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Abstract In this paper, a methodology is proposed for the
multi-objective optimization of a multipass turning pro-
cess. A real-parameter genetic algorithm (RGA) is used for
minimizing the production time, which provides a nearly
optimum solution. This solution is taken as the initial guess
for a sequential quadratic programming (SQP) code, which
further improves the solution. Thereafter, the Pareto-
optimal solutions are generated without using the cost
data. For any Pareto-optimal solution, the cost of
production can be calculated at a higher level for known
cost data. An objective method based on the linear
programming model is proposed for choosing the best
among the Pareto-optimal solutions. The entire methodol-
ogy is demonstrated with the help of an example. The
optimization is carried out with equal depths of cut for
roughing passes. A simple numerical method has been
suggested for estimating the expected improvement in the
optimum solution if an unequal depth of cut strategy would
have been employed.

Keywords Turning process . Multi-objective
optimization . Real-parameter genetic algorithm .
Sequential quadratic programming . Linear programming .
Lagrange multiplier

Nomenclature

C Constant in extended Taylor’s tool life
equation

Co Operating cost ($/min)
Ct Tool cost ($)
d Depth of cut (mm)
dF Depth of cut for the finishing pass (mm)

dR Depth of cut for the roughing pass (mm)
Df Final diameter of the work piece (mm)
D0 Initial work piece diameter (mm)
fF Feed for the finishing pass (mm/rev)
fR Feed for the roughing pass (mm/rev)
Fc Total production cost per piece ($)
Fmax Cutting force (kgf)
Ft Fraction of tool consumed per piece
k, α, β Constants used in the empirical relation

for cutting force
L Length of machining (mm)
m Number of roughing passes
n Exponent of extended Taylor’s tool life

equation
p, q, r Exponents of speed, feed, and depth of

cut in tool life equation
pc, pm Crossover and mutation probabilities
Pmax Maximum power (kW)
ri, ui Random numbers between 0 and 1
R Nose radius of cutting tool (mm)
Rtmax

Peak-to-valley height of surface
roughness for finishing pass

tc Tool change time (min)
ts Tool setting time per pass (min)
tts Total tool setting time (min)
Tf Tool life for the finishing pass (min)
TL Loading/unloading time per component (min)
Tmax, Tmin Maximum and minimum allowed values

of tool life
TP Total production time per component (min)
Tr Tool life for the roughing pass (min)
TtF Total cutting time for finishing pass (min)
TtR Total cutting time for roughing passes

(min)
vF Cutting speed for the finishing pass

(m/min)
vR Cutting speed for the roughing pass

(m/min)
η Machine efficiency
ηc Crossover index
ηm Mutation index
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1 Introduction

One of the most investigated problems in the area of
machining is process optimization. Starting from the early
work of Gilbert [1], a number of researchers have proposed
various algorithms for optimizing a single-objective func-
tion reflecting machining performance [2–10]. Commonly
used objective functions are the minimization of produc-
tion cost, the maximization of production rate, and the
maximization of profit rate. Abuelnaga and El-Dardiry [11]
discussed a number of traditional optimization methods
and highlighted the relative advantages and disadvantages
of the methods for solving the problems of machining
economics. They also pointed out that a weighted
combination of several objective functions might be a
suitable strategy for the optimization of machining
processes.

In the recent years, there has been a trend for using non-
traditional optimization techniques in lieu of traditional
methods [12–16]. Some of these have been used for the
optimization of multipass turning processes. These meth-
ods avoid the problem of getting trapped in local optima
and enable to obtain a global (or nearly global) optimum
solution. They are also ideally suited for multiple optimal
solutions and for solving multi-objective problems. How-
ever, except in a few papers, only single-objective
machining optimization problems have been solved.
Davim and Antonio [17] have optimized the drilling of
particulate metal-matrix composites by forming a utility
function, as a weighted addition of various objectives. This
function is minimized by a genetic algorithm. Sarvanan and
Sachithanandam [18] have used a genetic algorithm for the
multi-objective optimization of a surface grinding process.
Production rate and production cost have been combined to
make a single objective function. Baskar et al. [19] solved
the same problem using the ant colony algorithm. Tosun
and Ozler [20] optimized a hot turning process by using
Taguchi’s method, taking tool life and surface roughness of
the machined surface as the twin objectives, which are
combined to make a single objective by associating
suitable weights with each objectives. Selection of the
weights is a highly subjective decision and none of these
authors have thrown light on this aspect.

