
DOI 10.1007/s00170-005-2556-6

O R I G I N A L A R T I C L E

Int J Adv Manuf Technol (2006) 29: 803–813

Wei-Chang Yeh

An efficient memetic algorithm for the multi-stage supply chain network problem

Received: 23 August 2004 / Accepted: 8 January 2005 / Published online: 23 November 2005
© Springer-Verlag London Limited 2005

Abstract A supply chain is dynamic and involves the con-
stant flow of information, production, services, and funds from
suppliers to customers between different stages. In this paper,
a memetic algorithm (MA, a hybrid genetic algorithm) is de-
veloped to find the strategy that can give the lowest cost of the
physical distribution flow. The proposed MA is combined with
the genetic algorithm (GA), a multi-greedy heuristic method
(GH), three local search methods (LSMs): the pairwise exchange
procedure (XP), the insert procedure (IP), and the remove pro-
cedure (RP), the Fibonacci number procedure, and the linear
programming technique (LP) to improve the tradition genetic
algorithm (GA). Preliminary computational experiments demon-
strate the efficiency and performance of the proposed MA.

Keywords Fibonacci number · Genetic algorithm · Greedy
heuristic algorithm · Linear programming technique · Local
search methods · Memetic algorithm · Network · Supply chain

1 Introduction

In recent years, many developments in logistics were connected
to the need for information in an efficient supply chain flow.
In practical applications, a supply chain is often represented as
a network (SCN), comprises nodes represent facilities (suppli-
ers, plants, distribution centers and customers), and arcs connect
nodes along with the production flow. A MSCN is a sequence of
multiple SCN stages. The flow can be transferred only between
two consecutive stages. The MSCN can achieve great success in
fulfilling customer demands in the best possible way [1–5]. The
appropriate MSCN design depends on both the customer’s needs
and the roles of the stages involved in filling those needs. The
MSCN problem proposed here is to find a network strategy that
involves the choice of facilities (plants and distribution centers)

W.-C. Yeh
Department of Industrial Engineering and Engineering Management,
National Tsing Hua University,
P.O. Box 24-60, Hsinchu, Taiwan 300, R.O.C.
E-mail: yeh@ieee.org

to be opened and the distribution network design must satisfy the
demand with minimum cost. It is based on the three-sequence
of stages proposed by Yu [6]. This problem is a NP-hard prob-
lem combining the multiple-choice knapsack problem with the
capacitated location-allocation problem [7].

Other researches have presented approaches to solve the pro-
posed MSCN problem [2, 8, 9]. Most of their algorithms were
based on an incorrect mathematical model that violated the flow
conservative law [2, 8, 9]. Otherwise, the published algorithms
were very simple and could not find good quality approximation
solutions [1]. The need for an efficient algorithm for the MSCN
problem thus arises.

In the past decade, we have seen an increasing interest in
biologically motivated approaches for finding optimal or good
quality solutions to larger problems, including neural networks
(NNs), genetic algorithms (GAs), Tabu Search (TS), and simu-
lated annealing methods (SAs) [10–22]. Among these methods,
GAs have recently been investigated with a high degree of suc-
cess and shown to be effective at exploring a large and com-
plex space in an adaptive way, guided by the equivalent bio-
logical evolution mechanisms of reproduction, crossover, and
mutation [10–21].

GAs are a stochastic search method for optimization prob-
lems based on the mechanism of natural selection and genetics,
which is the popular notion of the survival-of-the-fittest tenet of
Darwinian evolution. Recently, GA has been applied to harder
combinatorial optimization problems because it has better char-
acteristics, e.g., there is less effect on calculation when the sys-
tem becomes more complex or larger. However, the weakness of
GA for local searches is well acknowledged [15–21].

Moscato and Morman [15] introduced the term “memetic
algorithm” (MA) to describe the genetic algorithms in which
a local search plays a significant part. In MAs, a local optimizer
is applied to each offspring before it is inserted into the popu-
lation in order to push it to climb the local optimum [15–21].
With the hybrid method [15–21], GAs are used to perform global
exploration within a population, while local optimizers are used
to perform local exploitation around chromosomes. Since the
properties of GAs and conventional local optimizers are com-



804

plementary, MAs are often better than either method operating
alone [15–21].

The purpose of this paper is to present an efficient memetic
algorithm (MA) that combines GA, hybrid local search method
(LSM), multi-greedy heuristic method (GH), Fibonacci num-
ber, and linear programming technique (LP) to solve the MSCN
problem proposed first by [2] and revised in [1]. To indicate the
performance and efficiency of the proposed MA, the traditional
GA, and a heuristic method were also developed and compared
to the proposed MA. Our results compare favorably with the GA
and GH proposed in [1].

The paper is organized as follows. Section 2 describes the
acronyms, notations, and assumptions required. Section 3 con-
tains the discussions about the mixed 0-1 integer programming
model (MIP) for the MSCN problem and some important prop-
erties in MSCN. In Sect. 4, the GA part in the proposed MA
is given. The remaining part of the proposed MA includes
the multiple-greedy-heuristic algorithm, the hybrid local search
methods, the Fibonacci number procedure, and the linear pro-
gramming technique presented in Sect. 5. Computational experi-
ments among the proposed MA, traditional GA, and 5 GA based
techniques are provided and compared in Sect. 6. Concluding re-
marks and further research are given in Sect. 7.

2 Acronym, nomenclature, notation and assumptions

Acronym:

MSCN: Multi-stage supply chain network
GA: The genetic algorithm
MA: The memetic algorithm
GH: The multi-greedy heuristic method
LP: The linear programming technique
XP: The pairwise exchange procedure
RP: The remove procedure
IP: The insert procedure
LSM: The hybrid local search method combined with XP, RP,

and IP
L8: The LSM procedure is employed to improve all eight

chromosomes obtained from GH in the initial MA pop-
ulation procedure

Lb: The LSM procedure is employed to improve only the
best chromosome obtained from GH in the initial MA
population procedure

Lr : The LSM procedure is employed to improve the chro-
mosome with the smallest fitness function value among
all other chromosomes in the initial MA population
procedure

FN: The LSM procedure is employed to improve the best
chromosome from the current generation while the gen-
eration number is a Fibonacci number in the MA selec-
tion procedure

No.: Number
Avg.: Average
Gen.: Generation

Con.: Convergent
Div.: Divergent
Max.: Maximal
Rel.: Relative
Run.: Running
Prob: Problem

