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Abstract Evolutionary algorithms such as genetic algo-
rithms have been applied on a variety of complex
combinatorial optimization problems (COPs) with high
success. However, in relation to other classes of COPs,
there is little reported experimental work concerning the
application of these heuristics on large size assembly line
balancing problems (ALBPs). Moreover, very few works in
the literature report comparative results on public bench-
mark instances of ALBPs for which upper bounds on the
optimal objective function value exist. This paper considers
the simple ALBP of type 2 (SALBP-2), which consists of
optimally partitioning the tasks’ operations in an assembly
line among the workstations with objective the minimiza-
tion of the cycle time of the line. SALBP-2 is known to be
intractable, and therefore the right way to proceed is
through the use of heuristic techniques. To that purpose, a
novel approach based on the differential evolution method
has been developed and tested over public available bench-
marks ALBPs. These benchmarks include test instances for
several precedence graphs (representing the assembly
restrictions) with up to 297 tasks. Extended comparisons
with other previously published evolutionary computation
methods showed a superior performance for the proposed
approach.
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1 Introduction

Assembly lines are a traditional widely used type of
production systems for mass and large-scale production.
They consist of a number of workstations arranged along an
automated material handling system such as a conveyor
belt. Work pieces are moved along the line from station to
station, while each station performs a number of repeated
operations necessary to manufacture a desired final product.
Each sub-product unit remains at each station for a fixed
work rate called the cycle time of the line. The assembly
line balancing problem (ALBP) is a decision problem
arising when an assembly line has to be configured or
redesigned. The problem consists of determining the
optimal partitioning (balancing) of the assembly work
among the workstations while optimizing one or more
objectives without violating the restrictions imposed on the
line.

The rapid qualitative and quantitative changes in market
demands cause manufacturers to seek the best possible
methods for managing their assembly lines so as to produce
more sophisticated and more competitive products. To
respond to these diverse market needs, modern assembly
lines must be highly automated [1] and easily re-config-
urable [2]. Mixed-model and multi-model lines [3, 4] are
today the industrial answer to the growing trend for product
variability and shorter production cycles. In mixed-model
lines several versions of the basic product are manufactured
in the same line; while in multi-model lines several
(similar) products are manufactured on one or several lines.
BMW (the German car manufacturer) constitutes a charac-
teristic example of a modern assembly line system offering
a catalogue of optional features, which theoretically results
in 1032 different models [5]. The decisions taken to solve
ALBP in modern flow-line production systems not only
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affect the final cost of the products, but also affect the
variety of the products manufactured, their final quality, as
well as, the time-to-market response. The latter index is
strongly depended on the production cycle of the assembly
line and constitutes one of the most interesting performance
indices in ALBP.

ALBP is classified into the simple ALBP (SALBP), and
the generalized ALBP [2, 4, 6]. The latter contains
characteristics not contained in the SALBP such as cost
objectives, paralleling of stations, mixed-model production,
etc. Two formulation types are commonly used with
SALBP: SALBP-1 which attempts to minimize the number
of stations for a given fixed cycle time, and SALBP-2
which attempts to minimize the cycle time of the line for a
given number of stations. The former type is used when a
new assembly line has to be implemented and installed,
while the latter type is used in an existing assembly line
when changes in the production process and manufacturing
requirements occur. Any variant of the basic SALBP is of
combinatorial nature and belongs to the NP-hard class of
combinatorial optimization problems (COPs) [2]. There-
fore, exact algorithms can hardly be designed to solve large
sizes of any variant of SALBP and consequently the right
way to proceed is through the use of heuristics techniques.

This work deals with the deterministic SALBP-2.
Traditionally [2], SALBP-2 is addressed through an iterated
procedure that solves a corresponding SALBP with a
known number of stations and a cycle time value being
progressively decreased until reaching a near-optimum
value within a specific permitted range. Hence, the way
the trial cycle times are examined plays a significant role on
the quality of the generated final solutions. SALOME-2 [7]
is today the most effective branch and bound method that
solves directly SALBP-2.

Recently, some researchers turned their attention to the
use of meta-heuristics for the solution of SALBP-2. The
most notable of this group of algorithms are evolutionary
computation (EC) methods such as genetic and evolution-
ary algorithms [8], simulated annealing [9] and tabu-search
[10, 11]. Genetic algorithms (GAs) for SALBP-2 were
presented by [12–14]. Anderson and Ferris [12] developed
a GA with an objective function that sums up the maximal
station time and put a penalty term for precedence
violations. Watanabe et al. [14] showed experimentally that
a GA can obtain in reasonably computing time quasi-
optimum solutions for large size ALBPs that cannot be
solved by ordinary methods. Kim et al. [13] addressed the
multi-objective SALBP (including SALBP-2) with addi-
tional objectives such as the maximization of workload
smoothness and the maximization of work relatedness.
Heinrici [15] developed a tabu-search procedure for the
solution of SALBP-2, and compared its performance to that
of a simulated annealing algorithm. The latter approach

directs the search to ‘better’ solutions using suitable
mechanisms of shifts and swaps moves in the search space.
Scholl and Voß [16] and Chiang [17] have also developed
efficient tabu-search procedures for SALBP-2. Important
recent reviews about SALBP can be found in [18–20].

There is a gap in the literature concerning the application
of meta-heuristics on public large size SALBP-2 bench-
mark instances for which upper bounds on the optimal
objective function value exist. This paper investigates the
use of a new EC method based on the differential evolution
algorithm (DEA) for solving SALBP-2. The performance
of the proposed method is examined over benchmarks from
the open literature and compared to that of other previously
published GAs solutions. The benchmarks used are public
available at http://www.assembly-line-balancing.de/ and
include 302 instances for various ALBPs containing 17
precedence graphs with tasks ranging from 29 to 297.