In the present work, a combination of a real-parameter
genetic algorithm (RGA) and sequential quadratic pro-
gramming (SQP) is used for obtaining Pareto-optimal
solutions in a multipass turning process. The multi-
objective optimization problem has been formulated in a
manner which does not require the cost data during the
optimization phase. The cost data is needed only during the
higher-level decision stage, in which the best among
the various Pareto-optimal solutions is chosen. This is a
major advantage of the procedure, as the cost data may not
be easily available to the engineer running the optimization
code. Technology remaining the same, the cost data may
keep on fluctuating with the market conditions. Moreover,
an accurate cost determination procedure usually provides
a significantly different cost from a roughly estimated one
[21]. In the present methodology, the higher-level decision

maker can quickly select the best among the various
Pareto-optimal solutions with the available knowledge of
cost components. A linear programming model has been
proposed to help in the higher-level decision process.

Apart from the methods described, simple heuristic
techniques have been adopted to improve the efficiency of
RGA. An equal depth of cut strategy has been adopted;
however, a procedure for estimating the deviation of the
optimum value from an unequal depth strategy has also
been provided. Although a multipass turning process has
been chosen as an example in this work, most of the
techniques discussed in this paper are of a general nature
and can be easily applied to other machining processes.

2 Problem formulation

In this section, the optimization problems have been
formulated. Section 2.1 discusses the objective function for
the maximum production rate. The constraints are
discussed in Section 2.2. Finally, Section 2.3 formulates
minimization of the cost as a multi-objective optimization
problem.

2.1 Objective function for maximum production rate

Consider the multipass turning of a cylindrical work piece
of length L and initial diameter of D0, the final diameter
being Df. Maximizing the production rate is equivalent to
minimizing the total production time per component TP,
which is expressed as:

Tp ¼ TtR þ tcTtR
Tr

þ TtF þ tcTtF
Tf

þ TL þ tts (1)

where TtR is the total cutting time of rough machining, tc
the time required for changing a tool, Tr the tool life for
rough machining, TtF the total cutting time of finish
machining, Tf the tool life for finish machining, TL the
loading and unloading time, and tts is the tool setting time.
The total cutting time for rough machining is obtained
as the summation of the cutting times for m roughing
passes, i.e.:

TtR ¼
Xm
i¼1

tri ¼
Xm
i¼1

πLDi�1

vRi fRi

where vRi and fRi are the cutting speed and feed,
respectively, at the ith roughing pass and Di−1 is the work
piece diameter at the beginning of that pass.

An interesting observation is that some researchers have
employed an unequal depth of cut strategy for multipass
turning process. However, in most of the cases, it seems
reasonable to take equal depths of cut, which is a usual
shop floor practice. This is because, compared to the
cutting speed and feed, the depth of cut has a much lesser
influence on tool life. Attainment of the optimum solution
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with unequal depths of cut in roughing passes may be due
to the presence of multiple optimal solutions, which the
traditional methods fail to capture. For example, a close
look at Table 1 of Gupta et al. [6] and some calculations
reveal the presence of multiple solutions. It is clearly seen
that equal depths of cut would have given the same cost.
Thus, to simplify the computations, an equal depth of cut
strategy is adopted here. In Section 6, a simple method is
proposed for an estimation of the deviation of an equal
depth optimum solution with an unequal depth solution.

