] constructed a fuzzy BPN (FBPN) that incorporated
expert opinions in forming inputs to the FBPN. Chen’s
FBPN was a hybrid approach (fuzzy modeling and BPN)
and surpassed the crisp BPN especially in respect to
efficiency.

According to these results, the concept of classifying
inputs, which has been adopted in CBR and EFR, can
indeed improve the effectiveness (prediction accuracy) of
wafer-lot-output time prediction. This fact provides a
motive for proposing a similar approach—a SOM classifier
and then a FBPN regression for the same purpose. On the
other hand, all the aforementioned methods are based on
the historical data of the fab. However, a lot of studies have
shown that the performance of sequencing and scheduling
in a fab relies heavily on the future release plan, which has
been neglected in this field. In addition, the characteristic
reentrant production flows of a fab lead to the phenomenon
that a lot that will be released in the future might appear in
front of another lot that currently exists in the fab. For these
reasons, to further improve the accuracy of wafer-lot-output
time prediction, the future release plan of the fab has to be
considered (look-ahead). As a result, a look-ahead SOM-
FBPN is constructed to predict the output time of a wafer
lot. Compared with traditional approaches in this field, the
look-ahead SOM-FBPN has three advanced features:

1. The future release plan of the fab is incorporated
2. Wafer lots are classified
3. Expert opinions are incorporated

PS is also applied in this study to generate test examples.
Using simulated data, the effectiveness and efficiency of the
look-ahead SOM-FBPN are shown and compared with those
of many existing approaches. On the other hand, traditional
studies in this field are focused on accuracy and efficiency
aspects. Another concept that is as important but has been
ignored, is the “achievability” of an output time forecast,
which is defined as the possibility that the fabrication on the
wafer lot can be finished in time before the output time
forecast. Theoretically, if a probability distribution can be
obtained for the output time forecast, then the achievability

can be evaluated with the cumulative probability of the
probability distribution before the given date. However,
there are many managerial actions (e.g. elevating the priority
of the wafer lot, lowering the priority of another wafer lot,
inserting emergency lots, adding allowance, etc.) that are
more influential to the achievability. Considering their
effects, the evaluation of the achievability is decomposed
into the following two assessments: the possible forward-
ness of the output time forecast if the priority is elevated, and
the ease of priority elevation. For combining the two
assessments, the fuzzy AND operator is applied, followed
by the establishment of a set of FIR facilitate the application.
Finally, a hybrid look-ahead SOM-FBPN and FIR system is
constructed to enhance the effectiveness and efficiency of
wafer-lot-output time prediction, and to evaluate the
achievability of an output time forecast.

2 Previous related work

As mentioned previously, predicting the output time of a
wafer lot is equivalent to estimating the cycle time of the
wafer lot. There are six major approaches commonly
applied to predicting the output/cycle time of a wafer lot:

1. MFLC: The cycle time of a lot is estimated with the
weighted sum of parameters includingthe following
three points:

– Job properties: The total processing time, the
number of reentrances, and the number of oper-
ations of the lot

– Cycle time and waiting time series: the actual cycle
times, the waiting times, the total processing times,
the numbers of reentrances, and the numbers of
operations of some (usually three) of the most
recently completed lots

– Workload information: the number of jobs (work-
in-progress, WIP) in the fab or waiting for the most
bottlenecked machines or on the processing route of
the lot, the average fab utilization

Many internal due-date setting rules belong to MFLC
(see Table 1). Among the six approaches, MFLC is the
easiest, quickest, and most prevalent in practical applica-
tions. The major disadvantage of MFLC is the lack of
forecasting accuracy.
2. PS: A fab production simulation system continuously

updating the related databases to maintain enough
validity can also be applied to predicting/simulating
the output time of a wafer lot (e.g. [16, 20]).
Theoretically, a number of replicates of a probabilistic
simulation need to be run to sufficiently consider all
uncertain or stochastic properties and events (e.g.
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inconsistent human-assisted operations, unexpected
machine downs, etc.), so as to obtain a more reliable
forecast. There are two shortages of PS: (1) huge
amount of data needs to be maintained; (2) simulation
time is often lengthy. Nevertheless, PS is the most
accurate output time prediction approach (if the related
databases are continuously updated to maintain enough
validity), and often serves as a benchmark for evaluat-
ing the effectiveness of another method. PS also tends
to be preferred because it allows for computational
experiments and subsequent analyses without any
actual execution [4].