The rest of the paper is organized as follows: Section 2
states formally SALBP-2. Section 3 describes the standard
DEA for function optimization over continuous spaces.
Section 4 introduces and analyzes the way DEA can be
applied on ALBPs, while Section 5 presents comparative
experimental results over known benchmark instances for
SALBP-2. Finally, Section 6 summarizes the contribution
of the paper and states some directions for future work.

2 Formulation of the problem

SALBP-2 can be formally stated as follows: a set WS=
{1,...,m} of m workstations are arranged along an assembly
line. Manufacturing a single product on the assembly line
requires the partitioning of the total assembly work into a
set V={1,...n} of n elementary operations called tasks. Each
task j (j∈V) is performed on exactly one workstation and
requires a deterministic processing time tj ( j=1,...,n). The
tasks are partially ordered by precedence relations defining
a precedence graph G=(V,E). G is a directed acyclic graph
(DAG) with V the set of nodes denoting the tasks in G, and
E the set of edges representing the precedence constraints
among the tasks. An edge (i, j) denotes that task i must be
finished before task j can be started. In this case task i is a
direct predecessor of task j. While the edges (q, r) (r, p)
(with q, r, p ∈ V) denote that task q is a direct predecessor
of task r and indirect predecessor of task p. The assembly
line is associated with a cycle time c denoting the
maximum (or average) processing time available for each
work cycle. Each workstation can complete its assigned
tasks within the specified cycle time. Therefore, given WS,
tj ( j=1,...,n) and G, the objective with SALBP-2 is to find a
feasible line balance (i.e., an assignment of the n tasks to
the m workstations not violating the precedence constraints)
that minimizes c. This objective is usually achieved by
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maximizing the efficiency E of the line given by the
relation:

E ¼ tsum=m:c ð1Þ
where, tsum ¼ Pn

j¼1
tj is the sum of the processing times of all

the tasks.
Figure 1(a) illustrates an example of a precedence graph

for an 11-tasks SALBP having processing times between 2
and 45 time units and tsum=185. The numbers inside the
nodes of the graph correspond to the task labels, and those
outside the nodes to the processing times. Hence, task 1 has
a processing time equal to 4 time units, task 2 a processing
time equal to 38 time units, etc. The precedence constraints
for example, for task 6 defines that, this task must proceed
after the completion of task 4 (direct predecessors), and
tasks 1 and 2 (indirect predecessors). While, task 6 must be
completed before its direct (or indirect) successors, which
are tasks 8, 10 and 11.

Assuming 4 workstations in the line, the optimum line
balancing solution for SALBP-2 is (3, 2, 5, 1, 4, 7, 9, 6, 8,
10, 11). Meaning that, the order in which the tasks are to be
executed on the assembly line is task 3, followed by task 2,
followed by task 5, and so on. This solution corresponds to
a minimal cycle time of c=48 time units. The sequence of
the workstation loads is thereby (see Fig. 1(b)), WS1={3},
WS2={2,5}, WS3={1,4,7,9,6,8}, WS4={10,11}.

3 Evolutionary computation (EC) based heuristics

3.1 Overview

EC is a modern class of meta-heuristics inspired by
biological evolution. Representative paradigms of EC
heuristics are GAs, evolutionary strategies, evolutionary
programming, and genetic programming. These techniques
have been found to perform better than the classical
heuristics or gradient based methods, especially when
addressing the problem of optimizing multi-modal, non-
differentiable, or discontinuous functions. The state-of-the-
art in modern heuristics is to use the term evolutionary
algorithm (EA) to describe any algorithm that uses
population-based random variation and selection [8].
Independently of the form of the optimization problem,
any EA undergoes the following mechanism:

(a) Create (usually randomly) a population of individuals
that represent potential solutions to the physical
problem.

(b) Evaluate the quality of each individual in the
population.

(c) Promote individuals of higher quality by introducing
selective pressure on the entire population.

(d) Generate new individuals by applying variation
operators on the population.
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Fig. 1 An 11-tasks ALBP: (a) the precedence graph. (b) A feasible line balance solution for SALBP-2 with m=4 and c=48
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(e) Repeat steps (b)-(d) several times until the satisfaction
of a suitable criterion.

As there exists a large number of possible ways to
implement the above five steps involved in an EA, the
major consideration is to select those heuristics achieving
good performance for the problem under consideration.
This work addresses SALBP-2 by DEA; a new EC model
proposed for optimization over continuous spaces. There
are at least three basic features that make DEA attractive to
be used for solving complex optimization problems in
contrary to the use of other heuristics: (i) It manipulates
pure floating-point numbers without any other extra
processing, thus, utilizing computer resources efficiently.
(ii) It is easy to use and tune, since it requires the settings of
very few control parameters. (iii) It is much easier to be
implemented than other EAs.

3.2 Differential evolution algorithm (DEA): the basic model

DEA is an EA introduced by Storn and Price [21] for
optimization over continuous spaces. Since its invention,
DEA has been applied with high success on many
numerical optimization problems outperforming other more
popular population heuristics including GAs [22, 23].
Recently, some researchers extended with success the
application of DEA to complex COPs with discrete
decision variables, such as, the machine layout problem
[24] and the flow-shop scheduling problem [25].