Notation:

| • |: the number of elements in •
S: S = {s1, s2, . . ., s|S|} is the supplier set of a MSCN
P: P = {p1, p2, . . ., p|P|} is the plant set of a MSCN
D: D = {d1, d2, . . ., d|D|} is the DC set of a MSCN
C: C = {c1, c2, . . ., c|C|} is thecustomerset ofaMSCN
•̄: The average value of •
W(•): The capacity (demand) of node •
xij : The number of flows transfer from nodes i to j
uij = u(i, j): The unit cost of transportation from nodes i to j
fi : The fixed cost to operate facility i
gi : The ith gene in a chromosome. If i = 1, 2, . . ., π, it

is represented the binary value of pi . Otherwise, it
is denoted the binary value of di−π

Xi : Xi = [g1, g2, . . ., gπ, gπ+1, gπ+2, . . ., gπ+δ] is the
ith chromosome in the current population

•MAX, •MIN: The maximal and minimal number of open facility
(node) •, separately

I(•):

{
1, if production takes place at • ∈ P ∪ D

0, otherwise

Nomenclature

Stages: the set of all facility with the same characteristic, e.g.,
all plants

MSCN: A multiple sequence of stages network s.t. the flow
can only transfer between two consecutive stages

MSCN problem: A problem to choose the facilities (plants and
DCs) to be opened and designed the network to satisfy
the customer demand with minimal cost including the
transportation and fixed cost [1, 2]

Flow: The information, production, service, or funds, etc.
Opened (unopened) facility: A supplier, plant or DC has (not)

chosen to send production flows, or a customer has
(not) chosen to receive production flows.

3 A mixed 0-1 integer programming formulation
and preliminaries

The MSCN problem is a NP-hard problem combined of multiple-
choice knapsack problems together with capacitated location-
allocation problems [7]. The mathematical programming formu-
lation is a natural way to attack a NP-hard problem, although it is
not an efficient solution procedure. The mathematical program-
ming for the MSCN problem is first proposed in [2] and revised
in [1] by emerging the flow conservative law. The number and
capacities (or demands) of suppliers, plants, DCs and customers,
the unit transportation cost between suppliers and plants, plants



805

and DCs, and DCs and customers, as well as the fixed cost for
operating plants and DCs are all known in advance. The MSCN
problem is formulated in [1] using the flowing mixed 0-1 integer
programming model as follows:

Model MSCN

Minimize
xij∑

i ∈ S
j ∈ P

·uij +
xij∑

i ∈ P
j ∈ D

·uij +
xij∑

i ∈ D
j ∈ C

·uij +
I(i)∑

i∈P∪D

· f(i) (1)

Subject to
xij∑

j∈P

= W(i), for all i ∈ S (2)

xij∑
j∈D

≤ I(i) · W(i), for all i ∈ P (3)

xij∑
j∈C

≤ I(i) · W(i), for all i ∈ D (4)

xij∑
i∈D

≤ W(i), for all j ∈ C (5)

xij∑
i∈S

=
xjk∑

k∈D

, for all j ∈ P (6)

xij∑
i∈P

=
xjk∑

k∈C

, for all j ∈ D (7)

I(p)∑
p∈P

≤ PMAX (8)

I(d)∑
d∈D

≤ DMAX (9)

where xij ≥ 0, for all i ∈ S and j ∈ P (10)

xij ≥ 0, for all i ∈ P and j ∈ D (11)

xij ≥ 0, for all i ∈ D and j ∈ C (12)

I(i) =
{

1, if production takes place at i ∈ P ∪ D

0, otherwise
.

(13)

The objective function minimizes the total cost for setting
up and operating the network. In the above model, Eqs. 2–4 are
the capacity (or demands) constraints for the suppliers, plants,
DCs and customer, separately. The constraints in Eq. 5 state that
the total amount shipped to customers must cover the demand.
Eqs. 6–7 enforce the total input flows for any plant/DC equal to
its own output flow. Eqs. 8–9 are the maximal number constraints
for plants and DCs, respectively. Both PMAX and DMAX (the
maximum number of opened plants and DCs, respectively) can
be given by decision makers [1, 2]. However, the ideal of both
PMAX and DMAX used in [1] are adapted according the following

two properties in this study.

Property 1: If W(p1) ≤ W(p2) ≤ . . . ≤ W(p|P|),

then
PMAX−1∑

i=1

W(pi) ≤
∑
∀s∈S

W(s) ≤
PMAX∑
i=1

W(pi).

(14)

Property 2: If W(d1) ≤ W(d2) ≤ . . . ≤ W(d|D|),

then
DMAX−1∑

i=1

W(di) ≤
∑
∀s∈S

W(s) ≤
DMAX∑
i=1

W(di).

(15)

To assure that the demands of all customers (called the
weight-bound here) are satisfied, the following important prop-
erty is needed in discussing any MSCN problem.

Property 3: The sum of the total capacities of suppliers,
opened plants, and opened DCs in a MSCN problem must all be
greater than or equal to the demand of customers, i.e.,

|S|∑
k=1

W(sk) ≤ Min

⎧⎨
⎩

|C|∑
k=1

W(ck),

|P|∑
k=1

I(pk) · W(pk),

|D|∑
k=1

I(dk) · W(dk)

⎫⎬
⎭ . (16)

The following theorem is trivial and forms the basis of the
proposed MA. Form this theorem, the proposed MA focus only
on how to code the chromosomes in binary integer vectors,
then find the corresponding fitness function values using any LP
technique.

Theorem 1. If the values of all binary integer variables I(i) in
model MSCN are known, then model MSCN is a linear program-
ming model.

4 The proposed GA

To overcome the weakness of GA for local searches, an efficient
MA is proposed here by combining GA, GH, LSM, and the Fi-
bonacci number to solve the MSCN problem. To show the power
of the proposed MA, most of the GA part, e.g., the way of using
the binary vector to express chromosomes, the selection operator,
the mutation operator, and the crossover operator, are all imple-
mented using the simplest ways as shown in the traditional GAs.
The significant differences between the proposed MA and GA
are only as follows:

1. The initial populations (see Sect. 4.1).
2. The stopping criterion (see Sect. 4.7).
3. LSM can increase the solution quality very well under the

cost of extra execution time. Hence, only the best chromo-
some created in the generation in which the generation num-
ber is a Fibonacci-number or the best offspring is better than
the best parents. The best offspring is then improved using



806

the proposed LSM to save time and produce a better solution
(see Sect. 5.3).