3. BPN: Many studies have shown that artificial neural
networks (ANN) outperform traditional methods in
time-series forecasting [9]. The advantages of a BPN
include the tolerance of noises [15], the speed of
application, and the capability of simulating complex
systems (such as a wafer fab). Chang and Liao [5] and
Chang and Hsieh [3] both forecasted the output/cycle
time of a wafer lot with a BPN having a single hidden
layer. Compared with MFLC approaches, the average
prediction accuracy (measured with the RMSE) was
considerably improved with these BPNs. On the other
hand, much less time and fewer data are required to

Table 1 Some internal due-date setting rules

Method Formula Symbol meanings

Total work content (TWK) CTn=ω1NPn+ω2TPn,OTn=CTn+RTn. CTn: cycle time of lot n
Number of operations
(NOP) [1]

RTn: release time of lot n

NPn: number of operations of lot n
TPn: total processing time of lot n
OTn: output time forecast of lot n
ωj: constants, for all j.

Current jobs-in-queue
(JIQ) [18]

CTn ¼ ω1Qn þ ω2NPn þ ω3TPn;
OTn ¼ CTn þ RTn:

Qn: total queue length on the route
of lot n

Cycle time sampling CTn ¼ ω1 �
Pk
i¼1

CT ið Þ
NP ið Þ
k � NPn þ ω2NPn þ ω3TPn;OTn ¼ CTn þ RTn:

CT(i): cycle time of thei-th most
recently finished lot

Cycle time statistics
referencing

NP(i): number of operations of the
i-th most recently finished lot.

Operation flowtime
sampling (OFS) [18]
Average delay-in-queue
(DIQ) [18]

CTn ¼ ω1 �
Pk
i¼1

D ið Þ
NP ið Þ
k � NPn þ ω2TPn;OTn ¼ CTn þ RTn: TR(i): total processing time of the

i-th most recently finished lot
D(i): delay of thei-th most recently
finished lot=CT(i)−TR(i)

Congestion and cycle time
sampling

CTn ¼ ω1 � Qn þ ω2 �
Pk
i¼1

CT ið Þ
NP ið Þ
k � NPn þ ω3NPn þ ω4TPn;OTn ¼ CTn þ RTn:

Congestion and operation
flowtime sampling
(COFS) [1]
Exponential smoothing
[11]

CTn ¼ TPn þ Dn;Dn is continuously modified as follows:
New Dn ¼ Dn þ α D 1ð Þ � Dn

� �
;

OTn ¼ CTn þ RTn:

α:: constant, 0≤α≤1

Empirical queuing
approach [13]

CTn ¼ TPn þ Dn Uð Þ;
Dn Uð Þ : the relationship (obtained by regression) between a

lot’s delay and the fab’s utilization, OTn ¼ CTn þ RTn:

Bayesian cycle time
prediction

CTn(WIP, c) is fitted and modified after a Bayesian analysis, WIP: fab WIP

c ¼ rbT0
rbT0�1

CT
T0

� 1
� �

;OTn ¼ CTn WIP; cð Þ þ RTn: c: congestion level
rb: bottleneck machine processing
rate (jobs/unit time)
T0: the mean cycle time when
WIP=1.
CT : the mean cycle time
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generate an output time forecast with a BPN than
with PS.

4. CBR: Chang et al. [4] proposed a k-nearest-neighbors-
based CBR approach with dynamic factor weights and
a nonlinear similarity function for due-date assignment
in a wafer fab, in which the weights of factors (the
cycle times of the previous cases/lots) are proportional
to the similarities of the new lot with the previous
cases. Chang et al.’s CBR approach outperformed the
BPN approach in forecasting accuracy.

5. Fuzzy modeling methods: Chang et al. [5] modified the
first step (i.e. partitioning the range of each input
variable into several fuzzy intervals) of the WM
method with a simple genetic algorithm and proposed
the EFR approach to predict the cycle time of a wafer
lot. Their EFR approach outperformed CBR and BPN
in prediction accuracy. Genetic techniques have shown
to be capable of carrying out a comprehensive
optimization of the parameters.

6. Hybrid approaches: Chen [6] constructed a FBPN
that incorporated expert opinions in forming inputs
to the FBPN. Chen’s FBPN was a hybrid approach
(fuzzy modeling and BPN) and surpassed the crisp
BPN in respect to efficiency. In regards to prediction
accuracy measured with the minimal RMSE, the
performance of the FBPN was slightly better than that
of the BPN.

Traditional studies in this field are focused on accuracy
and efficiency aspects. However, whether an output time
forecast can be achieved or not has not been investigated,
and that might be much more important from a managerial
and practical viewpoint. As a summary of this section, a
trade-off table for selecting output time prediction
approaches is shown in Table 2.

3 Methodology

In this paper, a hybrid look-ahead SOM-FBPN and FIR
system is constructed for lot-output time prediction and
achievability evaluation in a wafer fab (see Fig. 1). The
hybrid system is composed of two parts. In the first part, a
look-ahead SOM-FBPN (see Fig. 2) is proposed to predict
the output time of a wafer lot.