Let dR be the depth of cut in each pass. Then:

Xm
i¼1

Di�1 ¼ D0 þ D0 � 2dRð Þ þ . . .þ D0 � 2
Xm�1

i¼1

dR

¼ mD0 � m m� 1ð ÞdR

Thus, the total time in roughing is:

TtR ¼ πL
vRfR

mD0 � m m� 1ð ÞdRð Þ (2)

The total cutting time for a finishing pass is given by:

TtF ¼ πL
vFfF

Df þ 2dF
� �

(3)

The total tool setting time is given as:

tts ¼ mþ 1ð Þts (4)

where ts is the setting time for each pass.

The tool life for roughing and finishing are obtained by
the famous Taylor’s tool life equation, i.e.:

Tr ¼ C

v p
R f

q
R d

r
R

; Tf ¼ C

v p
F f

q
F d r

F
(5)

2.2 Machining constraints

Minimization of the total production time per component is
carried out by imposing the following constraints:

– Tool life constraints:

Tmin � Tr; Tf � Tmax (6)

– Surface finish constraint:

f 2F
8R

� Rtmax
(7)

– Cutting force constraints:

kf αR d
β
R � Fmax

kf αF d
β
F � Fmax

(8)

– Machine power constraints:

kf αR d
β
Rv

6120η
� Pmax

kf αF d
β
Fv

6120η
� Pmax

(9)

– Geometric relation:

D0 � 2mdR � Df � 2dF ¼ 0 (10)

– Variable bounds:

vmin � vR; vF � vmax

fmin � fR; fF � fmax

dmin � dR; dF � dmax

(11)

– Variable type:

m is an integer (12)

The meaning of the variables are as outlined in the
Nomenclature section at the start of this paper.

Table 1 Data used for the example

D0=50 mm L=300 mm vFmax
¼ 500 m=min vFmin

¼ 5 m=min

vRmax
¼ 500 m=min vRmin

¼ 5 m=min fFmax
¼ 0:9 mm=rev fFmin

¼ 0:1 mm=rev
fRmax

¼ 0:9 mm=rev fRmin
¼ 0:1 mm=rev dFmax

¼ 3:0 mm dFmin
¼ 1:0 mm

dRmax
¼ 3:0 mm dRmin

¼ 1:0 mm Fmax=200 kgf Pmax=5 kW
Trmax

¼ 45 min Trmin
¼ 25 min R=1.2 mm ts=0.51 min/pass

Tfmax
¼ 45 min Tfmin

¼ 25 min Co=$ 0.5/min η=0.85
Rtmax

¼ 10 �m C=6×1011 tc=1.5 min/edge
k=108 p=5 TL=0.75 min/piece
α=0.75 q=1.75
β=0.95 r=0.75
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2.3 Minimization of the production cost

The production cost of a component is given by:

Fc ¼ CoTP þ Ct
TtR
Tr

þ TtF
Tf

� �
(13)

where Co is the operating cost per minute and Ct is the tool
cost. The operating cost consists of overheads, labor,
coolant, and electricity costs. The term associated with Ct is
basically the fraction of the tool being consumed in the
production of one piece. Denoting it by Ft, the production
cost can be expressed as:

Fc ¼ CoTP þ CtFt (14)

From the above expression, it is observed that, for
minimizing Fc, both Tp and Ft have to be minimized.
Thus, the minimization of cost problem can be converted
into the following multi-objective problem:

minimize Tp and F t subject

to the constraints of Section 2:2
(15)

The above problem does not require the values of Co and
Ct. As the minimizations of Tp and Ft are two conflicting
objectives, one can obtain various Pareto-optimal solu-
tions. The best amongst the Pareto-optimal solutions can be
chosen at a later stage with known cost data.

The theoretical minimum possible value of Ft is zero,
corresponding to an infinite tool life. Thus, Pareto-optimal
solutions will cover a range of Ft from 0 to that
corresponding to the minimum possible Tp. However,
depending on the value of Co and Ct, some of these
solutions will increase Tp and Fc simultaneously, which is
undesirable. A condition when the increase in Tp would
reduce the cost can be derived as follows.

