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Abstract This paper is concerned with the topics in the
speed control of a permanent magnet synchronous motor
(PMSM). First, the vector control scheme in the synchro-
nously rotating reference frame is used to formulate the
PMSM model as the system plant. Then, the modern
control theory using a sliding mode with fuzzy controller is
presented to design the corresponding closed-loop system
and Matlab/Simulink software is used for computer
simulation. The original PMSM is stable, sluggish with
large overshoot deficiency. It can be shown that the
proposed fuzzy sliding-mode controller not only can delete
the overshoot problem and achieve very good tracking
performance without zero steady-state errors, but can also
obtain good robustness to system parameter uncertainty.
This proposed fuzzy-sliding mode controller for PMSM
can be applied to the positioning control of the robot arms
to suppress unnecessary vibrations. For assembly lines, this
proposed controller can be used to obtain fast tracking
ability, less steady-state errors, and robustness for different
velocity movements.

Keywords Permanent magnet synchronous motor .
Fuzzy controller . Fuzzy sliding-mode controller

1 Introduction

Permanent magnet synchronous motors are being increas-
ingly used in a wide range of applications because of their
high power density and efficiency. A comprehensive com-
parison of performance was made for the various motors
under different operating conditions from previous re-
search. The PMSM was observed to possess the inherent
advantages of high efficiency, power factor, and it also does
not have copper losses of rotor winding. As a result, the
PMSM has been the study object by many currently
researchers, such as [1] who have successfully applied the
field-oriented regulating in the speed control for PMSM.

The torque of PMSMs is proportional to the q-axis
current in the synchronous reference frame which is
preferred to that in the stationary reference frame. In the
conventional proportional-integral (PI) plus decoupling
current control, the current control is slow and has
overshoots on the speed when the fixed gains are used
[2–4]. In this kind of classical control, most of the
automatic control problems are usually solved by mathe-
matical tools based on the system models. But in the real
world, there are many complex industrial processes whose
real models cannot be easily developed. Hence, a fuzzy
logic controller [5] using linguistic information is applied
to model the qualitative aspects of human knowledge,
providing an alternative to conventional control techni-
ques. It also possesses robustness, model-free, universal
approximation theorem and rule-based algorithm [6]. A
performance comparison of the conventional PI and fuzzy
controllers is provided for the speed control as shown in
[7–9]; the experiments and simulation results both confirm
that the proposed fuzzy control approach provides better
tracking and disturbance rejection performance than the
conventional one.

But the fuzzy controller has a disadvantage. The amount
of rule base of the fuzzy controller is bigger when the
sensitivity of the output is high, and how to reduce memory
capacity is crucial. In this paper, a new method for
controlling a synchronous permanent magnet motor using a
sliding-mode with fuzzy controller design is presented.
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Regardless of small or big angular velocity during the
movements of the PMSM, it proves that the proposed
fuzzy-sliding mode control is robust for uncertain items of
the system modes by effectively suppressing vibrations.

2 The plant model of PMSM

By using a synchronously rotating reference frame as
shown in Fig. 1, the voltage, current, and flux linkages of
the three phases of the stator can be transferred to direct-
axis, quadrature-axis, and zero-sequence components,
respectively. Because the three phases are in equilibrium
states, based on the q-d axis synchronously rotating
reference frame, the voltage equation of the PMSM can
be obtained as follows [10]:
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veqs; veds : the q-axis and d-axis equivalent stator voltage,
ieqs; ieds : the q-axis and d-axis equivalent stator current,
Lq, Ld: the q-axis and d-axis equivalent self-inductances,
λe
qs; λe

ds : the q-axis and d-axis equivalent flux linkages,
λfd : the rotor equivalent flux linkages,
Ifd: the d-axis equivalent excitation current,
Lmd: the d-axis equivalent stator mutual inductance,

rs: the equivalent stator winding resistance,
ωe: the angular speed of rotor in electrical radians

per second,

The transient output power ps, and output torque Te of
the three-phase stator can be defined as:
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and the dynamic equation of the motor is:

Te ¼ TL þ Bmωm þ Jmω
�

m (8)

where

P: the number of poles of the motor,
TL: the load torque of the motor,
Bm: the motor viscous friction coefficient,
Jm: the rotor inertia of the motor,
ωm: the angular speed of rotor in mechanical radians per

second,
θm: the mechanical angle,

The state space equation can be found as:
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ω
�
m ¼ 1

