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Abstract We consider job rescheduling problems where
rescheduling is required in response to newly arriving jobs.
To reduce the negative impacts of disruptions to the
original schedule, the processing times of the newly
arriving jobs can be reduced at a cost, which we call a
time compression cost. The objective of the problem is to
minimize total cost after rescheduling, which includes
schedule disruption costs, time compression related costs,
and a cost that depends on a traditional measure of schedule
efficiency. We separately consider two different measures
of schedule efficiency: total completion time and weighted
tardiness, and present polynomial time algorithms for the
total completion time case. For the weighted tardiness cost
efficiency measure, we provide a heuristic based on very
large scale neighborhood (VLSN) search.

Keywords Rescheduling new job disruption compression

1 Introduction and problem definition

This paper considers rescheduling problems that arise due
to new job arrivals subsequent to developing a planned
execution schedule that consists of a set of original jobs.
During processing of the original jobs, new orders (jobs)
may arrive to the system. The scheduling firm wishes to
reschedule its set of remaining jobs (including new jobs) in
order to best integrate the new jobs into the previously
planned schedule. In order to reduce the disruption on the
schedule, as is the case in many practical scheduling
contexts, the firm can pay an additional premium to reduce
the processing time (through, for example, overtime or
subcontracting) of the new jobs. This situation occurs in
many make-to-order (MTO) environments, where emer-

gency orders come in occasionally and the firm can use
additional resources to complete the emergency orders.

We assume that the firm utilizes a primary measure of
efficiency in scheduling jobs, such as the minimum total
flow time or minimum weighted tardiness. In addition to
this primary efficiency measure, the firm is also concerned
about disruption costs incurred as a result of schedule
changes in response to newly arriving jobs.

The problems we consider are single machine resched-
uling problems with compression time and without
preemption, which are defined as follows. An original
schedule exists for some nO original jobs. Each job i has
associated parameters including a processing time pi, due
date di, and tardiness cost li (per unit time tardy). Suppose
that at the beginning of processing the planned schedule for
the nO original jobs, nN new jobs arrive. The total number
of jobs equals nO þ nN ¼ n . In addition to the parameters
described for the original jobs, each newly arriving job i
has a maximum compression time ui, and a unit time
compression cost of ci. This compression time and
associated cost represent the possibility of reducing the
required processing time of a job at some cost per unit time
reduction. The processing time of job i can therefore be
reduced by xi (≤ui) units of time at a compression cost equal
to cixi. We must alter the original schedule in order to
account for processing the new jobs. A rescheduling, or
disruption cost is associated with the degree of deviation
from the initial schedule. This disruption cost accounts for
administrative costs and other coordination costs asso-
ciated with supplier and customer disruptions. We use the
absolute change in the originally scheduled starting time
of a job as the measure of schedule deviation. We
define a unit disruption cost of h, i.e., when a job’s
starting time is changed from si to s

0
i; the disruption

cost equals h si � s
0
i

�� ��:
Our objective is to obtain an efficient and stable

schedule; we therefore wish to minimize a composite
objective consisting of some traditional scheduling objec-
tive (e.g., total weighted tardiness cost or total flow time),
plus schedule disruption costs and new job processing time
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compression costs.The remainder of this paper is organized
as follows. Section 2 next discusses related past work
on rescheduling problems and its relation to our work.
Sections 3 and 4 consider the rescheduling problem under
different efficiency performance measures. These sections
present results and solution methods when the efficiency
measure component of the objective function is the mini-
mum total completion time (Section 3) and the minimum
weighted tardiness cost (Section 4) respectively. Section 5
then summarizes and provides potential directions for
future research.

2 Literature review

Any rescheduling problem must simultaneously address
at least two criteria. One is the efficiency of the schedule,
which is a traditional scheduling problem approach,
using an objective such as minimum makespan, minimum
weighted completion time, minimum total tardiness cost,
minimum number of tardy jobs, etc. The second criterion is
schedule stability, which refers to the degree of deviation
from an original schedule. The measure of stability may be
some measure of the change in completion times, the
change in job sequence, or the change in the starting
times, which we use in our analysis. A large number of
rescheduling research problems may be explored through
selecting and modeling these two criteria. We next discuss
relevant past work that addresses such problems.