The details are discussed in the following subsections.

4.1 The initial populations

The initial population can be created in either a random way or
a well-adapted method. Liepins et al. [10] suggested that the use
of a well-adapted population provides little advantage despite
fast convergence. Therefore, the initial populations are generated
in the following three different ways:

1. Randomly.
2. Eight solutions obtained from GH (see Sect. 5.1).
3. Eight solutions obtained by implementing LSM (see Sect. 5.3)

into each solution obtained from GH.

4.2 Chromosome representation

As the initialization process of GA, a binary variable vector is
encoded as a finite-length string called a chromosome. Chromo-
some representation is critical to the success of the GA. Here,
the permutation encoding is used because the order of items can
be most naturally modeled in this way. In permutation encod-
ing, every chromosome is described by a feasible binary variable
vector:

I = [I(P)|I(D)]
= [I(p1), I(p2), . . ., I(p|P|)|I(d1), I(d2), . . ., I(d|D|)] (17)

where each gene I(•) is a binary number defined as follows:

I(•) =
{

1, if production takes place at • ∈ P ∪ D

0, otherwise
. (18)

4.3 Fitness function

The fitness function plays an important role in deciding the off-
spring in the next generation [10]. Chromosomes which are se-
lected to form new solutions (offspring) are according to their
fitness function value – the more suitable they are the more
chances they have to reproduce. In this study, the fitness func-
tion value for each chromosome equals to the objective function
list in Eq. 1. Once each gene I(•) is determined, we can calcu-
late their fitness function using the MIP model list in Sect. 3 by
any LPs.

4.4 Selection

The selection process discussed here is a mixed method of the
elite and the random selection. S eve nty% of the population is se-
lected from the better chromosomes of the parents and offspring
by the elite method to prevent losing the best found solution
and to rapidly increase the performance of the GA. The random
method is based on all of the chromosomes having a chance to be
selected. It is used here to select the other 30% population from
the unselected chromosomes.

4.5 Crossover

Crossover and mutation are the most important parts of GA.
The crossover plays an important role in exchanging informa-
tion among chromosomes. It leads to an effective combination of
partial solutions in other chromosomes and speeds up the search
procedure early in the generation. The single-point crossover is
developed here to produce two offspring for each pair of parents.
To increase the offspring variety and reduce the number of chro-
mosome duplications, a slight revision is made to the original
single-point using the following procedure:

Algorithm: The proposed crossover operator.
Input: Two randomly chosen parent chromosomes.
Output: Two offspring.
STEP 0. Randomly choose a single point (an integer num-

ber,) say r , among [1, |P|+ |D|).
STEP 1. If r ≤ |P|, then let α = 1. Otherwise, let α = |P|+

1.
STEP 2. Generate the offspring 1 by coping gα, gα+1, . . ., gr

from parent 1, and the remaining genes from
parent 2.

STEP 3. Generate the offspring 1 by coping gα, gα+1, . . ., gr

from parent 2, and the remaining genes from
parent 1.

The crossover is applied with a probability of 0.7 per chro-
mosome in this study. Table 1 shows examples of the proposed
crossover operator.

4.6 Mutation

To prevent all solutions in the population from falling into
a local optimum of solved problems; mutation takes place after
a crossover is performed. The swapping mutation is applied here
by choosing one gene within the selected chromosome randomly,
and changing its value from 0 to 1 or 1 to 0.

Algorithm: The proposed mutation operator.
Input: One randomly chosen parent chromosome.
Output: One offspring.
STEP 0. Generate one offspring by copying all genes from

the chosen parent chromosome.
STEP 1. Randomly choose a single point (an integer num-

ber,) say r , among [1, |P|+ |D|p.
STEP 2. Change the value of gr in the offspring from 0 to 1

or 1 to 0.

The mutation is applied with the relatively high probability of
0.3 per chromosome. Table 2 shows the swapping mutation with
one 3-plant and 4-DC chromosome.

4.7 Stopping criterion

The most frequently used stopping criterion for genetic algo-
rithms is to specify a maximum number of generations. From the
experiments, the proposed MA is converged very rapidly. Hence,
the stopping criterion is that all of the fitness function values for
the selected chromosomes are equal or the best fitness function



807

Table 1. An example for the proposed crossover

Parent 1 [1, 0, 1 | 1, 1, 0, 0]
Parent 2 [1, 1, 0 | 0, 1, 1, 0]
Assume the cut-point is 5.
Offspring 1 [1, 1, 0 | 1, 1, 0, 0] Copy g(|P|+1), g(|P|+2), . . ., g6 from parent

1, and the rest genes from parent 2.
Offspring 2 [1, 0, 1 | 0, 1, 1, 0] Copy g(|P|+1), g(|P|+2, . . ., g6 from parent

2, and the rest genes from parent 1.

Table 2. An example for the proposed mutation operator

Parent [1, 0, 1 | 1 , 1, 0, 1] Randomly choose one gene, say g4 (see

the number inside “ ”).

Offspring [1, 1, 1 | 0 , 1, 0, 1] Change g4 from 1 to 0 (see the number

inside “ ”).

value has no further improvements after 100 consecutive gener-
ations, then stop.

5 The proposed memetic algorithm

The remaining part of MA, i.e., GH, FN, and LSM are discussed
in this section.

5.1 The proposed GH

To speed up the convergent of the proposed MA, the first eight
chromosomes are created using a simple multi-greedy heuristic
method (GH) in the initial population procedure. All of these
eight chromosomes are then improved using a HLSM that is dis-
cussed in Sect. 5.3. GH is simply based on the eight rules. These
rules can find the exact solution in some special situations.