Writing Eq. 14 in differential form:

dFc ¼ CodTp þ CtdFt (16)

The requirement dFc<0 leads to:

dTp
dFt

> � Ct

Co

� �
(17)

The left-hand side of the above inequality is the Lagrange
multiplier λ associated with an equality constraint (Ft=a
prescribed value) corresponding to the optimization problem
of minimizing Tp with the constraints of Section 2.2 along
with this equality constraint. The prescribed value in the
equality constraint is the value of Ft at which the condition is
being checked. Note that the Lagrange multiplier λ is a
negative quantity. Therefore, the Ft should be lowered only
until the magnitude of λ is less than Ct/Co. With the rough
estimate of the costs known at a lower level, only those Pareto-

optimal solutions that do not violate this condition need to be
generated.

Equation 16 can also be written as:

dFc ¼ Co 1þ Ct

Co

dFt

dTp

� �
dTp ¼ Co 1þ Ct

Coλ

� �
dTp (18)

The expression in the parentheses should be negative in order
to reduce the production cost at the expense of some increase
in the production time. With this expression, one can assess
the difference between the minimum cost and the cost
corresponding to the minimum production time. If the ratio of
the tool cost to the operating cost is very small, the difference
between the two costs will also be small.

3 Optimization methodology

In this work, a real-parameter genetic algorithm (RGA) and
sequential quadratic programming (SQP) have been
applied in succession for minimizing the production time
in the multipass turning process. An RGA is very efficient
in reaching up to nearly global optima. With an initial
population size of 50, the RGA is run four times up to 100
generations (or until convergence based on the average
fitness value of the population) for obtaining an initial
estimate, treating the number of roughing passes as real.
Taking the best solution of the RGA, SQP carries out the
local search in order to find out the global optimum. If the
number of roughing passes m turns out to be a non-integer
value, two runs of SQP are executed, one with the nearest
lower integer value and the other with the nearest higher
integer value. The best solution between these two runs is
selected. SQP also provides the Lagrange multipliers
associated with the constraints, which cannot be obtained
by genetic algorithms in an obvious manner. SQP is a well-
established traditional optimization technique and has been
described in many textbooks [22, 23]. RGA is of recent
origin [24] and, here, some techniques have been used to
make it more effective.

RGA uses real numbers instead of binary and, hence, is
suitable for a continuous search space. It does not suffer
from Hamming cliffs and achieves sufficient precision with
reasonable population sizes [24]. It operates on the
population of potential solutions by the principle of the
“survival of the fittest.” The initial population is random
and the population keeps on evolving towards betterment
in successive generations. In each generation, the popula-
tion is operated on by three main operators, reproduction,
crossover, and mutation to create a new population. If no
significant improvement in the average fitness value of the
population is observed for five successive generations,
convergence is assumed. The three operators are described
next.

1. Reproduction
In reproduction, good solutions in a population are
probabilistically assigned a larger number of copies
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and mating pools are formed. There are a number of
ways of carrying out reproduction. Here, the propor-
tionate reproduction operator is used, in which copies
of a member is proportional to its fitness value. The
fitness value is calculated from a fitness function F(x),
which is related to the objective function. The higher
the value of the fitness function, the closer the
objective function value to the desired objective. The
optimization problems used in the present work are of
minimization type. Hence, the following fitness func-
tion has been used:

F xð Þ ¼ 1

1þ f xð Þ (19)

where f(x) is the objective function. The members of
the reproduced population are called parents and are
used for the next genetic operation, namely, crossover.