Norbis and Smith [1] study a rescheduling problem with
resource constraints, where disruption events are defined as
changes in resource availability, changes in due dates,
changes in processing times, or new job arrivals. They
present a multi-objective mathematical programming for-
mulation for the resource scheduling problem. A quasi-
dynamic approach, based on periodic data updating and
re-optimizing is presented to take control whenever a dis-
ruption event occurs. If some resource availability is
violated, the procedure may delay operations with low
priority and release the associated resources for work on
higher priority jobs.

Bean and Birge [2] considered a rescheduling problem
with machine disruptions, and investigated “match-up”
scheduling heuristics, which compute a transient schedule
after a machine disruption. When a disruption occurs, their
approach determines how to merge back into the pre-
planned schedule at some future time. This approach first
fixes an initial match up point, and resequences jobs on
disrupted machines to minimize total tardiness cost. If the
cost for meeting the selected match-up point exceeds a
predetermined threshold, the match-up point is then
incremented by some value, until the match-up point
reaches a predetermined maximum value. A match-up is
therefore possible only if there is enough idle time existing
in the original schedule.

Wu, Storer et al. [3] proposed a rescheduling procedure
that generates a new schedule at each occurrence of a
shop disruption. They use a bicriterion approach, where the
two conflicting objectives are minimizing makespan and

minimizing deviation from the original schedule. Two sets
of local search heuristics were developed; the first set used
pairwise swapping methods, using a weighted combination
of the two objectives to create a single objective. The
second is a local search heuristic based on a genetic
algorithm approach, considering a two dimensional space
of makespan and deviation; the quality of any given
solution point in the space can be measured based on its
Euclidian distance to the origin.

Leon, Wu et al. [4] consider robustness measures and
robust scheduling methods for job-shop rescheduling with
fallible machines. Robustness is expressed as a linear
combination of the actual makespan after a disruption and
the deviation of the new makespan from the previous value.
A time window called slack is defined for each operation,
within which the operation can be started without incurring
any makespan delay. The robustness measure is the average
slack time of the operations to be processed on fallible-
machines. A robust scheduling solution based on genetic
algorithms is proposed.

Unal, Uzsoy et al. [5] consider a single machine
scheduling problem with newly arriving jobs that have
setup times that depend on their part types. They consider
inserting new jobs into the original schedule so as to
minimize the total weighted completion time or makespan
of the new job. Their approach does not, however, in-
corporate a measure of schedule disruption.

Hall and Potts [6] consider a rescheduling problem with
newly arriving orders. They present two classes of models.
In the first class they minimize schedule cost subject to a
limit onthe deviation from the original schedule. In the
second class, they minimize a total cost objective, which
includes both the original cost measure and the cost of
deviation. The efficiency measures they use are either
maximum lateness or total completion time, while the
stability measures are the maximum (ortotal) sequence
disruption or maximum (or total) completion time devia-
tion. For each problem, with the performance measures
defined above, they either present a polynomial algorithm
or prove that one does not exist.

The problem we consider is similar to that of Hall and
Potts [6], since we consider new job arrival disruptions, and
use a total cost objective function. In addition to the simple
efficiency measure used in their paper (total flow time), we
also consider a more complex efficiency measure, which is
the total weighted tardiness cost. We also consider the
added feature of available compression time, which allows
reducing the new job’s processing times to decrease the
impact of disruptions on the schedule, which to the best of
our knowledge is a new approach in rescheduling research.

3 Efficiency measure 1: minimizing total completion
time

In this section, we consider the rescheduling problem with
an objective function of minimizing the sum of total
completion time, compression cost of the new jobs and the
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disruption costs incurred as a result of starting time changes
for the original jobs. We use the following notation.