3.1 Wafer-lot-output time prediction with a look-ahead
SOM-FBPN

There are three steps in applying the look-ahead SOM-
FBPN to predicting the output time of a wafer lot.

3.1.1 Step 1: incorporating the future release plan
of the fab (look-ahead)

There are many possible ways to incorporate the future
release plan in predicting the output time of a wafer lot
currently existing in the fab. In this study, the three nearest
future discounted workloads on the lot’s processing route
(according to the future release plan) are proposed for this
purpose:

1. The first nearest future discounted workload (FDW(1)):
the sum of the (processing time/release time)’s of the
operations of the lots that will be released within time
(now, now+T1)

2. The second nearest future discounted workload
(FDW(2)): the sum of the (processing time/release
time)’s of the operations of the lots that will be released
within time (now+T1, now+ T1+T2)

3. The third nearest future discounted workload (FDW(3)):
the sum of the (processing time/release time’s) of the
operations of the lots that will be released within time
(now+T1+T2, now+T1+T2+T3).

Note that only the operations performed on the machines
on the lot’s processing route are considered in calculating
these future workloads, which then become three additional
inputs to the FBPN.

3.1.2 Step 2: example classification with SOM: rationale
and procedure

At first, the rationale for combining SOM and FBPN for
wafer-lot output time prediction is explained as follows.
Theoretically, a well-trained BPN or FBPN (without being

SOM FBPN

FIR

Output time forecast

Achievability

Fig. 1 The system architecture

Table 2 A trade-off table for
selecting output time prediction
approaches

Approach Data required Execution time Accuracy Easy to use Prevalence

PS Huge Lengthy Very high Easy Not prevalent
MFLC Small Very short Low Very easy prevalent
BPN, FBPN Small Short High Difficult Not prevalent
CBR Small Short High Difficult Not prevalent
EFR Small Short High Difficult Not prevalent
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stuck to local minima) with a good selected topology can
successfully map any complex distribution. However,
wafer-lot output time prediction is a much more compli-
cated problem, and the results of many previous studies (e.g.
[4–6]) have shown the incapability of BPN or FBPN in
solving such a problem. One reason is that there might be
multiple complex distributions to model, and these distri-
butions might be quite different (even for the same product
type and priority). For example, when the workload level
(in the wafer fab or on the processing route or before
bottlenecks) is stable, the cycle time of a wafer lot basically
follows the well-known Little’s law [14], and the output
time of the wafer lot can be easily predicted. Conversely, if
the workload level fluctuates or keeps going up (or down),
predicting the cycle time and output time of a wafer lot
becomes much more difficult. For this reason, classifying
wafer lots under different circumstances seems to be a
reasonable treatment. In this respect, SOM can serve as a
clustering tool for high dimensional data (e.g. production
data in a wafer fab) [12]. Besides, there are several studies
that suggested the hybrid use of SOM and BPN or FBPN
(e.g. [2, 7, 17]), and the latter is a well-known approach to
wafer-lot-output time prediction. As a result, the combina-
tion of SOM and FBPN is chosen in this study.

The procedure of applying SOM in forming inputs to the
FBPN is now detailed. Every lot fed into the FBPN is
called an example. Examples are pre-classified into differ-
ent categories before they are fed into the FBPN with SOM.
Let xn denotes the nine-dimensional Un; Qn; BQn;ð
FQn; WIPn; D ið Þ

n ; FDW 1ð Þ
n ; FDW 2ð Þ

n ; andFDW 3ð Þ
n Þ feature

vector corresponding to lot n. The feature vectors of all
lots are fed into an SOM network with the following
learning algorithm:

1. Set the number of output nodes and the number of
input nodes. Initialize the learning rate, the neighbor-
hood size, and the number of iterations.

2. Initialize the weights (wij) randomly where i=1~m and
m stands for the maximum number of classes (wafer lot
categories), j=1~9.

3. (Iteration) Provide an input vector to the network.
4. Find the output node (winner) based on the similarity

between the input vector and the weight vector. For an
input vector xn, the winning unit can be determined by
distance xn � wck k ¼ min

i
xn � wik k, where wi is the

weight vector of the i-th unit and the index c refers to
the winning unit.

5. Update the weight vector of the winner node using
Kohonen’s learning rule. wi tþ1ð Þ¼wi tð Þþα tð Þ xn�wið Þ
for each i 2 Nc tð Þ; where t is the discrete-time index of
the variables; the factor α(t)Z [0, 1] is a scalar that
defines the relative size of the learning step; Nc(t)
specifies the neighborhood around the winner in the
map array.

6. Provide the next input vector and go to step 4.
Otherwise, go to step 7.

7. Stop if the number of iterations has been completed.
Otherwise, go to step 3.

After the training is accomplished, input vectors that are
topologically close are mapped to the same category, and
then the classification result is post-processed, including
eliminating isolated examples, merging small blocks, etc.
Finally, the classification is finished, and the value of ‘m’ is
determined. After classification, examples of different
categories are then learned with different FBPNs but with
the same topology. The procedure for determining the
parameter values is described in the next section.