2. Crossover
In the crossover operation, new members are created
by exchanging the information between two parent
members. In a binary-coded GA, generally, a single-
point crossover is used. Two strings are selected at
random and crossed at a random site to generate the
new offspring (children). In RGA, the term “crossover”
is really a misnomer. In the present work, a simulated
binary crossover operator (SBX) [24] is used, which
has a similar search power to that in a single-point
crossover in a binary-coded GA. This works as
follows.
Choose a random number ui∈[0, 1]. Calculate:

β ¼
2uið Þ

1

ηc þ 1 if ui � 0:5

1

2 1� uið Þ
� � 1

ηc þ 1
otherwise

:

8>>>>><
>>>>>:

(20)

where ηc is a crossover index, which is a non-negative
real number. A large value of ηc gives a higher
probability for creating a “near-parent” solution and a
small value of ηc allows distant solutions to be selected
as offspring. Offspring are given by:

xc1i ¼ 0:5 1þ βð Þxp1i þ 1� βð Þxp2i
h i

xc2i ¼ 0:5 1� βð Þxp1i þ 1þ βð Þxp2i
h i (21)

where xc1i and xc2i denote the ith variables of the child
members’ chromosomes and xp1i and xp2i are the ith
variables of the parent members. The crossover oper-
ation is performed with a crossover probability of pc.
In the present work, based on numerical experiments
and heuristics, the crossover index ηc is varied in the
range 40–65, and the crossover probability is varied in

the range 1–0.5 uniformly up to 100 generations. This
is done in order to explore the entire domain and to
generate significantly different members in the early
generations. In the later generations, only near-parent
solutions are generated so as not to destroy the good
solutions.

3. Mutation
Mutation provides a local perturbation in order to
provide diversity to the population and reduce the
possibility of being trapped in a local optimum. In the
binary-coded GA, mutation is carried out by altering
one or more bits in the chromosome string. Here, a
mutation operator based on polynomial mutation [24]
is used. Accordingly, the mutated value yi of xi is given
by:

yi ¼ xi þ xui � xli
� �

δi (22)

Here, xi
u and xi

l are the upper and lower bound values
of the ith variable, respectively. The parameter δi is
given by:

δi ¼ 2rið Þ 1
ηmþ1 � 1; if ri < 0:5

1� 2 1� rið Þ½ � 1
ηmþ1; if ri � 0:5

(
(23)

where ηm is the mutation operator and ri is a random
number in [0, 1].
In the present work, mutation operations are performed
with the mutation index ηm which is varied from 200–
150, and the mutation probability pm is varied from 0–0.5
up to 100 generations. This is to make the effect of
mutation negligible in early generations. In the later
generations, the mutation starts producing diversity in the
population and can perform the local search.

The optimization procedure will be demonstrated by
means of an example in Section 5. After obtaining the
solution for the minimum production time, SQP is used to
obtain Pareto-optimal solutions by solving the minimiza-
tion of the production time problem with the additional
equality constraint of Ft=Ft

*, a prescribed value). Different
Pareto-optimal solutions are obtained by gradually reduc-
ing Ft

* and noting the Lagrange multiplier corresponding to
the equality constraint. The search for Pareto-optimal
solutions is stopped as soon as the magnitude of the
Lagrange multiplier crosses Ct/Co. If even a rough estimate
is not available for Ct/Co, then Ft

* is reduced up to 0.
Usually, with 7–8 Pareto-optimal solutions, a continuous
curve representing the entire set of non-dominated
solutions can be constructed.

4 A method for higher-level decision

In this section, a linear programming model is proposed for
choosing the best among the various Pareto-optimal
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solutions. Corresponding to each Pareto-optimal solution,
the production cost Fc can be calculated from Eq. 14, since
at a higher level, Ct and Co will be known. The proposed
method minimizes the overall cost of the production
subject to a time constraint. This is illustrated with an
example of machining two different types of components
on a single machine. The procedure can be easily extended
to the case when several types of components are machined
on the same machine.