DEA utilizes Np, D-dimensional parameter vectors xi,k,
i=1,2,...,Np, as a population to search the feasible region Ω
of the optimization problem. The index k denotes the
iteration number of the algorithm. The initial population
(k=0),

S ¼ x1;0; x2;0; . . . ; xNp;0
� �

; ð2Þ
is taken to be uniformly distributed in Ω. At each iteration
all vectors in S are targeted for replacement. Therefore, Np
competitions are held to determine the members of S for the
next iterations. This is achieved by using mutation,
crossover and acceptance operators. In the mutation phase,
for each target vector xi,k, i=1,2,...,Np, a mutant vector _xi;k
is obtained by

_xi;k ¼ xα;k þ F xβ; k � xγ;k
� � ð3Þ

where α, β, γ ∈ {1,2,...,Np} are mutually distinct random
indices and are also different from the current target index
i. xα,k is known as the base vector and F>0 is a scaling
parameter. The crossover operator is then applied to obtain
the trial vector yi,k from

_xi;k and xi,k using

y j
i;k ¼

_x j
i;k if Rj � CR or j ¼ Ii ;

x j
i;k if Rj > CR and j 6¼ Ii

(
ð4Þ

where Ii is a randomly chosen integer in the set I, i.e., Ii ∈ I =
{1,2,...,D}; the superscript j represents the j-th component of
respective vectors; Rj ∈ (0,1), drawn randomly for each j.
The ultimate aim of the crossover rule is to obtain the trial
vector yi,k with components coming from the components of
the target vector xi,k and the mutated vector _xi;k. This is
ensured, by introducing CR (the crossover rate) and the set I.
Notice that for CR=1 the trial vector yi,k is the replica of the
mutated vector _xi;k. The targeting process (mutation and
crossover) continues until all members of S are considered.
After all Np trial vectors yi,k have been generated, acceptance
is applied. In the acceptance phase, the function value at the
trial vector, f(yi,k), is compared to f(xi,k), the value at the
target vector and the target vector is updated using

xi; kþ1 ¼ yi;k if f (yi;k) < f (xi;k)
xi; k otherwise

�
ð5Þ

Mutation, crossover and acceptance continue until some
stopping conditions are met.

The mechanism described above is one variant of the
basic DEA known as scheme DE1 [21]. There are also
some other variants, differ in the way they create the mutant
vector (Eq. (3)). One such highly effective variation scheme
is given by

_xi;k ¼ ξ � xbest; k þ 1� ξð Þ � x";k
þ F xα;k þ xβ;k � xγ;k � xδ;k

� � ð6Þ
with α, β, γ, δ, ɛ different integers taken over {1,2,...,Np},
and ξ∈[0,1] a coefficient for the convex combination
between the best element xbest,k of S, and a randomly
selected element Xɛ,k.

4 The proposed DEA-based approach for the solution
of SALBP-2

Tuning a DEA for a particular domain needs the specifica-
tion of the following characteristics:

– A representation mechanism, i.e., a way of encoding
ALB solutions to floating-point vectors.

– An evaluation mechanism, i.e., a way of evaluating the
quality of each vector.

– A way of initializing the population of vectors.
– The application of mutation and crossover operators on

the population in order to generate new ‘better’
populations.

– Values to the three control parameters: population size,
crossover rate, and mutation rate.

The first two characteristics are analyzed below in detail.
The remaining characteristics are the same as in the
standard DEA. A pseudo-code of the proposed DEA for
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the solution of SALBP-2 is given in the Appendix of this
work.

4.1 The representation mechanism

Two different schemes of string representations applicable
to ALBPs are mainly reported in the related literature [20]:
the station-oriented and the task-oriented representation.
Both of them assume strings of integers and a string length
equal to the number of tasks to be proceeded in the
assembly line. If the i-th position of the string has the value
j, then, using the station-oriented representation, task i is
assigned to workstation j. While, using the task-oriented
representation, task j in location i of the string will be
assigned to a workstation before the task in location (i+1)
of the string. The tasks are allocated into stations starting
from the first (k=1) and considering the other stations
successively. When a station is loaded maximally, it is
closed, and a new station (k+1) is opened. A solution is
feasible when the generated sequence of the tasks in the
line does not break the specified precedence constraints.
After experimentation with both schemes we found task-
oriented representation superior and therefore it was
decided to adopt this scheme within DEA.

DEA works with floating-point vectors hence an appro-
priate mapping is needed from the ‘genotypic’ state-level
(the vectors) to the ‘phenotypic’ level (the actual ALB
solutions). To that purpose, two different encoding schemes
namely random-keys and priority-based, respectively, have
been implemented and used with the proposed DEA.
Random-keys introduced by Bean [26] in the context of a
real-coded GA to address a wide range of sequencing and
scheduling problems. Priority-based encoding was used by
Gen and Cheng [27] within an order-based GA for the
solution of the resource-constrained project scheduling
problem.

4.1.1 Encoding ALB solutions with the random-keys
method

Let’s illustrate how random-keys work through an example
concerning the 11-task ALBP of Fig. 1. Any candidate
solution (generated by DEA) to this problem is a real-coded
vector containing 11 floating-point numbers. Assume the
vector

Ψ ¼ 0:69; 0:47; 0:88; 0:38; 0:12; 0:23;
0:04; 0:16; 0:33; 0:24; 0:10

� �

the position and the value of the floating numbers (called
keys) in ψ are critical for the interpretation of the sequence
into an actual ALB solution. Hence, according to random-
keys method we have to identify: first the position of
the lowest value in ψ (which is 0.04 at position 7), then, the

second lowest value (which is 0.10 at position 11), the third
lowest value (0.12 at position 5), and so on. Repeating this
ordering for all the keys in ψ we finally get the string

7; 11; 5; 8; 6; 10; 9; 4; 2; 1; 3ð Þ
For our ALBP this sequence can now be interpreted as:
start executing task 7, followed by task 11, followed by task
5, etc. Note that, this solution is clearly illegal for ALBP of
Fig. 1 since it violates the specific precedence constraints.
When this is the case, a simple repairing procedure is
applied on the task sequence and fixes it so that to finally
become feasible.