Rule 1: The path with the smallest unit transportation cost is
originally defined in [1] as follows:

υt = Min

{
u(sh, pi)+u(pi , dj )+u(dj , ck)

+ ft−1(pj )+ ft−1(dk)

Min{wt−1(sh),wt−1(pi ),wt−1(dj),wt−1(ck)}
}

,

where Min{wt−1(sh),wt−1(pi ),wt−1(dj ),wt−1(ck)} �= 0. (19)

Rule 2: This rule is similar to Rule 1 except customers are not
considered, i.e.,

υt = Min

{
u(sh, pi)+u(pi , dj )

+ ft−1(pj )+ ft−1(dk)

Min{wt−1(sh),wt−1(pi ),wt−1(dj )}
}

,

where Min{wt−1(sh),wt−1(pi ),wt−1(dj )} �= 0. (20)

Rule 3: The rule is similar to Rule 1 except fixed costs are not
considered, i.e.,

υt = Min
{
u(sh, pi )+u(pi , dj)+u(dj , ck)

}
. (21)

Rule 4: This rule is similar to Rule 3 except customers are not
considered, i.e.,

υt = Min
{
u(sh , pi)+u(pi , dj)

}
. (22)

Rule 5: This rule is preceded as follows:

1. Find the smallest unit transportation cost from suppliers to
plants.

2. Find the smallest unit transportation cost from chosen plants
to DCs.

3. Find the smallest unit transportation cost from chosen DCs to
customers, i.e.,

υt(sh , pi) = Min

{
u(sh, pi )+ ft−1(pj )

Min{wt−1(sh),wt−1(pi)}
}
,

where Min{wt−1(sh),wt−1(pi )} �= 0. (23)

υt(pi , dj ) = Min

{
u(pi , dj )+ ft−1(dk)

Min{wt−1(pi),wt−1(dj )}
}
,

where pi is belong to υt(sh , pi)

with Min
{
wt−1(pi),wt−1(dj )

} �= 0. (24)

υt = Min
{
u(dj , ck)

}
, where dj is belong to υt(pi , dj ). (25)

Rule 6: This rule is similar to Rule 5 except the flow between
DCs to customers are not considered:

υt(sh , pi) = Min

{
u(sh, pi)+ ft−1(pj )

Min{wt−1(sh),wt−1(pi)}
}
,

where Min{wt−1(sh),wt−1(pi )} �= 0. (26)

υt = Min

{
u(pi , dj)+ ft−1(dk)

Min{wt−1(pi ),wt−1(dj )}
}
,

where pi is belong to υt(sh , pi)

with Min{wt−1(pi ),wt−1(dj )} �= 0. (27)

Rule 7: Choose the path with the smallest fixed costs, i.e.,

υt = Min
{

ft−1(pi)+ ft−1(dj )
}
. (28)

Rule 8: The solution with the minimal number of facilities may
be the optimum.

υt = Min
{
Max{wt−1(sh)}, Max{wt−1(pi)}, Max

{
wt−1(dj )

}
,

Max{wt−1(ck)}
}
. (29)

After finding υt in the tth iteration for each rule, the fixed
costs for the plant and DC in the chosen path form according to
υt are all set to zero. The residual costs are also decreased by the
maximal flow, which is the minimal residual capacity among the
facilities in the path. The above three steps, i.e., calculate υt , set
the corresponding fixed costs to zero, and decrease the corres-
ponding residual capacities, are also performed repeatedly until
all customers are satisfied, i.e., all residual capacities for cus-
tomers are zeros. The remaining model MSCN is then solved
using LP under the obtained information that I(•) = 1 if • is
opened otherwise I(•) = 0 in the above steps.



808

5.2 The feasibility check

Each new chromosome is created randomly in the initial popu-
lation procedure (i.e., except for those created by GH, L8 and/or
Lb). The mutation procedure and/or crossover procedure, must
satisfy properties 1–3. Otherwise, the chromosome is modified
using the following procedure to assure its feasibility due to the
number of open plants violated.

1. If total capacity of opened plants (DCs) is less than the total

demand of customers, i.e.,
I(p)∑
p∈P

·W(p) ≤
W(s)∑
s∈S

( I(d)∑
d∈D

·W(d) ≤
W(s)∑
s∈S

)
, then we randomly open unopened plants (DCs), i.e.,

let I(i) = 1 if I(i) = 0 randomly where i ∈ P (D), until Eq. 14
is satisfied.

2. If the number of opened plants (DCs) is greater than PMAX

(DMAX), i.e., PMAX ≤
I(p)∑
p∈P

(
DMAX ≤

I(d)∑
d∈D

)
, then we ran-

domly close opened plants (DCs), i.e., let I(i) = 0 if I(i) =
1 randomly where i ∈ P (D), until

I(p)∑
p∈P

≤ PMAX

( I(d)∑
d∈D

≤

DMAX

)
.

5.3 Local search methods (LSMs)

One of the major drawbacks of the GA is that it is convergent too
slowly [10–21]. LSMs are implemented to prevent this drawback
and guide the search toward unexplored regions in the solution
space. LSM can increase the quality of obtained solutions very
well under the cost of extra execute time [21]. Hence, LSM only
implements to the following three conditions to save time and
produce a better solution:

1. Each chromosome is created using GH.
2. The best offspring is created in the Fibonacci number gener-

ation.
3. The best offspring is not created in the Fibonacci number

generation but with better fitness function value than the best
parent.

XP Parent [1, 0, 1 | 1 , 1, 0 , 1] Randomly choose two genes in which their values are different,

say g4 and g6 (see the number inside “ ”).

Offspring [1, 1, 1 | 0 , 1, 0 , 1] Exchange their value (see the number inside “ ”).

IP Parent [1, 0 , 1 | 1, 1, 0, 1] Randomly choose one unopened gene, say g2 (see the number

inside “ ”).

Offspring [1, 1 , 1 | 0, 1, 0, 1] Change the value of g2 from 0 to 1 (see the number inside

“ ”).

RP Parent [1, 0, 1 | 1 , 1, 0, 1] Randomly choose one opened gene, say g4 (see the number

inside “ ”).

Offspring [1, 1, 1 | 0 , 1, 0, 1] Change the value of the g4 from 0 to 1 (see the number inside

“ ”).

Table 3. Examples for the proposed
XP, IP, and RP

To easily determine under which condition LSM is em-
ployed, if LSM is implemented in the 1st, 2nd, and 3rd condition,
it is called L8, Lb, and Lr , respectively. The proposed LSM has
combined three famous local improvement methods: the pair-
wise exchange procedure (XP), remove procedure (RP), and in-
sert procedure (IP). These three local improvement methods are
used very often in the scheduling problem, and they are revised
here to improve the initial population obtained in the GA for the
MSCN problem.

In XP, the binary values of every pair of genes are exchanged
for each plant and DC chromosome. In IP, the status of one se-
lected unopened facility is changed to open, i.e., replaced with 1
if its value in the current gene is 0. RP is the reverse procedure of
IP, i.e., replace with 0 if the value of the currently gene is 1.