Suppose an industry requires n1 number of components
of type 1 and n2 number of components of type 2 in a total
time Ttot. The minimum value of Ttot corresponds to the
time when both components are machined with cutting
parameters providing the maximum production rate. The
maximum value of Ttot corresponds to the time when both
components are machined with cutting parameters provid-
ing the minimum production cost. The optimization
problem is:

minimize n1 Fcð Þ1 þ n2 Fcð Þ2
subject to n1 Tp

� �
1
þ n2 Tp

� �
2
� Ttot

(24)

where (Tp)1 and (Tp)2 are the individual times taken to
produce components of type 1 and type 2, respectively. The
cost of the production of individual components can be
approximated as:

Fcð Þ1 ¼ A1 � B1 Tp
� �

1; Fcð Þ2 ¼ A2 � B2 Tp
� �

2 (25)

This is a reasonably close approximation in the vicinity of
the minimum production time. Now, the problem in Eq. 24
can be modeled as the following linear programming
problem:

minimize n1B1 Tp
� �

1
þ n2B2 Tp

� �
2

subject to n1 Tp
� �

1
þ n2 Tp

� �
2
� Ttot;

Tp
� �

1

� �
max production rate

� Tp
� �

1
� Tp

� �
1

� �
min production cost;

Tp
� �

2

� �
max production rate

� Tp
� �

2
� Tp

� �
2

� �
min production cost;

(26)

After solving the above optimization problem, the updated
values of B1 and B2 can be obtained at the solution and the
procedure can be repeated if significantly different values
are obtained. Usually, the solution converges in one or two
iterations. Having obtained the production times, the
process parameters are found by solving the inverse
problem using SQP.

5 Examples

In this section, examples have been used to illustrate the
proposed methods. The data for the examples is provided in
Table 1, which is the same as that used by Gupta et al. [6].
Section 5.1 compares the performance of the proposed

optimization scheme (a combination of an RGA and SQP)
with RGAs alone and the method of Gupta et al. [6]. Gupta
et al. used a method known as “optimal sub-division” of the
depth of cut. In this method, an “unequal depth of cut”
strategy is adopted. The problem is solved in two phases. In
the first phase, solutions corresponding to separate mini-
mum costs for the individual rough passes and finish passes
are determined and tabulated for various fixed values of the
depth of cut. In the second phase, the optimal number of
passes, the optimal subdivisions of depths of cut for
different passes, and the minimum total production costs
are determined using an integer programming model. With
finer sub-divisions, this method is expected to give a nearly
optimal solution, albeit, with increased computational time.
Gupta et al. have reported minimum production costs lower
than those observed by Shin and Joo [5]. In view of these
observations, it was considered appropriate to compare the
results of the proposed methodology with those of Gupta et
al. [6]. Pareto-optimal solutions are shown in Section 5.2.
Section 5.3 illustrates a procedure for a higher-level
decision.

5.1 Comparison of the proposed optimization scheme
with other schemes

A comparison of the proposed scheme with the results of
Gupta et al. is made in Table 2. For this purpose, the cost of
production is minimized by taking the objective function as
Eq. 13. Tool cost Ct is taken as $2.5. Columns 4 and 5 of
the table show that the minimum production costs obtained
from the proposed scheme are always lower than those
reported by Gupta et al. [6]. It is to be noted that, while
calculating the cutting speeds at each pass, Gupta et al.
used the same job diameter, although the job diameter
keeps reducing after each machining pass. If only RGA is
used with fixed ηc, ηm, pc, and pm, then the results are
inferior to the proposed scheme and the computational time
(≈10 seconds on a Pentium IV computer) was about three
times the time taken in the proposed scheme. These results
were obtained by running the code four times and it took up
to 200 generations to converge. The fixed values of ηc, ηm,
pc, and pm were decided based on the recommendation
available in the literature [24] and a few numerical
experiments. The implementation of the variable ηc, ηm,
pc, and pm strategy improved the performance of the RGA;
however, its performance is still inferior to the proposed
scheme. Moreover, SQP in the proposed scheme provides
the values of the Lagrange multipliers associated with the
constraints, enabling us to perform a sensitivity analysis.