Notation

Ci the completion time of job j.
JO The set of nO old jobs.
JN The set of nN new jobs.
π* an optimal schedule of the old jobs.
∆j(π*) the deviation between starting times of job j in

schedules π* and the new schedule.

In terms of standard scheduling notation, we denote this
problem as 1

P
Cj þ

P
cjxj þ h

P
Δj π�ð Þ�� :We know that

the shortest processing time (SPT) rule provides the
optimal sequence for the problem 1 kPCj: Thus, we
assume that in schedule π*, the old jobs were sequenced by
SPT rule.

Hall and Potts [6] presented a lemma for the resched-
uling problem 1

P
Cj þ h

P
Δj π�ð Þ�� (the rescheduling

problem to minimize total completion time and disruption
costs). The lemma states that there exists an optimal
schedule in which the jobs in the set JO are sequenced in
SPT order as in π*. In their problem, the processing times
of the newly arriving jobs are fixed; in our problem, we
allow for compressing processing times for the new jobs to
reduce schedule disruption impacts. However, this lemma
is still valid with the added dimension of processing time
compression since the SPT order only depends on the
processing times of old jobs.

Lemma 1 For the rescheduling problem 1
P

Cjþ
��P

cjxj þ h
P

Δj π�ð Þ:; there exists an optimal sched-
ule in which jobs in the set JO are sequenced in SPT
order as in π*.

Let us next consider another related problem, the
problem of minimizing total completion time problem
with compression costs, i.e., 1

P
Cj þ

P
cjxj

�� : This
problem has been studied by Vickson [7]. Let job [j]
denote the job in position j. He shows that given a
compression time vector x, the cost (including the total
flow time and compression cost) is given by:

K xð Þ ¼
Xn
j¼1

n� jþ 1ð Þp j½ � þ c j½ � � n� jþ 1ð Þ� �
x j½ �

� �

This function achieves its minimum with respect to
the [j]th component of x at x[j]=u[j] ifc[j]<n − j + 1, and
at x[j] = 0 otherwise. Thus the cost incurred by placing
job i in position j, and then selecting its processing time
optimally, does not depend on the jobs which precede or
follow it in the sequence, but only on the sequence
position. Therefore, the problem can be formulated as
an assignment problem with a cost kij for assigning
job i to position j given by kij ¼ n� jþ 1ð Þpi þmin

0; ci � n� jþ 1ð Þð Þuif g , which can be solved in O(n2.5)
time.

We can create an assignment-based algorithm for the
rescheduling problem that uses the aforementioned theo-
rem by Vickson [7]. The idea is simple: we insert the new
jobs into the initial schedule of the old jobs, which were
sequenced by the SPT rule. Given a new job i, suppose we
insert it into position j of the new schedule, and assume that
there are m old jobs after job i. The cost incurred includes
the increased flow time, the compression cost and the
disruption cost, which is given by:

kij;m ¼ n� jþ 1ð Þ pi � xið Þ þ cixi þ mh pi � xið Þ
¼ n� jþ 1þ mhð Þpi þ ci � n� jþ 1ð Þ � mhð Þxi
¼ n� jþ 1þ mhð Þpi

þmin 0; ci � n� jþ 1ð Þ � mhð Þuif g

Based on this, we set xi= ui if ci<n − j + 1 + mh, and
set xi = 0, otherwise. Thus, given a new job, the “insertion”
cost does not depend on which jobs precede or follow it in
the sequence but only on the values i,j and m. Therefore,
the problem can also be formulated as an assignment
problem with assignment cost kij,m.

For each possible m = 1, …, nO, there are at most
nN positions j for job i and there are O(nOnN) values
of kij,m. Thus the assignment problem can be solved
by O(n0

2.5nN
2.5) time. Solving this assignment problem

then provides the optimal solution for this rescheduling
problem.