LSM is performed in XP-RP-IP series to the specific chromo-
somes satisfying any one of the above three conditions. Whole
procedures are performed in respect to the genes regarding plants
first. The genes regarding DCs are then discussed. If there is no im-
provement in the objective function value after the same procedure
is executed a second time, LSM is stopped. For example, assume
that the last procedure for updating the objective function value is
XP. If the following RP, IP, and the next XP cannot improve the
objective function value, then the proposed LSM must stop.

After executing any of the above procedure to the current
(feasible) chromosome, the new obtained chromosome needs to
have its feasibility checked. If it is unfeasible, then the two pro-
cedures listed in Sect. 5.2 are implemented to transfer this new
unfeasible chromosome into a feasible chromosome. Next, the
corresponding objection function value of the new feasible chro-
mosome is found using LP. Replace the current fitness function
value and the current chromosome with the new fitness function
value and new chromosome if the solution is improved.

As shown in Table 3, the total none-zero numbers in each new
chromosome obtained from XP, IP, and RP are no change, increas-
ing by 1, and decreasing by 1, respectively. Hence, Eq. 14 must
verify for XP and RP, and Eqs. 15 and 16 must verify for IP and RP.

5.4 The linear programming technique

Linear programming is the core model of constrained optimiza-
tion. It also plays an important role in the proposed MA. If each



809

value of I(•) of the MIP model for MSCN is known, the residual
model is just a simple linear programming model. Therefore,
each fitness function of every new obtained chromosome is cal-
culated by the LP, e.g., simplex method or interior method. The
standard method for solving LP is currently still Dantzig’s sim-
plex method [22, 23]. Two recent polynomial algorithms have
been widely publicized: the ellipsoid algorithm and the algo-
rithm of Karmarkar [23]. The ellipsoid algorithm first established
that linear programs are solvable in polynomial time but has
given poor performance in practice. The claims for Karmarkar’s
algorithm for large problems are encouraging.

6 Computational result

The numerical tests will be described in this section. To show
the efficiency (running time) and the quality of the proposed
MA, seven methods (see Table 4) including the traditional GA
approach were employed and tested in randomly generated test
problems.

Table 4. The seven methods

Method no. remarks

1 The proposed MA, i.e., GA combining the GH, L8, Lr , FN,
and LP;

2 The proposed MA but replacing L8 with Lb which is imple-
menting only once to the best solution obtained from GH to
reduced the running time;

3 The proposed MA but without implementing L8;
4 The proposed MA but without implementing GH and L8;
5 The proposed MA but without implementing GH, L8 and Lr ;
6 The proposed MA but without implementing GH, L8 and FN;
7 The traditional GA together with LP, i.e., without implement-

ing GH, L8, Lb, Lr , and FN;

Table 5. A summary of the difference of seven methods

Method no. GH L8 Lb Lr FN LP GA

1
√ √ √ √ √ √

2
√ √ √ √ √ √

3
√ √ √ √ √

4
√ √ √ √

5
√ √ √

6
√ √ √

7
√ √

Group name |C| |D| |P| |S|
|C|∑
i=1

Cap(ci)/ |C| D̄MIN D̄MAX P̄MIN P̄MAX

4553 4 5 5 3 799.43 1.56 2.95 1.51 3.09
21101010 21 10 10 10 4205.26 1.80 4.71 1.78 4.79
50121520 50 12 15 20 9980.58 1.93 5.51 1.88 6.04
1008610 100 8 6 10 19918.74 2.00 4.78 2.10 4.23

Average 43.75 8.75 9 10.75 8726.003 1.8225 4.4875 1.8175 4.5375

Table 6. The facility number,
|C|∑
i=1

Cap(ci),

P̄MIN, P̄MAX, D̄MIN and D̄MAX for the test
groups

A summary of the differences among the above methods are
listed in Table 5.

All of the seven methods were implemented in C++ and run
on a Pentium 4-2.6G notebook personal computer with he same
cross-rate 0.7 and mutation-rate 0.3. Each method was tested
using four different sizes adapted from [1] as given in Table 6.
Each test group contained 100 different problems. Therefore,
there were 400 test problems in this experiment. The values of
DMIN, DMAX, PMIN, and DMAX for each problem were given
under the condition that properties 1–3 were satisfied.

The unit costs of transportation, the fixed costs on plants and
DCs and the facility capacities (demands) in every data set were
randomly generated in a uniform distribution s.t. Property 3 is
held. Otherwise, the corresponding data are regenerated. The de-
tails of the range of created data are as shown in Table 7.

Each different method was executed two times on each test
problem. One with a population size equal only to 16, and the
other four times of the number of DCs and plants, e.g., the pop-
ulations for test group 4553 was 40. The experimental results for
a population size equal to 16 are listed in Table 8. The results for
the other population sizes are list in Table 9. From Tables 8 and 9,
we have the following observations:

1. Comparing methods 1 to 2, L8 plays a more important role
than Lb in obtaining exact solutions.

2. Comparing methods 1 to 3, L8 plays an important role in ob-
taining exact solutions.

3. Comparing methods 2 to 3, Lb plays an important role in ob-
taining exact solutions.

4. Comparing methods 3 to 4, Lr plays a more important role
than GH+Lr in obtaining exact solutions.

5. Comparing methods 4, 5 and 6, 7, Lr can find more exact
solutions than the traditional GA in the initial population pro-
cedure.

6. Comparing methods 4, 6 and 5, 7, FP can find more exact
solutions than the traditional GA after the initial population
procedure.

7. The effectiveness of GH decreases dramatically when (|P|+
|D|) is increasing. However, L8, Lb, Lr and FN are not sensi-
ble to the problem size. Moreover, GH mixed with L8 and/or
Lb obtained more exact solutions.

8. The more exact solutions obtained in the initial population
procedure, the less effective Lr and FN were. Also, FN
helped to obtain more exact solutions if no other improve-
ment operations were implemented in the initial population
procedure of the traditional GA.



810

Table 7. The range of created data

Item Range

The capacity of each customer U[100, 300)
The capacity of each supplier, plant, and DC 100+U[0,

∑
c∈C

Cap(c)]

the unit cost of transportation U[3, 10)
The fixed cost U[900,2000)

Overall, the proposed MA (i.e., method 1) implemented to-
gether with GH, L8, Lr , FN, LP and GA is the best approach
among all other GA based algorithms. MA obtained more exact
solutions during the initial population procedure (see Table 10).
It also has fewer absolute errors and generations on average for
the test problems solved from convergence. Its total running time
was greater than that for the other methods but was less than 1
minute for each test problem on average.