5.2 Pareto-optimal solutions

Consider the case of turning for a total depth of cut of
8 mm, for which the minimum total production time per
piece is obtained as 4.266 min. For this production time,
the fraction of the tool consumed per piece (Ft) is 0.0750.
There is a possibility of reducing the production cost,
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albeit, with an increase in the total production time.
Figure 1 depicts the Pareto-optimal solutions correspond-
ing to the objective function of Eq. 15. The variation of the
magnitude of the Lagrange multiplier, which is basically
the rate of increase in the minimum total production time
with respect to the reduction in Ft, is shown in Fig. 2. It is
observed that the magnitude of this rate keeps on increasing
with reducing Ft.

A Pareto-optimal solution for which the magnitude of the
Lagrange multiplier is more than (Ct/Co) is not of interest, as
discussed in Section 2.3. Thus, for a tool cost of $2.5, only
the Pareto-optimal solutions towards the right of the line
|λ|=5 are of interest in Fig. 1. It is seen that there is only a
slight variation in the production times among these
solutions. Hence, one can conclude that, for this cost data,
the minimum production cost and minimum production time
models will yield almost the same results. This is also clear
from Table 3, where it is seen that, for Ct/Co of 5, the
minimum cost of production is 2.320, same (up to 3 decimal
places) as that corresponding to the minimum production
time. The table clearly shows that the Pareto-optimal
solutions corresponding to |λ|>5 increase the production
cost and production time simultaneously. The same happens
for |λ|>20 if Ct/Co=20.

For the very high tool cost (say, Ct/Co=200), all of the
Pareto-optimal solutions towards the right of line |λ|=200
are dominant either in terms of the production rate or the
production cost. Unlike in the case of low tool cost, there is
a large amount of variation in the production times. Table 3
shows that, corresponding to the minimum production
time, the cost of production is $9.629, much more than the
minimum production cost of around $3.490. However, the
production time corresponding to the minimum cost is
about 44% higher than the minimum production time.
Therefore, in this case, choosing the best among the Pareto-
optimal solutions becomes very important.

5.3 A linear-programming-based higher-level decision

Let us consider the case of producing a shaft with two
steps. Each step is 300-mm long. The depths of cut to be
turned for each step are 6 mm and 8 mm, respectively. The
methodology of Section 4 can be easily employed in this
case, as the machining of each step can be treated as the
machining of one component. When both steps are
machined to provide maximum production rates, the time
for machining the job is 7.684 min; however, the
production cost per piece is $17.556. Depending on the
production requirement, the production time can be
increased to reduce the production cost. Table 4 shows
some linear programming solutions for various available
times on the machine. If the available time for a piece is
9 min, step 2 is machined with parameters providing the
maximum production rate, but the time for machining step
1 is increased. This provides an overall cost of $13. For the
available time of 11.5 min, step 1 is machined to provide

Table 2 Comparison of the results obtained by the two real-
parameter genetic algorithms (RGAs) (with and without variable ηc,
ηm, pc, and pm) and the proposed scheme with the results of Gupta et
al. [6]

Total
depth of
cut (mm)

Production cost per piece ($)

RGA (ηc=50,
ηm=200, pc=0.7,
pm=0.01)

RGA
(variable ηc,
ηm, pc, and
pm)

Proposed
scheme
(RGA+SQP)

Gupta
et al.
[6]

6.0 2.094 1.982 1.864 1.940
8.0 2.419 2.368 2.320 2.481
8.5 2.467 2.464 2.369 2.551
9.0 2.631 2.471 2.418 2.611
9.5 2.909 2.861 2.711 3.005
10.0 2.874 2.821 2.754 3.022
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the minimum cost. The overall cost in this case is $7.917.
For the available time of 13 min, both of the steps are
machined at their minimum possible costs. The total
production time is 12 min, indicating the idle time of 1 min/
piece.

6 Unequal depth of cut versus equal depth of cut

In the present work, an equal depth of cut strategy is
adopted. For estimating the difference with an unequal
depth of cut strategy, a simple numerical procedure may be
adopted. In this procedure, after the solution with an equal
depth of cut dr has been obtained, the SQP code is run three
times for obtaining the minimum production time in a
single-pass rough turning process with a fixed depth of cut.
The depths of cut in the runs are kept equal at 0.9dr , 1.1dr ,
and dr , respectively. Let the obtained minimum production
time in these runs be x1, x2, and x3, then the quantity:

" ¼ x1 þ x2 � 2x3j j
0:2drx3

dmax � drð Þ (27)

provides a measure of the expected relative improvement in
the solution if an equal depth of cut strategy is adopted. If ɛ
is very small, say 0.01, there is no need to go for an unequal
depth of cut strategy.