4 Efficiency measure 2: minimum total tardiness cost

In the previous section, we discuss a rescheduling problem
which is solvable in polynomial time. In this section, we
consider a NP-Hard rescheduling problem. We provide a
heuristic solution method using very large scale neighbor-
hood (VLSN) search methods. This heuristic can be used to
solve many NP-Hard rescheduling problems with different
objective functions (such as largest lateness with total
disruption cost and many others). As an example of the
application of this heuristic method, we consider a re-
scheduling problem with an objective of minimizing the
sum of total weighted tardiness cost, compression cost,
and disruption cost. The tardiness cost for job i is
(Ci − di)

+li, where (a)+ = max{a, 0}. In standard
scheduling notation terms, we denote this problem as
1 kP lj Cj � dj

� �þ þP cjxj þ h
P

Δj πð Þ: We know that
the minimum weighted tardiness cost rescheduling pro-
blem is NP-Hard because the corresponding single-
machine scheduling problem is NP-Hard [8]. Therefore,
this more general problem with compression and disruption
costs is also NP-Hard.
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4.1 A Heuristic based on VLSN

This heuristic solves problem 1||
P

lj Cj � dj
� �þ þP

cjxj þ h
P

Δj πð Þ by a very large scale neighborhood
search, with a starting solution that uses the same
sequence for the old jobs as in the original schedule.

Given a feasible solution (a schedule), its neighborhood is
generated by changing the sequence of jobs and changing the
compression time applied to each new job. A larger search
neighborhood typically implies better quality of locally
optimal solutions and of the final solution. At the same time,
the larger the neighborhood, the longer it takes to search the
neighborhood at each iteration. For this reason, a larger
neighborhood does not necessarily produce a more effective
heuristic, unless one can search the larger neighborhood in a
very efficient manner. There are a number of neighborhood
search heuristics in the literature applied to a broad range of
combinatorial optimization problems. Here we will use a
technique called VLSN (very large-scale neighborhood
search); see, for example, Ahuja, Ergun et al. [9]. Although
this heuristic approach has been used to solve a number of
classical NP-hard problems, to our knowledge, this is the first
application to a rescheduling problem.

In VLSN, the neighborhood is searched using network
flow techniques that implicitly enumerate solutions in the
neighborhood. Given an initial schedule, we construct an
improvement graph that allows us to search a pre-defined
large neighborhood structure. Each arc in this graph
represents an alteration of the schedule, and has an associated
cost determined by the nature of the change. An improved
schedule is found by finding a shortest path in the
improvement graph with negative cost, which implies that
a lower cost neighboring solution exists. We next explain
how we construct such an improvement graph.

LetG(V, E) be the improvement graph associated with the
current schedule. Then the node set V = {0, 1, 2, 3,…, n, n +
1, 1′, 2′,...nN′} ofG consists of n+nN+2 elements, where each
node i represents the job in position [i] for 1 ≤ i ≤n; nodes 0
and n + 1 are dummy nodes; node i′ represents a new job i for
1 ≤ i ≤nN. An arc (i, j) in the graph represents a move
involving jobs (i, ...,j − 1), for 1 ≤ i, j ≤n + 1. An arc ending at

node j′ represents a change in compression time for the new
job j for 1 ≤ j ≤ nN. The arc set E consists of all the arc types
that we next define. The arc set E is defined and created as
follows.

Arcs (i, i + 1) for 1≤ i ≤ n: these arcs represent the
situation where job [i] is not involved in any move. Hence
the cost of these arcs is: c(i,i+1) = 0.

Arcs (i, j) for 1≤i ≤ n − 1 and i + 2≤ j ≤ n + 1: these arcs
represent local updates that only affect jobs [i], ..., [j−1].
Lets0i½ � denote the starting time of job [i] in the original
schedule, while C[i], s[i], and p[i] are the current completion,
starting, and processing times in the revised schedule
(recording in the node i). There are three of these kinds of
arcs in the graph or each possible (i, j) pair:

Insertions arcs (i, j)1 represent the ejection of job [i] from
its current position and its re-insertion between job [j − 1]
and job[j]. The cost for these arcs is as follows:

Cði; jÞ1 ¼ l i½ � C i½ � þ
Xj�1

k¼iþ1

p k½ � � d i½ �

 !þ
� C i½ � � d i½ �
� �þ" #

þ
Xj�1

k¼iþ1

l½k� C k½ �� p i½ � � d k½ �
� �þ � C k½ � � d k½ �

� �þh i

þ h s i½ � þ
Xj�1

k¼iþ1

p k½ � � s0i½ �

�����
������ h s i½ � � s0i½ �

��� ���
þ
Xj�1

k¼iþ1

h s k½ � � p i½ � � s0k
�� ��� s k½ � � s0k½ �

��� ���� �

The first and the second terms in the function are the
increase in tardiness cost of job [i] and jobs [i+1], ..., [j−1],
while the third and fourth terms are the increase in
disruption costs of job [i] and jobs [i+1], ..., [j−1].

Swaps Arcs (i, j)2 represents the swap of job [i] with job
[j − 1]. The cost for these arcs is as follows:

C i; jð Þ2 ¼l½i� C i½ � þ
Xj�1

k¼iþ1

p k½ � � d i½ �

 !þ
� C i½ � � d i½ �
� �þ" #

þ l j�1½ � C j�1½ � �
Xj�2

k¼i

p k½ � � d j�1½ �

 !þ
� C j�1½ � � d j�1½ �
� �þ" #

þ
Xj�2

k¼iþ1

l k½ � C k½ � � p i½ � þ p j�1½ � � d k½ �
� �þ � C k½ � � d k½ �

� �þh i

þ h s i½ � þ
Xj�1

k¼iþ1

p k½ � � s0i½ �

�����
������ h s i½ � � s0i½ �

��� ���þ h s j�1½ � �
Xj�2

k¼i

p k½ � � s0j�1½ �

�����
������ h s j�1½ � � s0j�1½ �

��� ���
þ
Xj�2

k¼iþ1

h s k½ � � p i½ � þ p j�1½ � � s0k½ �
��� ���� s k½ � � s0k½ �

��� ���� �
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The first through third terms in C(i,j)2 represent the
increase in tardiness cost of jobs [i], ..., [j−1] and [i+1],...,
[j−2], while the fourth through sixth terms are the increase
in disruption costs for jobs [i], ..., [j−1] and [i+1], ..., [j−2].

2-opts Arc (i, j)3 represents a 2-opt move involving
the subsequence of the jobs [i], [i+1],...[j−1] in the
current schedule, i.e., the processing order of the jobs
[i], [i+1], ..., [j − 1] is reversed. Let C’[l] denote the
completion time of job [l] after such a reversal, where

C0
l½ � ¼ C l½ � þ

Pj�1

q¼lþ1
p q½ � �

Pl�1

q¼i
p q½ � , for l = i, ..., j − 1.

The cost for such arcs is then given by

C i; jð Þ3 ¼
Xj�1

k¼i

l k½ � C
0
k½ � � d k½ �

� �þ
� C k½ � � d k½ �
� �þ	 


þ
Xj�1

k¼i

h C
0
k½ � � p k½ � � s0k½ �

��� ���� s k½ � � s0k½ �
��� ���� �

:

Compression Arc (i, j′)y (where 0 ≤ i ≤n+1) or arc(i′, j′)y
(where 1 ≤ i<nN) represents the action of adding y units of
compression time to the new job j. If new job j in the
current schedule has xj units of compression time, the
graph will have (uj +1) copies of (i, j′)

y or arc (i′, j′)y, with
y = −xj, ..., 0,..., (uj − xj). If the new job is in position
[k], the cost for these arcs is as follows:

C i; jð Þy ¼
Xn
q¼k

l q½ � C q½ � � y� d q½ �
� �þ � C q½ � � d q½ �

� �þh i

þ
Xn
q¼kþ1

h q½ � � y� s0q½ �
��� ���� s q½ � � s0q½ �

��� ���� �
þ cjy;

where C[q], s[q], and p[q] are the completion, starting, and
processing times of job [q]respectively, in the current
schedule. The first term in the above expression is the
change in tardiness cost, the second term is the disruption
cost, while the third term is the new job’s compression cost.