3.1.3 Step 3: output time prediction within each category
with FBPN

After pre-classification, a portion of the adopted examples
in each category is fed as “training examples” into the
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Fig. 2 The look-ahead
SOM-FBPN
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FBPN to determine the parameter values for the category.
The configuration of the FBPN is established as follows:

1. Inputs: nine parameters associated with the n-th
example/lot including the average fab utilization (Un),
the total queue length on the lot’s processing route (Qn)
or before bottlenecks (BQn) or in the whole fab (FQn),
the fab WIP (WIPn), the latenesses D ið Þ

n

� �
of thei-th

recently completed lots, and the three nearest future
discounted workloads on the lot’s processing route
(FDW(1), FDW(2), and FDW(3)). These parameters have
to be normalized so that their values fall within (0, 1).
Then some production execution/control experts are
requested to express their beliefs (in linguistic terms)
about the importance of each input parameter in
predicting the cycle (output) time of a wafer lot.
Linguistic assessments for an input parameter are
converted into several pre-specified fuzzy numbers.
The subjective importance of an input parameter is then
obtained by averaging the corresponding fuzzy num-
bers of the linguistic replies for the input parameter by
all experts. The subjective importance obtained for an
input parameter is multiplied to the normalized value of
the input parameter. After such a treatment, all inputs to
the FBPN become triangular fuzzy numbers, and the
fuzzy arithmetic for triangular fuzzy numbers is applied
to deal with all calculations involved in training the
FBPN.

2. Single hidden layer: Generally one or two hidden layers
are more beneficial for the convergence property of the
FBPN.

3. Number of neurons in the hidden layer: the same as that
in the input layer. Such a treatment has been adopted by
many studies (e.g. [4]). Two other formulas for
determining the suitable number of neurons in the
hidden layer are also listed for reference:

– Number of neurons in the hidden layer=(number of
neurons in the input layer + number of neurons in
the output layer)/2.

– Number of neurons in the hidden layer=(number of
neurons in the input layer × number of neurons in
the output layer)1/2.

4. Output: the (normalized) cycle time forecast of the
example.

5. Network learning rule: delta rule.
6. Transformation function: Sigmoid function,

f xð Þ ¼ 1

1þ e�x
:

7. Learning rate (η): 0.01~1.0.
8. Batch learning.

The procedure for determining the parameter values is
now described. After pre-classification, a portion of the

adopted examples in each category is fed as “training
examples” into the FBPN to determine the parameter values
for the category. Two phases are involved at the training
stage. At first, in the forward phase, inputs are multiplied
with weights, summated, and transferred to the hidden
layer. Then activated signals are outputted from the hidden
layer as:

ehj ¼ hj1; hj2; hj3
� � ¼ 1

1þ e�enhj
¼ 1

1þ e�nhj1
;

1

1þ e�nhj2
;

1

1þ e�nhj3

� �
;

where

enhj ¼ nhj1; n
h
j2; n

h
j3

� �
¼ eIhj �ð Þeθhj ¼ Ihj1 � θhj3; I

h
j2 � θhj2; I

h
j3 � θhj1

� �
;eIhj ¼ Ihj1; I

h
j2; I

h
j3

� �
¼P

all i
ewh
ij �ð Þex ið Þ

ffi P
all i

min wh
ij1x ið Þ1;wh

ij3x ið Þ3
� �

;
P
all i

wh
ij2x ið Þ2;

P
all i

max wh
ij1x ið Þ1;wh

ij3x ið Þ3
� �� �

;

and (–) and (×) denote fuzzy subtraction and multiplication,
respectively; ehj’s are also transferred to the output layer
with the same procedure. Finally, the output of the FBPN is
generated as:

eo ¼ o1; o2; o3ð Þ ¼ 1

1þ e�en o

¼ 1

1þ e�no1
;

1

1þ e�no2
;

1

1þ e�no3

� �
;

where

eno ¼ no1; n
o
2; n

o
3

� � ¼ eIo �ð Þeθo ¼ Io1 � θo3; I
o
2 � θo2; I

o
3 � θo1

� �
;eIo ¼ Io1 ; I

o
2 ; I

o
3

� � ¼ P
all j
ewo
j �ð Þehj

ffi P
all j

min wo
j1hj1; wo

j3hj3
� �

;
P
all j

wo
j2hj2;

P
all j

max wo
j1hj1; wo

j3hj3
� � !