4.1.2 Repairing infeasible ALB solutions generated
by random-keys encoding

Precedence relations among tasks are usually presented in a
matrix form M={Mij}; with Mij=1 if task i must be finished
before task j, otherwise Mij=0. M is critical since it is used
for checking the feasibility of a solution. In this study, M
was implemented using an old but efficient algorithm [28]
which constructs the transitive closure of a DAG G=(V,E)
using the relation Mjk ¼ Mjk �Mik (with i, j, k ∈V). The
behavior of operator ⊕ is given by, the table

Therefore, the complete mechanism for constructing the
precedence matrix M is as follows:
Procedure Build_precedence_matrix
begin

Step 1 for i=1 to n do
for j=1 to n do
if task i must be finished immediately before task j
then Mij=1 else Mij=0

Step 2 for i=1 to n do
for j =1 to n do
if Mij=1 then
for k=1 to n do
Mjk ¼ Mjk �Mik

Step 3 for j=1 to n do
count=0
for i=1 to n do
if Mij=1 then count=count+1
M(n+1)j=count

Return M
end

Step 1 builds M by putting 1’s whenever task i must be
finished immediately before task j and zeros otherwise. In
step 2, M is updated according to Warshall’s algorithm.

⊕ 0 1
0 0 1
1 1 1
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That is, whenever a task j is indirect predecessor of a task k
the algorithm sets Mjk=1. Step 3 counts for each task j the
total number of its predecessors, and saves this number in
the corresponding column of the last line (n+1) of M. This
information is used in the repairing procedure below.
Procedure Repair_infeasible_solution (x)
begin

M′=M // work with a copy of M //
j=0 // index for array PS //
i=1 // iterations’ counter //
repeat
a=x[i]
if M′n+1,a=0 and task a does not be placed into PS then
j=j+1, PS [j]=a
Update M′: set M′ak=0 and decrease M′(n+1)k by one
∀ k∈[1,n]
end if
i=i+1
if i>n then i=1
until j=n
Return PS // the repaired, feasible ALB solution
corresponding to x //

end
The above procedure corrects an infeasible solution x by

checking each one of its tasks for feasibility. Each feasible
task-a, is inserted in the next available position of a new string
(initially empty) called partial schedule (PS). While, all the
outgoing edges from task-a to its immediate successors are
deleted by updating M accordingly. PS will finally hold the
feasible version of x. Table 1 displays the successive passes of
the topological sort obtained after applying the above
repairing procedure on the infeasible ALB sequence (7, 11,
5, 8, 6, 10, 9, 4, 2, 1, 3) generated by random-keys. A new
pass is encountered whenever the repeat/until loop restarts
scanning x from its first location (i=1). The repaired string is
given in the last column of Table 1.

4.1.3 Encoding ALB solutions with the priority-based
method

Priority-based encoding consists of generating a topological
sort of a DAG G=(V,E) from a specific n-dimensional
floating-point vector ψ (n denotes the number of the tasks
in ALBP). Each vector’s component j (j=1,...,n) represents
the relative priority of task j (j∈V). The topological sort is
therefore a ranking of all the tasks according to their
priorities in an appropriate order to meet the precedence
constraints. This mechanism is implemented using the
following procedure:
Procedure Priority_based_encoding
begin

Set V′=∅ // with V′⊆V //
Repeat
For all j∈V do
if j has no predecessors then V′=V′∪{j}, i.e., insert j into
the set V′.
Determine the i-th component of ψ with the maximum
value for all i∈V′.
Insert task i into the next available position in the partial
schedule (PS).
V′=V′ \ {i}, i.e., remove task i from V′.
Until PS has been completed
Return PS

end
The above procedure is based on two main repeated

steps: (a) construct the set V′ of the candidate tasks to be
placed in the next available position of PS. (b) Select the
highest priority task in V′ as indicated by the values of the
corresponding components in ψ. Initially, V′ is empty and
iteratively is being updated so as to contain those
unscheduled tasks with no predecessors. As it is obvious,
all the solutions generated by the specific mechanism are
feasible and thus, no repairing mechanism is applied on PS.

Table 1 Application of the repairing procedure on an infeasible ALB solution

Pass Iteration Infeasible string PS (repaired string)

1 9 (7, 11, 5, 8, 6, 10, 9, 4, 2,1, 3) (2)
1 10 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1)
1 11 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3)
2 3 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5)
2 8 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5, 4)
3 1 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5, 4, 7)
3 5 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5, 4, 7, 6)
3 7 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5, 4, 7, 6, 9)
4 4 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5, 4, 7, 6, 9, 8)
4 6 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5, 4, 7, 6, 9, 8, 10)
5 2 (7, 11, 5, 8, 6, 10, 9, 4, 2, 1, 3) (2, 1, 3, 5, 4, 7, 6, 9, 8, 10, 11)
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Let us see how priority-based encoding works on vector ψ
mentioned in sub-section 4.1.1. Again we assume the ALBP
with the DAG given in Fig. 1. According to the above
procedure, tasks 1, 2, and 3 compete for the first position of
array PS since they are the only tasks with no predecessors.
The priorities for these tasks are 0.69, 0.47, 0.88, respectively.
Therefore, PS[1]=3 since task 3 has the highest priority. Then,
the two tasks 1 and 2 are candidate for the second location of
PS. Task 1 has the highest priority (=0.69) and thus PS[2]=1.
Next, task 2 takes the 3rd location of PS since is the only task
with no predecessors. Consequently, the new candidate tasks
for the 4th position of PS are the tasks 4 and 5 and thus, PS[4]
=4. Finally, the ALB solution corresponding to vector ψ will
be (3, 1, 2, 4, 6, 8, 5, 7, 9, 10, 11). The interested reader can
see in Fig. 2 the detailed step-by-step process for constructing
the specific ALB solution. In particular, one can see from
Fig. 2 the partial topological sort, the cut (dark long dashed
lines) and the eligible nodes, the contents of the partial
schedule solution PS, as well as, the set V’ with the candidate
tasks to compete for the next empty position in PS.