As Fig. 1 shows, the improvement graph is acyclic. An
improved schedule is obtained by finding a path from node
0 to node nN′, where the sum of costs of the arcs in the path
is negative.

Theorem 1 An algorithm exists that searches the defined
neighborhood in O(n3).

Proof Since the graph is acyclic, a distance label
correcting algorithm solves the shortest path problem in
O(m) time, where m is the number of edges. There are
O(n) arcs for each kind of move from a node, which
implies that there are O(n2) arcs in the graph. At each
step, the calculation of the cost of arc (i,j) requires O(n).
Therefore, the total complexity for searching the
neighborhood is O(n3).

Notice that the cost of arc (i, j) not only depends on
nodes i and j, but also on the path leading to node i, because
the schedule may be changed after traversing each arc. If
we want to find the best improvement, we must therefore
enumerate all paths to every node, which implies expo-
nential complexity.

As a heuristic approach to overcome this, in our label
correcting algorithm, we express the state of the schedule at
each node by the completion time and process time of all
jobs; we keep this information updated at each step (at each
node). When we come to node i, we check all incoming
arcs to the node and select the arc (j, i) that produces the
lowest node i distance label, and let the distance label of
node i equal the distance label of node j plus the cost of arc
(j, i). We then update the completion time for all jobs and
the process time for the new jobs (thus update the
compression time) according to the move taken, and
update the cost of each arc leaving this node. Note that for
each node, we only select one incoming arc to the node,
and we only check a subset of paths to each node.
Therefore, the heuristic algorithmwe apply does not
guarantee obtaining the best improvement possible in the
neighborhood for the current schedule. In other words, if
no negative shortest path exists at an iteration, this does not
mean there is no improving schedule in the neighborhood
of current schedule.

At each iteration, the algorithm constructs an improve-
ment graph and finds the shortest path in the graph. If the
shortest path has positive cost, we stop the iteration;
otherwise, we update the current schedule, construct
another improvement graph, and continue the search. To
improve the solution procedure, we use multiple starting
points. An initial solution is constructed by simply
inserting the new jobs in some positions in the old
schedule while keeping the sequence of all other jobs fixed.
To obtain multiple starting points, we construct several
initial schedules where the new jobs inserted randomly in
different positions.

As we mentioned before, this heuristic may be applied to
other rescheduling problems with different objective
functions. The construction procedure and the search
method of the improvement graph are the same. We only
need modify the definition of the cost of arcs in the graph.

4.2 Branch and bound algorithm

To evaluate the efficiency of the VLSN heuristic, we
compare its performance to the optimal solution obtained
via a customized branch and bound procedure. The branch
and bound algorithm begins with an empty schedule and

  0   1'  2   3   4   5   6  1   2'

Fig. 1 An example of the improvement graph
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adds a job into the schedule at each level k, for k=1, ...,n,
where a level corresponds to the numberof jobs added to
create a partial schedule. At each node at level k, a job is
added in the (n − k + 1)st position in the schedule, and a
lower bound on cost at this node and its children nodes is
computed as the cost of the partial schedule. Note that this
implies that we add jobs to the schedule in reverse order as
we move down the tree. The algorithm uses a depth-first
strategy.

When we add a new job, we always use its minimum
process time and ignore its compression cost. Thus we
always get a lower bound on cost for the partial schedule at
any node. Only when we reach a leaf node, where all the
jobs have been scheduled, do we enumerate all possible
values of compression time for the new jobs, calculate the
total cost (including the compression cost at that time), and
select the best as the cost for this leaf node. During the
search, if the lower bound of a node is larger than the
current upper bound, we prune the node. The initial upper
bound is the cost of the solution from the VLSN heuristic;
this value is updated whenever we find a better feasible
solution.