:

To improve the practical applicability of the FBPN and
to facilitate the comparisons with conventional techniques,
the fuzzy-valued output õ is defuzzified according to the
centroid-of-area (COA) formula:

o ¼ COA eoð Þ ¼ o1 þ 2o2 þ o3
4

:

Then the output o is compared with the normalized
actual cycle time a, for which the RMSE is calculated:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all trained examples

o� að Þ2

number of trained examples

vuuut
:

Subsequently in the backward phase, the deviation
between o and a is propagated backward, and the error
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terms of neurons in the output and hidden layers can be
calculated respectively as:

δo ¼ oð1� oÞða� oÞ ;eδhj ¼ ðδhj1; δhj2; δhj3Þ ¼ ehjð�Þð1� ehjÞð�Þewo
j δ

o

ffi ðminðminðhj1Þð1� hj3Þwo
j1; hj3ð1� hj1Þwo

j1Þδo;
maxðhj3ð1� hj1Þwo

j3; hj1ð1� hj3Þwo
j3ÞδoÞ;

hj2ð1� hj2Þwo
j2δ

o; maxðminðhj1ð1� hj3Þwo
j1;

hj3ð1� hj1Þwo
j1Þδo; maxðhj3ð1� hj1Þwo

j3; hj1ð1� hj3Þwo
j3ÞδoÞÞ:

Based on them, adjustments that should be made to the
connection weights and thresholds can be obtained as:

Δewo
j ¼ ðΔwo

j1;Δwo
j2;Δwo

j3Þ ¼ ηδoehj
¼ ηδoðminðhj1; hj3Þ; hj2; maxðhj1; hj3ÞÞ;

Δewh
ij ¼ ðΔwh

ij1; Δwh
ij2; Δwh

ij3Þ ¼ ηeδhj ð�Þexi
ffi ηðminðδhj1xi1; δhj1xi3; δhj3xi1; δhj3xi3Þ; δhj2xi2;

maxðδhj1xi1; δhj1xi3; δhj3xi1; δhj2xi3ÞÞ;
Δθo ¼ �ηδo;

Δeθhj ¼ ðΔθhj1; Δθhj2; Δθhj3Þ ¼ �ηeδhj
¼ ð�ηδhj3; �ηδhj2; �ηδhj1Þ:

To accelerate convergence, a momentum can be added to
the learning expressions. For example,

Δewo
j ¼ ηδoehj þ αðewo

j ðtÞ � ewo
j ðt � 1ÞÞ

¼ ðηδohj1 þ αwo
j1ðtÞ � αwo

j3ðt � 1Þ;
ηδohj2 þ αwo

j2ðtÞ � αwo
j2ðt � 1Þ;

ηδohj3 þ αwo
j3ðtÞ � αwo

j1ðt � 1ÞÞ:

Theoretically, network-learning stops when the RMSE
falls below a pre-specified level, or the improvement in the

RMSE becomes negligible with more epochs, or a large
number of epochs have already been run. Then test
examples are fed into the FBPN to evaluate the accuracy
of the network that is also measured with the RMSE.
However, the accumulation of fuzziness during the training
process continuously increases the lower bound, the upper
bound, and the spread of the fuzzy-valued output õ (and
those of many other fuzzy parameters), and might prevent
the RMSE (calculated with the defuzzified output o) from
converging to its minimal value. Conversely, the centers of
some fuzzy parameters are becoming smaller and smaller
because of network learning. It is possible that a fuzzy
parameter becomes invalid in the sense that the lower
bound higher than the center. To deal with this problem, the
lower and upper bounds of all fuzzy numbers in the FBPN
will no longer be modified if the following index converges
to a minimal value

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all examples min o1 � að Þ2; o3 � að Þ2

� �
number of examples

vuut þ 1� αð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all examples max o1 � að Þ2; o3 � að Þ2

� �
number of examples

vuut
; 0 < α < 1:

Finally, the FBPN can be applied to predict the cycle
time of a new lot. When a new lot is released into the fab,

Fig. 3 The concept of achievability from a probabilistic viewpoint

FWDmaxFWDmin

I SI M SS S1

µ

FWD0

Fig. 4 The fuzzy classification of the forwardness

+ max
allowance

VE E M D VD1

µ

current
percentage

0
percentage

target
- max
allowance

Fig. 5 Ease of priority elevation
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the nine parameters associated with the new lot are
recorded and compared with those of each category center.
Then the FBPN with the parameters of the nearest category
center is applied to forecasting the cycle time of the new
lot. In this study, SOM was implemented on the software
“NeuroSolutions 4.0”, while a VB.NET program has been
developed to implement FBPN.