4.1.4 How a DEA’s phenotype is decoded into a SALBP-2
solution?

Once a specific floating-point vector (i.e., a DEA’s genotype) is
encoded into a feasible ALB solution (DEA’s phenotype) then,
an appropriate decoding scheme is needed to map this
phenotype to an actual solution for SALBP-2. In other words,
a method is needed to assign the tasks in the generated task-
sequence into the workstations. After experimented with some
well known from the literature decoding schemes such as the
lower bound and the upper bound search methods [2], we
finally decided to adopt a scheme previously proposed by
[13]; since this scheme was found in preliminary experiments
to be superior. The main idea is to face SALBP-2 through an
iterated procedure that solves the corresponding SALBP-1
with a cycle time value being progressively decreased until
reaching a near-optimum value within a specific permitted
range. This decoding scheme is as follows:

Step 1 Set c initially equal to the theoretical minimum
cycle time, i.e., c=tsum/m.

Step 2 Assign as many as possible tasks into the first m-1
workstations. Assign all the remaining tasks to the
last workstation, m.

Step 3 Calculate the work load Wz for each workstation z
(z=1,2,...,m), and the potential workload PWz

(z=1,2,...,m-1) as follows: Wz=the station time Stz
(z=1,2,...,m). PWz=Stz + the processing time of the
first task assigned to the (z+1)st workstation
(z=1,2,...,m-1).

Step 4 Set cW=max {W1, W2, ...,Wm} and c=min {PW1,
PW2, ..., PWm-1}

Step 5 IF (cW>c) THEN GO TO Step 2
Step 6 RETURN cW as the minimum cycle time and

STOP

4.2 Evaluation mechanism

This mechanism corresponds to the computation of the cost
function for each phenotype (i.e., for each feasible SALBP-
2 solution) of the current population. The objective with
SALBP-2 is to minimize c given a fixed m hence the
following cost function was adopted:

Cost ¼ 1=E ð7Þ
where, E is the line efficiency estimated by Eq. (1).
Equation (7) aims to minimize cost-function by maximizing
the line efficiency E and consequently forcing c to a
minimum value.

5 Computational results and discussion

5.1 Experimental setup

The performance of DEA was examined over a large set of
benchmark ALB instances taken from the open literature.
The precedence graphs, as well as, the existing near optimal
solutions for these benchmarks, are available at http://www.
assembly-line-balancing.de/. The benchmarks include test
instances organized into two data sets. Data set 1 contains
128 instances for 9 precedence graphs with tasks varying
from 29 to 111, while data set 2 contains 174 instances
concerning 8 precedence graphs with tasks varying from 53
to 297.

Two versions of the proposed DEA were implemented
each one corresponding to a distinct encoding scheme
either random-keys, or priority-based. We will refer to these
heuristics as DEA_rks and DEA_prb, respectively. For both
DEAs the mutant vectors were generated using Eq.(6) with
ξ=0. This scheme was experimentally found superior to
others more frequently referred to in the literature DE
schemes such as DE1 and DE2 [21]. The performance of
DEAs was compared against to that of two other EAs
previously proposed for the solution of ALBPs; in
particular, against the GAs proposed by Kim et al. [13]
and Goncalves and Almeida [29], respectively. The former
GA utilizes permutation strings to solve SALBP with
various objectives. We will refer to this GA as pGA (stands
for permutation GA). The latter GA is a real-coded GA
hybridized by a special parents’ selection scheme for
creating the population of every new generation, as well
as, a suitable local search procedure for the solution of
SALBP-1. In order to apply this GA on SALBP-2 we
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replaced this local search procedure with the decoding
scheme presented in sub-section 4.1.4. Random-keys
encoding was used to map the floating-point chromosomes

to ALB solutions. Consequently, we will refer to this
heuristic as rGA_rks. Moreover, it was decided to imple-
ment an additional version of this GA using priority-based

Fig. 2 Step-by-step construction of the ALB solution associated to chromosome ψ using the priority based encoding method
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encoding scheme. We will call this heuristic rGA_prb. All
the algorithms were written in Pascal programming lan-
guage and run on a Pentium IV 1.7 GHz PC.

5.2 Settings of the control parameters

Much investigation on the selection of the appropriate
settings of the control parameters for DEAs was undertaken
in preliminary tests. As with any EA, the determination of
the correct settings for the control parameters of DEA is a
very difficult task. The variety of the control parameters
(Np≥4, CR∈[0,1], F∈(0,2)) included in its components, and.
the many possible choices make the determination of the
‘perfect’ settings almost impossible. In this study 30 trials
were performed consisting of three levels of Np∈(50,100,
n), with n being the number of the tasks in the
corresponding benchmark problem. Five levels of
CR∈(0.1, 0.3, 0.5, 0.7, 0.9), and two levels of F, either
being constant and equal to F=0.9; or estimated by a rule
proposed by Zaharie [30]. This rule says that the values of
the control parameters satisfying the equation 2F2 �
2=Npþ CR=Np ¼ 0 can be considered to be critical for
the convergence ability of a DEA. After much experimental
effort with the above combination of settings, and taking
into account both the quality of the generated solutions, as
well as, the processing time spent, the following values
were finally adopted: Np=n, CR=0.9, F=0.9.