The major improvement over the traditional GA by the pro-
posed MA is the initial population procedure. The initial pop-
ulation procedure therefore receives more discussion. Table 10
demonstrates the overall average percentage for obtaining exact
solutions. Table 11 shows that which operation, i.e. GH, L8, Lb

and/or Lr , is more significant in obtaining exact solutions in the
initial population procedure in detail. In the initial population
procedure, GH obtained nearly 36 optimums among 100 prob-

Table 8. The results for a population size equal to 16

Con. to opt. Con. to non-opt.
Group Method GH L8 Lb Lr rnd FN GA Con. Div. Avg. Max. Avg. Max. Avg. Avg.
name no. prob. no. prob. no. gen. no. gen. no. gen. no. gen. no. rel. error run. time

4453 1 36 49 1 4 10 0 4.250 8 2.300 4 2.345% 2.154
2 36 30 2 16 18 0 2.471 5 7.408 20 1.085% 3.877
3 36 4 37 23 0 2.162 5 5.913 9 2.795% 0.973
4 50 36 14 0 2.778 8 8.000 16 2.966% 0.608
5 3 76 21 0 2.711 8 8.238 25 2.745% 0.758
6 51 28 21 0 5.286 13 8.905 23 2.735% 0.464
7 1 59 40 0 6.898 22 9.800 17 3.306% 1.127

21101010 1 4 52 0 10 34 0 2.200 3 7.941 29 0.730% 25.142
2 4 25 0 16 55 0 3.000 13 7.909 36 1.819% 3.516
3 4 1 41 55 0 2.902 13 9.800 24 1.509% 11.353
4 17 35 48 0 3.200 13 9.458 23 1.668% 4.840
5 0 53 47 0 3.906 34 11.170 26 2.019% 6.612
6 15 7 78 0 11.857 33 10.692 32 2.900% 1.701
7 0 13 87 0 12.385 18 16.816 51 3.957% 3.266

50121520 1 1 47 0 10 42 0 2.600 5 11.333 53 0.542% 85.347
2 1 18 0 15 66 0 2.867 5 9.091 42 1.127% 12.036
3 1 2 36 61 0 3.778 13 10.279 45 1.087% 41.051
4 17 26 57 0 3.923 13 10.316 37 1.178% 17.147
5 0 37 63 0 3.703 13 10.651 30 1.180% 22.473
6 9 4 87 0 10.250 17 11.402 38 2.260% 3.293
7 0 4 96 0 20.000 36 20.521 35 2.924% 6.056

1008610 1 16 42 0 7 34 0 2.571 6 4.618 14 0.513% 21.671
2 16 19 0 17 49 0 2.471 5 7.408 20 1.085% 3.877
3 16 2 36 46 0 3.167 21 9.109 27 0.998% 13.517
4 22 33 45 0 3.030 8 8.311 24 0.695% 5.567
5 0 55 45 0 3.473 18 9.222 21 1.360% 6.992
6 22 12 66 0 9.583 17 10.742 30 1.921% 2.954
7 1 28 71 0 10.786 44 14.070 36 2.437% 4.539

lems when the problem size was smaller, 14.25% exact solutions
on average. L8 also worked very well and its average percentage
for obtaining exact solutions was more than 57% of the remain-
ing problems after executing GH. When only implementing Lb to
the best solution obtained from GH, 28.43% exact solutions were
obtained on average. From Table 11, only GH combined with L8
and Lr was the best one in average for obtaining exact solutions
in the initial population procedure. Another special factor is that
the average percentages for obtaining exact solutions decreased
when the total number of DCs and plants was increased. The rea-
son is that only the variables corresponding to DCs and plants
were integers requiring solutions.

After determining GH + L8 + Lr as the best on average in
obtaining the exact solutions in the initial population procedure,
eight rules forming GH are discussed next to see which rule was
really useful. From Table 12, rule 1 was the best one, rule 2 was
the worst one in GH but the best one in L8. Moreover, rules 1–
6 played almost equally important roles after executing GH and
L8. Table 13 shows the same result and that L8 significantly im-
proved the solution quality.

Not every test problem could be solved to obtain the exact
solution. It is necessary to discuss the quality of the obtained
approximation solutions. Table 14 shows that among seven
methods, the proposed MA (method 1) produced the minimal
average relative error between the approximation solution and
the optimum. The average relative error is defined as the sum



811

Table 9. The results for a population size was 4(|P|+ |D|)

Con. to opt. Con. to non-opt.
Group Method GH L8 Lb Lr rnd FN GA Con. Div. Avg. Max. Avg. Max. Avg. Avg.
name no. prob. no. prob. no. gen. no. gen. no. gen. no. gen. no. rel. error run. time

4453 1 36 49 1 6 8 0 3.333 6 4.750 6 1.990% 399.371
2 36 30 2 23 9 0 3.304 8 6.444 11 1.005% 50.645
3 36 8 45 11 0 3.022 15 8.727 18 1.936% 122.388
4 59 26 15 0 2.769 7 10.067 40 2.953% 84.628
5 82 11 0 2.549 10 10.000 12 1.790% 101.571
6 61 31 31 8 0 4.645 12 9.250 16 1.676% 71.615
7 84 84 11 0 4.845 12 9.909 14 1.320% 108.869

21101010 1 4 51 0 14 31 0 3.071 7 15.871 84 0.450% 4271.838
2 4 25 0 31 40 0 4.129 21 15.575 46 0.017% 890.331
3 4 1 65 30 0 5.016 21 19.065 89 0.686% 1031.294
4 17 51 31 1 3.588 15 19.774 60 0.892% 962.867
5 65 35 0 4.862 43 18.314 64 0.627% 1196.838
6 21 39 39 40 0 10.051 32 22.375 82 0.976% 978.887
7 65 65 35 0 11.338 31 19.486 54 0.878% 1103.017

50121520 1 1 47 0 15 37 0 6.800 46 20.703 72 0.310% 12931.818
2 1 18 0 26 53 2 6.769 34 16.698 42 0.539% 3498.423
3 1 0 57 42 0 8.456 49 22.476 84 0.398% 4107.004
4 16 37 46 1 5.730 34 24.543 87 0.515% 3831.789
5 55 44 1 6.727 25 21.705 69 0.506% 4780.627
6 12 38 38 48 2 14.947 49 23.417 65 0.580% 2990.399
7 55 55 45 0 16.509 35 26.800 68 0.355% 3785.146