4.3 Computational testing

We randomly generated two problem classes, with each
problem instance containing 27 old jobs and 3 new jobs.
We chose relatively small problem sizes so that we can
compare the exact branch and bound algorithm solution to
the heuristic results in reasonable computing time. The first
problem class uses an optimal initial schedule for the
original set of jobs, while the second problem class does
not guarantee the initial schedule is optimal. In the first
class of problems, the optimal schedule after rescheduling
is expected to be similar to the original one. Thus it is easier
for VLSN to perform the neighborhood search than for the
second class of problems, where we may require a great
deal of neighborhood search. The test problem parameters
are generated using the following rules,where U[a, b]
denotes the uniform distribution between a and b.

– Disruption cost per unit time, h = U[1, 3];
– Job processing times, pi=U[3, 12], for 1≤i≤n;
– Original schedule completion times, Ci=Ci−1+pi, for

1≤i≤nO;
– Job tardiness cost per unit time, li=U[1, 2h], for 1≤i≤n;
– New jobs due date, di ¼ U

Pn
i¼1 pi

� �
, for 1≤i≤nN.

– Compression time upper bound, ui= U[1, 3], for
1≤i≤nN.

For the first problem class, we set di=Ci+U[0, 3], while
for the second problem class, we set di=Ci+U[−4, 4], for
1≤i≤nO. For each problem class we generated 50 test
problem instances.

Since the branch and bound algorithm may run quite
long for some problem instances, we limit the branch and
bound solution time to one hour, and use the best upper
bound obtained by the branch and bound algorithm as a
benchmark for comparison to the VLSN approach. For the
VLSN heuristic, for each instance, we randomly generated
15 initial solutions by simply inserting new jobs into the

old schedule. Table 1 summarizes the results of our
computational tests. The average error is taken as the
average difference between the VLSN solution and the
branch and bound (B&B) solution values, divided by
the B&B solution value.

The table shows that VLSN is able to obtain very good
solution quality in a much shorter time than branch and
bound. Note that when we ran the branch and bound
algorithm, we used the results from VLSN as the initial
lower bound.Without this lower bound, branch and bound
is expected to produce worse results. We also found that if
we only increase the problem size to 40 jobs, the branch
and bound algorithm is truncated in one hour for almost all
the instances. Therefore, the VLSN heuristic is a fast and
efficient method for solving the rescheduling problem with
newly arriving jobs.

As expected, we also observe from the tables that both
VLSN and B&B do much better in problem class one than
in class two. B&B has the same worst case complexity for
the two problem classes, since it can, in the worst case,
enumerate all possible solutions. However, B&B uses the
solution of VLSN as the original upper bound, and this
upper bound is generally closer to the optimal solution for
problem class 1, since the original schedule is optimal for
this problem class. This leads to better B&B performance
for problem class 1. This suggests that although VLSN is
an efficient method for rescheduling problems given a
good initial schedule for the existing old jobs, it may not be
as efficient for other scheduling problems.

5 Conclusions and future research

This paper examines the rescheduling problem for newly
arriving jobs with compression time, where there are
several competing objectives. We measure the stability of
the schedule using a rescheduling cost. The efficiency of
the schedule is evaluated using two types of efficiency
measures. The objective function is the sum of the
rescheduling cost and the efficiency cost; thus we trans-
form there scheduling problem into a minimum cost
scheduling problem with a single objective. For the first
efficiency measures, we provided polynomial-time algo-
rithms. For the second efficiency measure, which leads to
an NP-hard optimization problem, we implemented a
VLSN search heuristic. We provided results of computa-
tional tests based on randomly generated problem instances
and showed that the VLSN heuristic provides high-quality
solutions in very fast time.

Table 1 Results for the computational test

Problem
class 1

Problem
class 2

Average error 0.44% 0.84%
# instances B&B are truncated 15 18
# instances VLSN gets optimal solution 32 26
# instances B&B gets better solution 5 5
Avg. run time for VLSN (min.) 0.04 0.07
Avg. run time for B&B (min.) 17 25.4
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Future work in this area might consider stochastic
models for cases in which job arrivals follow some
probability distribution, as well as other stability measures
such as a measure of the deviation of the sequence. Since
rescheduling may be motivated by many other factors, such
as machine failures, it may also be interesting to implement
our methods for these rescheduling problems as well.
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