All the genetic operators and the settings for the control
parameters for the three GAs, (pGA, rGA_rks, rGA_prb)
were kept the same as they appeared in the works of their
authors. Specifically, for the case of pGA we used:
tournament policy for parents’ selection (tournament size
equal to 2), partially mapped crossover (PMX) as the
crossover operator, and reciprocal exchange as the mutation
operator. Crossover and mutation rates were 0.3 and 0.5,
respectively. For rGA_rks and rGA_prb we used a
reproduction scheme which builds the population of the
next generation as follows: the 15% top (best) individuals
of the current generation are copied to the next (elitist
strategy), while the remaining members are created by
applying a parameterized uniform crossover operator on the
entire population with a rate equal to 0.7. Instead of using a
traditional mutation operator, the 20% worst members of
the new population are replaced by new randomly
generated chromosomes. For fair comparisons, the GAs’
population size was defined equal to n (i.e., same as in
DEAs). Moreover, all the heuristics are left running until
one of the following two criteria is satisfied first: either the
existing optimum solution is generated, or a maximum
number of 10×n generations has been surpassed. Table 2
summarizes the basic characteristics upon the development
methodology used for configuring each one of the
heuristics. Remarks concerning benefits and costs in regard

to the representation mechanism adopted are reported in the
last two columns of the table.

5.3 Results on public benchmarks

Table 3 displays comparative results obtained by the five
heuristics over the benchmarks described in sub-section
5.1. The table provides the following information:

– ARD=average relative deviation from the optimum
solution in percentage. This performance index is
estimated by the relation ((c−c*)/c*)×100; with c* the
optimal (or the existing best known) cycle time, and c
the cycle time of the best solution generated by a
specific heuristic.

– MRD=the maximum relative deviation from optimality
in percentage.

As one can see from Table 3(a), the best results
concerning the benchmarks instances of data set 1 have
been obtained by the proposed DEAs with that using the
random keys encoding being superior. More specifically,
DE_rks outperformed all the other heuristics achieving
solutions of higher quality with a mean relative offset from
the existing optimum approx. equal to 1.7%. The second
best performance was achieved by DE_prb generating ALB
solutions with an average relative deviation from the
existing optimum approx. equal to 2.1%. Slightly lower
performance was achieved by pGA generating solutions
with an ARD equal to 2.3%. Even poorer performance is
reported in the case of the two real-coded GAs, with
rGA_rks being the worst of all.

Similar performance is reported in Table 3(b) with a
synopsis of the results obtained by the five heuristics over
the benchmarks of data set 2. DE_rks became again the
champion among the five heuristics generating solutions
with a mean ARD approx. equal to 3.3%. Very near to this
performance is that achieved by DE_prb, with a slightly
larger ARD, approx. equal to 3.4%.

The interested reader can find in Table 4 detailed results
concerning the mean actual processing times (in CPU
seconds) spent by each heuristic over the benchmarks
problems. The first and second columns of Table 4 display
the name of the benchmark problem, and its size (i.e., the
number of the tasks in the related precedence graph),
respectively. Note that, no results are included for Mukherje
benchmark problem (an ALBP contained in data set 2 with a
94-tasks DAG) due to the poor performance evaluated by all
the heuristics over the instances of this problem. None of the
five heuristics was found able to generate ALB solutions
with acceptable ARD for the instances included in this
benchmarks category. Specifically, the best performance
over Mukherje instances was encountered by DE_rks, which
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achieved solutions with a mean ARD approx. equal to 13%.
All the other heuristics accomplished worse results. It seems
that these benchmarks are too hard to be solved by any one
of the heuristics under investigation.

With a deep observation of Table 4 one can easily realize
that the use of random-keys encoding within either DEAs,
or rGAs results in a much faster optimizer than using
priority-based encoding. See for example, the speed of
convergence of DE_prb and DE_rks. It is obvious that the
latter method is substantially faster than the former
especially, for large size ALBPs. Similarly, the GA with
random-keys is faster than the GA with priority-based

encoding. This observation is much clearer for the bench-
marks of data set 2. Furthermore, one can safely conclude
that pGA is the fastest heuristic with a mean convergence
rate of about 2.7 s of CPU-time for the benchmarks of data
set 1, and 3.5 s for the benchmarks of data set 2. Near to
this performance but lower comes that of rGA_rks with a
mean convergence rate approx. equal to 3.3 s (for data set
1) and 6.3 s (for data set 2). Well enough convergence
speed is also reported for the champion heuristic DE_rks. In
particular, for benchmark instances with up to 89-tasks,
DE_rks was found able to converge to a near-optimum
solution in less than 2 s of CPU-time in average. While, for
instances of larger sizes (≥111 tasks) DE_rks spent in
average about 29 s of CPU-time until the convergence.
Obviously, the largest processing time spent until the
convergence is due to DE_prb. Although this heuristic
achieved the second best performance (see Tables 3 and 5),
it needs much more CPU-time until the convergence than
the other heuristics.