3.2 Output time forecast achievability evaluation with FIR

The “achievability” of an output time forecast is defined as
the possibility that the fabrication on the wafer lot can be
finished in time before the output time forecast. Theoreti-
cally, if a probability distribution can be obtained for the
output time forecast, then the achievability can be evaluated
with the cumulative probability of the probability distribu-
tion before the given date (see Fig. 3). However, there are
many managerial actions (e.g. elevating the priority of the
wafer lot, lowering the priority of another wafer lot,
inserting emergency lots, adding allowance, etc.) that are
more influential to the achievability. Considering their
effects, the evaluation of the achievability is decomposed
into the following two assessments: the possible forward-
ness of the output time forecast if the priority is elevated,
and the ease of priority elevation. For combining the two
assessments, the fuzzy and operator is applied. The
philosophy is that “if the output time forecast can be
significantly forwarded after priority elevation, and the
required priority elevation is not difficult at all for the lot,
then the achievability of the original output time forecast is
undoubtedly high, because the priority of the lot can be
elevated during fabrication to achieve the given date if
necessary.” Finally, a set of FIR is established to facilitate

the application. The procedure of applying the FIR set to
evaluating the achievability of an output time forecast is
detailed in the following:

1. Vary the priority of the wafer lot (from the current level
to every higher level), and then predict the output time
of the wafer lot again with the look-ahead SOM-FBPN.

2. Calculate the forwardness (represented with FWD) of
the output time (i.e. the reduction in the cycle time)
after priority elevation, and then classify the result into
one of the following five categories: “insignificant (I)”,
“somewhat insignificant (SI)”, “moderate (M)”, “some-
what significant (SS)”, and “significant (S)”. Apply
Ishibuchi’s simple fuzzy partition [10] in forming the
five categories (see Fig. 4).

3. Request experts to evaluate the ease of priority
elevation, and then classify the result into one of the
following five categories: “very easy (VE)”, “easy (E)”,
“moderate (M)”, “difficult (D)”, and “very difficult
(VD)”. Usually the percentages of lots with various
priorities in a wafer fab are controlled. The ease of
priority elevation is determined against such targets
(see Fig. 5).

4. Apply the fuzzy and operator to combine the two
assessments. For facilitating the application, a set of
fuzzy inference rules has been established in Table 3 to
look up the achievability of the output time forecast,
which is represented with linguistic terms including
“very low (VL)”, ”low (L)”, ”medium (M)”, ”high (H)”,
and “very high (VH)”.

Table 3 Fuzzy inference rules

Forwardness of output time
forecast (%)

Ease of priority
elevation

Achievability

I – VL
SI VD VL
SI D, M, E, VE L
M VD VL
M D L
M M, E, VE M
SS VD VL
SS D L
SS M M
SS E, VE H
S VD VL
S D L
S M M
S E H
S VE VH
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Fig. 6 Time series plot of cycle time (product A, normal lots)

Table 4 The number of wafer lot categories

A
(normal lots)

A
(hot lots)

A
(super hot lots)

B
(normal lots)

B
(hot lots)

m 6 4 4 5 3
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4 A demonstrative example from a simulated wafer fab

In practical situations, the history data of each lot is only
partially available in the factory. Further, some information
of the previous lots such as Qn, BQn, and FQn is not easy to
collect on the shop floor. Therefore, a simulation model is
often built to simulate the manufacturing process of a real
wafer fabrication factory [1, 3–6, 8, 11, 18]. Then, such
information can be derived from the shop floor status
collected from the simulation model [4]. To generate a
demonstrative example, a simulation program coded using
Microsoft Visual Basic 6.0 is constructed to simulate a wafer
fabrication environment with the following assumptions:

1. The distributions of the interarrival times of orders are
exponential.

2. The distributions of the interarrival times of machine
downs are exponential.

3. The distribution of the time required to repair a
machine is deterministic.

4. The percentages of lots with different product types in
the fab are predetermined. As a result, this study is
only focused on fixed-product-mix cases.

5. The percentages of lots with different priorities
released into the fab are controlled.

6. The priority of a lot cannot be changed during
fabrication.

7. Lots are sequenced on each machine first by their
priorities, then by the first-in-first-out (FIFO) policy.
Such a sequencing policy is a common practice in
many foundry fabs.

8. A lot has equal chances to be processed on each
alternative machine/head available at a step.

9. A lot cannot proceed to the next step until the
fabrication on its every wafer has been finished.

10. No preemption is allowed.

The basic configuration of the simulated wafer fab is the
same as a real-world wafer fabrication factory which is
located in the Science Park of Hsin-Chu, Taiwan, R.O.C.
Assumptions (1)∊(3), and (7)∊(9) are commonly adopted in
related researches (e.g. [3–6]), while assumptions (4)∊(6)
are made to simplify the situation. There are five products
(labeled as A∊E) in the simulated fab. A fixed product mix