1008610 1 16 42 0 10 32 0 3.800 8 9.469 52 0.220% 3203.879
2 16 19 0 27 38 0 5.111 28 11.079 41 0.558% 930.076
3 16 2 46 36 0 4.646 63 12.143 29 0.472% 1006.299
4 24 40 36 0 3.750 12 11.806 29 0.446% 1042.896
5 65 35 0 3.446 13 12.229 21 0.286% 1220.268
6 28 38 38 34 0 7.079 21 15.088 43 0.434% 917.259
7 56 56 44 0 7.571 14 14.614 33 0.551% 1184.360

Population Groups
size name 1 2 3 4 5 6 7

16 4553 90.00% 84.00% 77.00% 86.00% 79.00% 79.00% 60.00%
16 21101010 66.00% 45.00% 46.00% 52.00% 53.00% 22.00% 13.00%
16 50121520 58.00% 34.00% 39.00% 43.00% 37.00% 13.00% 4.00%
16 1008610 65.00% 52.00% 54.00% 55.00% 55.00% 34.00% 29.00%

Sub Average 69.75% 53.75% 54.00% 59.00% 56.00% 37.00% 26.50%

40 4553 92.00% 91.00% 89.00% 85.00% 89.00% 92.00% 89.00%
80 21101010 69.00% 60.00% 70.00% 68.00% 65.00% 60.00% 65.00%

108 50121520 63.00% 45.00% 58.00% 53.00% 55.00% 50.00% 55.00%
56 1008610 68.00% 62.00% 64.00% 64.00% 65.00% 66.00% 56.00%

Sub Average 73.00% 64.50% 70.25% 67.50% 68.50% 67.00% 66.25%

Average 71.38% 59.13% 62.13% 63.25% 62.25% 52.00% 46.38%

Table 10. The average percentage
for obtaining exact solutions

Groups GH+ GH+
name GH L∗

8 GH+L8 L8 +Lr L∗
b GH+Lb Lb +Lr GH+Lr Lr

4553 36.00% 76.56% 85.00% 86.00% 46.88% 66.00% 68.00% 42.00% 55.25%
21101010 4.00% 53.13% 55.00% 55.50% 26.04% 29.00% 29.00% 5.00% 17.50%
50121520 1.00% 47.47% 48.00% 48.00% 18.18% 19.00% 19.00% 2.00% 13.50%
1008610 16.00% 50.00% 58.00% 58.00% 22.62% 35.00% 35.00% 18.00% 24.00%

Average 14.25% 56.79% 61.50% 61.88% 28.43% 37.25% 37.75% 16.75% 27.56%

# with or without executing GH, L8 and/or Lb.
∗ the average percentage for obtaining the exact solutions after executing GH.

Table 11. The average percentage
for obtaining exact solutions from
GH, L8, Lb, and/or L#

r



812

Procedure Groups Rule no.
name 1 2 3 4 5 6 7 8

4553 26.00% 0.00% 23.00% 2.00% 23.00% 1.00% 0.00% 0.00%
21101010 3.00% 0.00% 3.00% 0.00% 2.00% 0.00% 0.00% 0.00%

GH 50121520 0.00% 0.00% 0.00% 0.00% 1.00% 0.00% 0.00% 0.00%
1008610 9.00% 0.00% 9.00% 0.00% 11.00% 0.00% 0.00% 0.00%
Average 9.50% 0.00% 8.75% 0.50% 9.25% 0.25% 0.00% 0.00%

4553 45.31% 46.88% 42.19% 45.31% 42.19% 50.00% 37.50% 51.56%
21101010 18.75% 28.13% 23.96% 29.17% 23.96% 27.08% 7.29% 13.54%

L∗
8 50121520 18.18% 25.25% 14.14% 25.25% 14.14% 26.26% 4.04% 10.10%

1008610 10.71% 30.95% 20.24% 28.57% 19.05% 27.38% 16.67% 10.71%
Average 23.24% 32.80% 25.13% 32.08% 24.83% 32.68% 16.37% 21.48%

4553 55.00% 30.00% 50.00% 31.00% 50.00% 33.00% 24.00% 33.00%
21101010 21.00% 27.00% 26.00% 28.00% 25.00% 26.00% 7.00% 13.00%

GH+L8 50121520 18.00% 25.00% 14.00% 25.00% 15.00% 26.00% 4.00% 10.00%
1008610 18.00% 26.00% 26.00% 24.00% 27.00% 23.00% 14.00% 9.00%
Average 28.00% 27.00% 29.00% 27.00% 29.25% 27.00% 12.25% 16.25%

∗ without considering these test problems in which exact solutions were found using GH

Table 12. The average percentage
for obtaining exact solutions from
GH under eight different rules,
and/or from L8

Procedure Groups Rule no.
name 1 2 3 4 5 6 7 8

4553 5.864% 24.459% 6.650% 22.873% 7.782% 24.652% 28.280% 21.214%
21101010 6.465% 28.606% 6.535% 28.236% 6.465% 29.313% 25.855% 24.942%

GH 50121520 5.644% 25.099% 5.644% 25.099% 6.324% 25.800% 22.210% 25.165%
1008610 6.288% 20.819% 6.288% 20.819% 5.451% 21.652% 21.396% 20.529%
Average 6.065% 24.746% 6.279% 24.257% 6.505% 25.355% 24.435% 22.962%

4553 2.411% 2.182% 2.180% 2.673% 2.426% 2.081% 3.720% 2.424%
21101010 2.553% 1.712% 2.603% 1.626% 2.446% 1.915% 3.961% 3.861%

L∗
8 50121520 1.883% 1.088% 1.889% 1.169% 1.903% 1.129% 3.069% 3.858%

1008610 2.635% 1.337% 1.827% 1.569% 1.817% 1.653% 2.982% 3.227%
Average 2.371% 1.580% 2.125% 1.759% 2.148% 1.694% 3.433% 3.342%

∗ without considering these test problems in which exact solutions were found using GH

Table 13. The average error be-
tween exact solutions and obtained
solutions from GH under eight dif-
ferent rules, and/or from L8