Table 5 displays analytically the average relative
deviation (ARD) from optimum over the instances of each
benchmark problem achieved by the five heuristics. For
example, let’s take a look at Buxey problem, which is an
ALBP with precedence constraints given by a 29-tasks
DAG. For this problem, the champion method DE_rks
generated solutions with a mean ARD approx. equal to
1.2%, while the related results for DE_prb, pGA, rGA_prb,
and rGA_rks, are approx. 2.7%, 3.3%, 2.5%, and 2.2%,

Table 2 Basic configuration characteristics for each heuristic

Method genotype phenotype Encoding
scheme

Operators Advantages Disadvantages

DE_prb FPV↑ PV Priority-
based

Mutation: using Eq. (6) No repairing. Phenotypes
always correspond to feasible
ALB solutions

Rather slow topological
sortCrossover: Eq. (4)

Acceptance: Eq. (5)
DE_rks FPV PV Random-

keys
Same as in DE_prb Fast encoding scheme Phenotypes must be

repaired to present
feasible ALB solutions

pGA PV• PV – Mutation: reciprocal
exchange (rate 0.5)

No extra mapping between
genotypes and phenotypes

Phenotypes need repairing
after crossover

Crossover: PMX (rate 0.3)
Selection: Binary
tournament

rGA_prb FPV PV Priority-
based

Mutation: replace randomly
the 20% worst members of
population

No repairing. Phenotypes
always correspond to
feasible ALB solutions

Rather slow topological
sort

Crossover: uniform
(rate 0.7)
Selection: the 15% best
members always survive

rGA_rks FPV PV Random-
keys

Same as in rGA_prb Fast encoding scheme Phenotypes must be
repaired to present
feasible ALB solutions

↑ FPV=Floating-point vector, • PV=Permutation Vector

Table 3 A synopsis of the comparative experimental results over the
benchmarks of: (a) data set 1 and (b) data set 2

Method ARD (%) MRD (%) ACT (sec)

(a)
DE_prb 2.07 9.43 29.61
DE_rks 1.72 9.43 3.87
pGA 2.31 14.29 2.66
rGA_prb 2.36 9.88 28.86
rGA_rks 2.74 9.43 3.33
(b)
DE_prb 3.39 12.48 306.57
DE_rks 3.32 11.26 15.79
pGA 4.27 12.94 3.51
rGA_prb 4.38 13.10 112.13
rGA_rks 5.08 14.49 6.32
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respectively. The worst performance over the benchmarks
of data set 1 was encountered in the case of the Arcus2
problem. Here, both DEAs generated solutions with an
ARD<5%, while the three GAs generated solutions with an
ARD slightly >5%. Arcus2 is an ALBP containing a set of
25 test instances represented by a DAG with 111 tasks.
Similar performance was also observed in the case of data
set 2 benchmarks. For instance, Hahn problem (n=53) is an

easily solved ALBP by all the heuristics (they achieved the
exact optimum for all its test instances) except from
rGA_rks who generated solutions with an ARD≈1.3%. As
it was expected, the largest ARD values (>9%) were
generated in the case of the largest ALBP, namely Scholl
(n=297).

Finally, to be fair with the stochastic behavior of the five
heuristics, it was decided to run each of them 10 times

Table 5 Average relative deviations from the existing optimum solution (in percentage) per benchmarks class

Problem name Problem size DE_prb DE_rks pGA rGA_prb r GA_rks

Data set 1
Buxey 29 2.69 1.16 3.26 2.46 2.15
Sawyer 30 3.52 2.27 2.61 3.67 4.51
Lutz 1 32 0.35 0.32 0.32 0 0.71
Gunther 35 1.02 0.14 0.64 1.21 1.71
Kilbridge 45 0.6 0.66 1.38 0.8 0.96
Tonge 70 2.07 1.88 2.75 3.63 3.63
Arcus1 83 0.83 0.99 1.65 1.48 1.96
Lutz 2 89 2.54 3.08 3.13 2.84 3.76
Arcus2 111 4.98 4.96 5.02 5.11 5.27
Average 2.07 1.72 2.31 2.36 2.74
Data set 2
Hahn 53 0.00 0.00 0.00 0.00 1.27
Warnecke 58 3.31 3.74 4.29 5.25 6.40
Wee-Mag 75 1.39 1.23 2.61 2.44 2.37
Lutz 3 89 1.58 1.68 2.54 2.19 3.20
Barthold 1 148 0.24 0.26 0.85 0.58 0.76
Barthold 2 148 7.37 6.85 9.64 9.88 9.77
Scholl 297 9.87 9.51 10.16 10.31 11.76
Average 3.39 3.32 4.27 4.38 5.08

Table 4 Average running times (in CPU seconds) until the convergence per benchmarks class

Problem name Problem size DE_prb DE_rks pGA r GA_prb r GA_rks

Data set 1
Buxey 29 0.41 0.80 2.54 1.01 2.21
Sawyer 30 1.42 1.64 0.68 1.51 1.05
Lutz 1 32 0.25 0.88 0.28 1.78 0.49
Gunther 35 0.78 1.08 0.77 1.08 0.79
Kilbridge 45 1.78 1.43 0.98 3.73 1.78
Tonge 70 26.16 3.71 2.76 15.44 4.36
Arcus1 83 48.06 5.29 6.33 36.95 7.97
Lutz 2 89 17.84 1.00 6.08 9.13 1.48
Arcus2 111 169.75 19.02 3.53 126.14 9.81
Average 29.61 3.87 2.66 21.86 3.33
Data set 2
Hahn 53 2.81 1.00 0.40 1.67 0.96
Warnecke 58 8.54 3.53 2.53 5.57 2.44
Wee-Mag 75 20.63 3.86 3.24 11.62 4.18
Lutz 3 89 41.88 5.62 6.05 33.49 4.32
Barthold 1 148 380.96 19.47 3.47 200.74 10.08
Barthold 2 148 594.17 33.08 3.56 168.45 12.01
Scholl 297 1096.97 43.95 5.34 363.34 10.27
Average 306.57 15.79 3.51 112.13 6.32
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(starting each time from a different random seed) over each
one of the test instances of the benchmarks problems and
report the mean values corresponding to the ARD per-
formance index. Hence, each heuristic was run over
10×128=1280 test instances of data set 1, and
10×150=1500 test instances of data set 2. Figure 3
illustrates the convergence probability of the five methods
to an ARD less than x% units over the benchmarks
instances of the two data sets. As one can see from this
figure, DE_rks and DE_prb heuristics (top curves in Fig. 3