As an example, consider the solution for the turning of a
total depth of cut of 8 mm. The solution for the maximum

production rate is: νr=117 m/min, fr=0.71 mm/rev,
dr=2.5 mm, νf =152 m/min, ff =0.31 mm/rev, df =3 mm,
andm=2. In order to assess the improvement in the solution
if an unequal depth of cut strategy is employed, the
minimum times for a single-pass rough turning process
with depths of cut of 2.25 mm, 2.75 mm, and 2.5 mm are
calculated. These values, called x1, x2, and x3, respectively,
are 0.5412 min, 0.6579 min, and 0.5996 min. The value
(x1+x2−2x3) is −1×10−4 min, the negative sign indicating
the tendency of improvement if an unequal depth of cut
strategy is adopted. However, Eq. 27 provides ɛ=0.00017,
which is much smaller than 0.01. Thus, for the example
problem studied in this paper, an equal depth of cut strategy
is appropriate.

7 Conclusions

In this paper, an optimization methodology is proposed for
the optimization of a multi-pass turning process. A
combination of a real-parameter genetic algorithm (RGA)
and sequential quadratic programming (SQP) minimizes
the time of production, along with the satisfaction of
several constraints. The performance of the RGA has been
improved by the continuous variation of certain parameters
of the RGA through generations (iterations). A major
advantage of the proposed methodology is that various
Pareto-optimal solutions can be generated without the
knowledge of the costs involved. With the availability of
cost data, the best solution can be chosen at a higher level.
For that purpose, a linear programming model may be
used. The entire methodology is demonstrated with the
help of examples. The minimum production costs obtained
from the present optimization algorithm are lower than that
reported by Gupta et al. [6]. In this work, an equal depth of
cut strategy is employed. A procedure has been suggested
to assess the change in the solution if an unequal depth of
cut strategy is employed.

The main focus of the present paper is on showing the
effectiveness of the proposed optimization methodology.
Therefore, simple relations have been used for the

Table 3 Different Pareto-optimal
minimum production times and
corresponding costs at differentCt/
Co ratios

Ft Tp (min) |λ| Production cost per piece ($)

Ct/Co=5 Ct/Co=20 Ct/Co=200

0.0750 4.266 4.75 2.320 2.882 9.629
0.0735 4.274 4.90 2.320 2.872 9.487
0.0713 4.285 5.15 2.320 2.855 9.267
0.0675 4.305 5.62 2.321 2.828 8.902
0.0600 4.351 6.75 2.326 2.775 8.176
0.0450 4.477 10.32 2.351 2.688 6.738
0.0300 4.681 18.13 2.415 2.641 5.341
0.0263 4.755 21.70 2.443 2.640 5.002
0.0225 4.846 26.63 2.479 2.648 4.673
0.0075 5.623 109.56 2.830 2.886 3.562
0.0060 5.812 145.30 2.921 2.966 3.506
0.0041 6.155 232.97 3.088 3.119 3.490
0.0040 6.191 243.85 3.105 3.135 3.497

Table 4 Linear programming solutions

Ttot (minute) Production time per step
(min)

Production cost per step
($)

Step 1 Step 2 Step 1 Step 2

7.684 3.418 4.266 7.927 9.629
9 4.734 4.266 3.371 9.629
11.5 4.889 6.61 2.831 5.086
13 4.889 7.12 2.831 4.096
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estimation of the tool life and surface roughness. In real-life
practice, these may be computed with the help of neural
networks [25, 26], the optimization procedure remaining
the same. Some of the techniques employed in this paper
can be extended to the optimization of other machining
processes.
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