is assumed. The percentages of these products in the fab’s
product mix are assumed to be 35, 24, 17, 15, and 9%,
respectively. The simulated fab has a monthly capacity of
20,000 pieces of wafers and is expected to be fully utilized
(utilization=100%). POs with normally distributed sizes
(mean=300 wafers; standard deviation=50 wafers) arrive
according to a Poisson process, and then the corresponding
MOs are released for these POs a fixed time after. Based on
these assumptions, the mean inter-release time of MOs into
the fab can be obtained as (30.5*24)/(20,000/300)=11 h. An
MO is split into lots of a standard size of 24 wafers per lot.
Lots of the same MO are released one by one every 11/
(300/24)=0.85 h. Three types of priorities (normal lot, hot
lot, and super hot lot) are randomly assigned to lots. The
percentages of lots with these priorities released into the fab
are restricted to be approximately 60, 30, and 10%,
respectively. Each product has 150∊200 steps and 6∊9
reentrances to the most bottleneck machine. The singular
production characteristic “reentry” of the semiconductor
industry is clearly reflected in the example. It also shows
the difficulty for the production planning and scheduling
people to provide an accurate due-date for the product with
such a complicated routing. Totally 102 machines (includ-
ing alternative machines) are provided to process single-
wafer or batch operations in the fab. Thirty replicates of the
simulation are successively run. The time required for each
simulation replicate is about 15 min on a PC with 256 MB
RAM and Athlon 64 Processor 3000+CPU. A horizon of
24 months is simulated. The maximal cycle time is less than
3 months. Therefore, 4 months and an initial WIP status
(obtained from a pilot simulation run) seemed to be
sufficient to drive the simulation into a steady state. The
statistical data were collected starting at the end of the
fourth month. For each replicate, data of 30 lots are
collected and classified by their product types and

Table 5 Comparisons of the RMSEs of various approaches

RMSE BPN FBPN CBR EFR Look-ahead SOM-FBPN

A (normal) 178.59 177.1 (−1%) 172.44 (−3%) 164.29 (−8%) 141.47 (−21%)
A (hot) 102.1 102.27 (+0%) 86.66 (−15%) 66.21 (−35%) 59.51 (−42%)
A (super hot) 13.49 12.23 (−9%) 11.59 (−14%) 9.07 (−33%) 9.07 (−33%)
B (normal) 289.22 286.93 (−1%) 295.51 (+2%) 208.28 (−28%) 178.42 (−38%)
B (hot) 77.61 75.98 (−2%) 78.85 (+2%) 44.57 (−43%) 38.59 (−50%)

Table 6 The k values for different product types and priorities

A
(normal lots)

A
(hot lots)

A
(super hot lots)

B
(normal lots)

B
(hot lots)

k 8 6 4 9 5
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priorities. In total, data of 900 lots can be collected as
training and testing examples. Among them, 2/3 (600 lots,
including all product types and priorities) are used to train
the network, and the other 1/3 (300 lots) are reserved for
testing. The three parameters in calculating the future
discounted workloads are specified as:T1=1 week;
T2=1.5 weeks;T3= 2 weeks.

The time series plot of 100 simulated cycle time data is
shown in Fig. 6. As we can observe here, the pattern of the
cycle time is not stable and very non-stationary. The
traditional approach by human decision is very inaccurate
and very prone to failure when the shop status is totally
different even for the same product. A trace report was
generated every simulation run for verifying the simulation
model. The simulated average cycle times have also been
compared with the actual values to validate the simulation
model.

5 Results and discussions

The first part of the hybrid system is a look-ahead SOM-
FBPN applied to predicting the output time for every lot in
the wafer fab. In the demonstrative example, the look-ahead
SOM-FBPN and four other approaches (BPN, FBPN, CBR,
and EFR) were all applied for comparison to five test cases
containing the data of full-size (24 wafers per lot) lots with
different product types and priorities.

In the BPN or FBPN, there is one hidden layer with six
nodes. In the look-ahead SOM-FBPN, firstly wafer lots are
classified with SOM. After the training and post-processing
of SOM, the number of wafer lot categories (m) is

determined for each product type and priority (see Table 4).
Subsequently, examples of different categories are then
learned with different FBPNs but with the same topology.
The convergence condition was established as either the
improvement in the RMSE becomes less than 0.001 with
one more epoch, or 1,000 epochs have already been run.

The minimal RMSEs achieved by applying the five
approaches to different cases were recorded and compared
in Table 5. As noted in Chang and Liao [5], the k-nearest-
neighbors based CBR approach should be compared with a
BPN trained with only randomly chosen k cases. The latter
was also adopted as the comparison basis, and the
percentage of improvement on the minimal RMSE by
applying another approach is enclosed in parentheses
following the performance measure. The optimal value of
parameter k in the CBR approach was equal to the value
that minimized the RMSE [5] (see Fig. 5). The k values for
different product types and priorities are summarized in
Table 6. According to experimental results, the following
discussions are made:

1. From the effectiveness viewpoint, the prediction accu-
racy (measured with the RMSE) of the look-ahead
SOM-FBPN was significantly better than those of the
other approaches by achieving a 21∊50% (and an
average of 37%) reduction in the RMSE over the
comparison basis-the BPN. The average advantages
over CBR and EFR were 31 and 8%, respectively.