(a),(b)) outperformed all the other methods with the former
being the best. More specificly, for the benchmarks of data
set 1, DE_rks was converged to an ARD less than 1% from
the existing optimum in the 41.3% of the instances, to an
ARD less than 2% in the 58.7% of the instances, etc. Near
to this performance (but lower) is that achieved by DE_prb,
with an ARD less than 1% in the 39.7% of the experiments,
and less than 2% in the 55.6% of the experiments. The
corresponding results for the third best heuristic which is
pGA are: solutions with an ARD<1% in the 37.3% of the
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Fig. 3 Convergence probability to an average relative deviation (ARD) from optimum less than x% units. Results concerning the benchmarks of:
(a) data set 1, (b) data set 2
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experiments, and solutions with an ARD<2% in the 46.8%
experiments. The worst performance (bottom curve in Fig.
3(a)) was encountered by rGA_rks. Exact optimum so-
lutions (a zero ARD) have been obtained by DE_rks in
approx. 34.7% of the experiments, by DE_prb in 30%, by
pGA in 31%, rGA_prb in 25%, and rGA_rks in 21% of the
experiments.

For the case of data set 2 the things with the champion
heuristic are not so clear. The two DEAs outperformed all the
other heuristics (see top curves in Fig. 3(b)) presenting almost
identical performance for solutions with an ARD from the
optimum less than 1% and 2%. A slight superiority for
DE_rks is observed for solutions with an ARD<3%. For
solutions with an ARD<4% DE_prb managed to perform
better than DE_rks obtaining solutions below this bound in
57.3% of the experiments. The corresponding performance
for the latter heuristic is 55.3% of the experiments. Exact
optimum solutions, have been obtained by DE_prb in
approx., 30% of the experiments, by DE_rks in 27% of the
experiments, by pGA in 23%, rGA_prb in 19%, and
rGA_rks in 11% of the experiments.

6 Conclusions

This paper investigates the application of differential evolu-
tion algorithm (DEA) for the solution of the simple assembly
line balancing problem (ALBP) with the objective being to
minimize the cycle time of the line. Computational experi-
ments with two different methods for encoding the ALB
solutions (namely random-keys and priority-based encoding)
have been performed over benchmark test problems from the
open literature. The results obtained were quite promising.
Comparisons with other previously published evolutionary
algorithms showed a superior performance for DEA. The
proposed approach is easily implemented and easy to use.
Moreover, the overall experimental process showed that DEA
could be a promising optimization tool for the solution of
many other manufacturing optimization problems of combi-
natorial nature.

Further research must be done in the direction of
improving more the performance of DEA. A first idea is
to hybridize DEAwith suitable local search techniques such
as the simulated annealing algorithm, or the tabu search
method. A trend enhanced by the rapidly growing number
of papers introducing hybrid meta-heuristics in various
production systems. Furthermore, future work will investi-
gate the application of DEA on other more complex ALBPs
such as the problem of balancing mixed-model assembly
lines. On going research is tackled with the development of
a more robust version of the proposed DEA so as to address
the multi-objective SALBP. Various objectives are under
investigation such as the simultaneously maximization of

workload smoothness and the work relatedness of the
assembly line.

Acknowledgement This work is integrated in the Innovative
Production Machines and Systems (I*PROMS) Network of Excellence.

Appendix

Algorithm Differential Evolution for SALBP-2

Pre-processing step:
Read the necessary input data concerning the DAG G=

(V,E) of a specific n-tasks ALBP: i.e., the set of tasks V, the
set of edges E, the tasks’ processing times tj (j=1,...,n), the
number of workstations m.
Initialization step:

Set values for the control parameters (Np, F, CR);
Initialize generation counter k=0;
Generate a population S={x1,k,x2,k,...,xNp,k} of n-dimen-
sional floating-point vectors;
The components of xi,k (i=1,...,Np) are randomly chosen
within the range [0,1];
REPEAT
for i=1 to Np do // create the population S of the new
generation //

Mutation step:
Generate a mutant vector _xi; k using Eq. (6) and ξ=0;
Crossover step:
Generate a trial vector yi,k by crossing xi,k and _xi; k
using Eq. (4);

Solution Interpretation Step:
// Build the phenotypes corresponding to the genotypes
xi,k and yi,k by using either
random-keys, or priority-based encoding scheme (see
sub-section 4.1) //
Pxi;k=encoding (xi,k); P

yi;k=encoding (yi,k);
// Decode the phenotypes to actual SALBP-2 solutions
using the method presented in sub-section 4.1.4. //
Pxi;k=decode_SALBP-2(Pxi;k );Pyi;k=decode_SALBP-2
(Pyi;k );

Acceptance step:
// Evaluate the phenotypes using Eq. (7), and then apply
Eq. (5) //

if Cost Pyi;kð Þ < Cost Pxi;kð Þ then xi,k+1=yi,k else xi,k+1=xi,k
end for

Population Statistics Step:
Determine the population best ALB solution Pbest;
if k=0 then
P*=Pbest // keep track for the best-so-far solution //
else if COST(Pbest) < COST(P*) then
P*=Pbest

end if
k=k+1 // increment iteration counter //
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UNTIL k > MAXI // MAXI stands for Maximum
Iterations //

Return (P*)
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