Population Groups
size name 1 2 3 4 5 6 7

16 4553 2.345% 1.085% 2.795% 2.966% 2.745% 2.735% 3.306%
16 21101010 0.730% 1.819% 1.509% 1.668% 2.019% 2.900% 3.957%
16 50121520 0.542% 1.127% 1.087% 1.178% 1.180% 2.260% 2.924%
16 1008610 0.513% 1.085% 0.998% 0.695% 1.360% 1.921% 2.437%

Sub Average 1.033% 1.279% 1.597% 1.627% 1.826% 2.454% 3.156%

40 4553 1.990% 1.005% 1.936% 2.953% 1.790% 1.676% 1.320%
80 21101010 0.450% 0.017% 0.686% 0.892% 0.627% 0.976% 0.878%

108 50121520 0.310% 0.539% 0.398% 0.515% 0.506% 0.580% 0.355%
56 1008610 0.220% 0.558% 0.472% 0.446% 0.286% 0.434% 0.551%

Sub Average 0.743% 0.530% 0.873% 1.202% 0.802% 0.917% 0.776%

Average 0.888% 0.904% 1.235% 1.414% 1.314% 1.685% 1.966%

Table 14. The average relative
error between obtained solutions
and exact solutions

of the absolute value for the relative error divided by the total
approximation solution number. If the approximation solution
number is smaller, then the corresponding average relative error
is bigger. From Tables 8, 9, and 10, the proposed MA always ob-
tained a larger number of exact solutions than the others. Hence,
the relative errors for groups 4553 obtained from the proposed
MA were not the best.

7 Conclusions and further research

The main purpose of this article was to present a more efficient
and effective algorithm to find an approximated MSCN solution.
The proposed algorithm employs a simple memetic algorithm
that combines the multi-greedy methods, local search methods



813

including XP, RP and IP, Fibonacci number, and LP to solve
the MSCN. From the above computational experiments, the pro-
posed MA is very efficient and effective in solving the MSCN
problem with high quality solutions, more exact solutions and
less relative error in fewer numbers of generations.

MA is a parameter-sensitive technique similar to GAs, SAs,
TSs, etc. An interesting research aspect of an extensive paramet-
ric study on seeking the relationship among the convergence rate,
variable strategy (e.g., a different crossover operation, and dif-
ferent mutation operation, selection and mixed operation), and
variable parameter rate, such as the variable crossover rate, vari-
able mutation rate, variable selection rate, and variable popula-
tion size, is the subject of ongoing research, and results will be
reported elsewhere. For future works, we also shall test our al-
gorithm in larger scale problems. Moreover, for each iteration,
processing of the population itself can be paralleled by having
several processors working on subpopulations of solutions sim-
ultaneously. This aspect still merits intensive investigation.

References

1. Yeh W-C (in press) A hybrid heuristic algorithm for the multi-stage
supply chain network problem. Int J Adv Manuf Technol 26:675–685

2. Syarif A, Yun YS, Gen M (2002) Study on multi-stage logistic chain
network: a spanning tree-based genetic algorithm approach. Comput
Ind Eng 43:299–314

3. Chopra S, Meindl P (2003) Supply chain management: strategy, plan-
ning and operation, 2nd edn, Prentice-Hall, New York

4. Stadtler H, Kilger C (eds) (2002) Supply chain management and ad-
vanced planning. Springer, Berlin Heidelberg New York

5. Poirier CC (1999) Advanced supply chain management: how to build
a sustained competitive advantage. Berrett-Kochler, San Francisco, CA

6. Yu H (1997) ILOG in the supply chain. ILOG Technical Report
7. Gen M, Cheng R (1997) Genetic algorithm and engineering design.

Wiley, New York
8. Kaufman L, Eede MV, Hansen P (2000) A plant and warehouse location

problem. Oper Res Q 2:547–554

9. Lee CY (1993) A cross decomposition algorithm for a multi-product
multi-type facility location problem. Comput Oper Res 20:527–540

10. Leipins G, Hilliard M (1989) Genetic algorithm: foundation and appli-
cations. Ann Oper Res 21:31–58

11. Goldberg DE (1989) Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley, Reading, MA

12. Nachtigall K, Voget S (1996) A genetic algorithm approach to periodic
railway synchronization. Comput Oper Res 23:453–463

13. Hoi DY, Dutta D (1996) A genetic algorithm application for sequenc-
ing operations in process planning for parallel machining. IIE Trans 28:
55–68

14. Al-Sultan KS, Hussain MF, Nizami JS (1996) A genetic algorithm for
the set covering problem. J Oper Res Soc 47:702-709

15. Moscato P, Norman M (1992) A memetic approach for the travel-
ing salesman problem: implementation of a computational ecology for
combinatorial optimization on message-passing system. Proceeding of
20th International Conference on Parallel Computing and Transporta-
tion Applications

16. Takashi K, Hiroaki K, Masakazu N (1993) A hybrid search for genetic
algorithms: combining genetic algorithms, tabu search, and simulated
annealing. Proceeding of 5th International Conference on Genetic Al-
gorithms, pp 641

17. Ghoshray S, Yeh KK, Andrian J (1995) Modified genetic algorithms
by efficient unification with simulated annealing. In: Pearson DW,
Steele NC, Albrecht RF (eds) Artificial Neural Nets Genetic Algorithm.
Springer-Verlag, pp 487–490

18. Cotta A, Aldana JF, Nebro AJ, Troya JM (1995) Hybridizing genetic
algorithms with branch-and-bound techniques for the resolution of the
TSP. In: Pearson DW, Steele NC, Albrecht RF (eds) Artificial Neural
Nets and Genetic Algorithm. Springer-Verlag, pp 277–280

19. Hattori M, Naruse M, Shirataki J, Tomikawa T (1996) A study
of parameter optimization in mega-genetic algorithm. Proceeding of
20th International Conference on Computers & Industrial Engineering,
pp 445–448

20. Yeh W-C (2000) A memetic algorithm for the min k-cut problem. Con-
trol Intell Syst 28:47–55

21. Yeh W-C (2000) A memetic algorithm for the n/2/flowshop/αF +
βCmax scheduling problem. Int J Adv Manuf Technol 20(9):464–473

22. Corley HW, Rosenberger J, Yeh W-C, Sung TK (2005) The cosine sim-
plex algorithm. Int J Adv Manuf Technol. Published online 6 April
2005

23. Bazaraa MS, Jarvis JJ (1990) Linear programming and network flows
2nd edn. Wiley, New York



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