2. In the case that the lot priority was the highest (super
hot lot), the look-ahead SOM-FBPN has the greatest
advantage over BPN and FBPN in forecasting accura-
cy. In fact, the cycle time variation of super hot lots is

Table 7 Some results of
output time forecast
achievability evaluation

Lot number Priority elevation Forwardness of output
time forecast (assessment)

Ease of priority
elevation

Achievability

P034 Normal→hot −11.8% (SI) D L
P034 Normal→super hot −20% (M) VD VL
P195 Hot→super hot −9.6% (SI) D L
P026 Super hot – VD –

31%2.2%

I SI M SS S1

µ

FWD0
9.4% 16.6% 23.8%

11.8%

0.67

Fig. 7 The forwardness assessment result

35%

VE E M D VD1

µ

current
percentage

0
30%25% 27.5% 32.5%

31.7%

0.68

Fig. 8 The ease of priority elevation assessment result
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the smallest, which makes their cycle times easy to
predict. Clustering such lots seems to provide the most
significant effect on the performance of cycle time
prediction.

3. As the lot priority increases, the superiority of the look-
ahead SOM-FBPN over BPN and FBPN becomes more
evident.

4. The greatest superiority of the look-ahead SOM-FBPN
over EFR happens when the lot priority is the smallest
(normal lots).

5. The differences in the efficiencies of the five approaches
were not significant.

The second part of the hybrid system is a set of FIR
applied to evaluating the achievability of an output time
forecast. Some results are shown in Table 7. Take lot P034
as an example. After elevating its priority from “normal lot”
to “hot lot”, the percentage of the forwardness of the output
time forecast is 11.8%, which is classified as “moderate
(M)” to which the highest membership function value
belongs (see Fig. 7). The percentage of “hot lots” in the fab is
controlled to be about 30%. At the time lot P034 is released,
the percentage of “hot lots” in the fab is 31.7%. According to
Fig. 8, the ease of priority elevation is evaluated as “difficult
(D)”. After looking up the FIR table, the achievability of the
original output time forecast is “low (L)”.

6 Conclusions and directions for future research

A hybrid look-ahead SOM-FBPN and FIR system is
constructed in this study for lot output time prediction and
achievability evaluation in a wafer fab. In the first part of the
hybrid system, a look-ahead SOM-FBPN is proposed to
predict the output time of a wafer lot. In the second part, a set
of fuzzy inference rules is established to evaluate the
achievability of an output time forecast, which is defined
as the possibility that the fabrication on the wafer lot can be
finished in time before the output time forecast. Achiev-
ability has been ignored in traditional studies in this field;
nevertheless, it might be much more important than accuracy
and efficiency from a managerial and practical viewpoint.
With the proposed methodology, both output time prediction
and achievability evaluation can be concurrently accom-
plished. For demonstrating the applicability of the proposed
methodology, production simulation is also applied in this
study to generate a demonstrative example. According to the
results of experiments and subsequent analyses, the pro-
posed methodology has the following advantages:

1. From the effectiveness viewpoint, the prediction accu-
racy of the proposed look-ahead SOM-FBPN was
significantly better than those of many traditional
approaches

2. The concept of achievability has not been discussed in
traditional approaches, but the hybrid look-ahead SOM-
FBPN and FIR system was able to evaluate the
achievability

Conversely, there are also disadvantages associated with
the proposed methodology:

1. The way of incorporating the fab’s future release plan
in the proposed methodology is subjective. For the
same purpose, there are many other possible ways that
can be tried to achieve better performance.

2. Compared with some traditional methods (e.g. BPN
and CBR), more data are required with the proposed
methodology for the sake of incorporating the fab’s
future release plan and classifying wafer lots.

The main contribution to the body of the knowledge is:

1. Classifying wafer lots and incorporating the fab’s
future release plan are shown to be both good ways
of getting better performance in predicting the output
time of a wafer lot.

2. A systematic procedure is proposed to embody the
concept of the “achievability” of an output time
forecast, which is the third performance measure in
addition to the traditional accuracy and efficiency. In
fact, maximizing the output time forecast achievability
for each lot in the wafer fab leads to the minimization
of the number of tardy jobs for the wafer fab, which is a
common and very important goal of job sequencing
and scheduling to the wafer fab.

However, to further evaluate the advantages and dis-
advantages of the proposed methodology, it has to be applied
to a full-scale actual wafer fab. In addition, the proposed
methodology can also be applied to cases with changing
product mixes or loosely controlled priority combinations,
under which the cycle time variation is often very large.
These constitute some directions for future research.
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