Jm
Te � TL � Bmωmð Þ (11)

θ
�
m ¼ ωm (12)

3 The speed field-oriented control of the PMSM

The speed closed-loop control of the PMSM is shown in
Fig. 2. The rotor of the PMSM is the permanent magnet and
the flux linkage is constant. The d-axis stator current
command is set to zero, and the motor torque can be
controlled by the q-axis stator current. This block diagram
includes speed controller, q-axis stator current controller, d-
axis stator current controller, voltage decouping unit, the
transformation unit between synchronously rotating refer-
ence frame and three phase static axis, and the inverter driver
unit. The inverter driver unit adopts the sinusoidal pulse
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Fig. 1 Relationship between three-phase abc and synchronously
rotating reference frame qdo
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width modulation (SPWM). The simulation plant is also
shown in Fig. 2.

The parameters of the PMSM [11] and the corresponding
speed step transient responses of the PMSM are presented
as Table 1 and Fig. 3, respectively. It can be seen that the
system is stable but there exists large overshoot deficiency.

4 Fuzzy sliding-mode control theory and design

4.1 Fuzzy control

The speed fuzzy control of the PMSM is shown in
Fig. 4. The system input isr, output is y, and the error is

e ¼ r � y: The error and the error rate are adjusted so
that their values will lie in the range of the membership
function. The fuzzy output inferred is converted into
clear values, and the center of gravity for the defuzzifier
is adopted. A proportional coefficient is used to
accommodate with the system output [6]. The triangles
as shown in Fig. 5 are chosen for the membership
functions for three linguistic variables. The definition of
the input and output linguistic terms will define the
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Fig. 3 The transient response of the original system

Table 1 The parameters of 1hp Y-connection three-phase revolving
PMSM

Symbol Title Unit Numerical

Vrated Rated voltage Vrms 220
rs Stator equivalent

winging resistance
Ω 4.67

λfd Rotor equivalent flux
linkages

wb 0.06325

Bm Motor viscous friction
coefficient

N·m/rad/s 0.00013263

Nrated Rated speed rpm 1800
Ls Stator self-inductance H 0.04494
P The number of poles poles 4
Jm Rotor inertia of motor kg·m2 0.0000457
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Fig. 2 Speed field-oriented control in the closed loop of PMSM
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three linguistic variables onto seven linguistic terms. All
linguistic variables are defined as follows:

T eð Þ ¼ NB;NM ;NS; ZR;PS;PM ;PBf g
¼ �15;�10;�5; 0; 5; 10; 15f g (13)

T e
�� �

¼ NB;NM ;NS; ZE;PS;PM ;PBf g
¼ �15;�10;�5; 0; 5; 10; 15f g

(14)

T uð Þ ¼ NB;NM ;NS; ZE;PS;PM ;PBf g
¼ �15;�0:4;�0:1; 0; 0:1; 0:4; 15f g (15)

where NB Negative Big, MM Negative Medium, NS
Negative Small, ZR Approximately Zero, PS Positive
Small, PM Positive Medium, and PB Positive Big. The
corresponding fuzzy rule base is shown in Table 2.

The system transient response for a step input is shown
in Fig. 6. It can be seen there exists overshoot and the
response is sluggish. The fuzzy sliding-mode controller
will be employed to improve this insufficiency.

4.2 Fuzzy sliding-mode control

Fuzzy sliding-mode control is a variable structure system.
It is combined with fuzzy and sliding surface. Three
sufficient and necessary conditions of sliding-mode
controller are shown in Fig. 7 and described as follows
[12]:

– Approaching condition: No matter what the state
trajectory of the system, x(0), begins, at finite time
interval, the state will approach to the sliding surface, s
(x)=0.
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Fig. 4 The speed control with
fuzzy controller for PMSM
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Fig. 5 The membership function of three linguistic variables (e, ė
and u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

300

600

900

1200

1500

sec

sp
ee

d 
(r

pm
)

Fig. 6 The transient response of PMSM with fuzzy controller for a
1,500 rpm input

Table 2 7×7 fuzzy rule base

e (error)

NB NM NS ZR PS PM PB

ė PB ZR PS PM PB PB PB PB
PM NS ZR PS PM PB PB PB
PS NM NS ZR PS PM PB PB
ZR NB NM NS ZR PS PM PB
NS NB NB NM NS ZR PS PM
NM NB NB NB NM NS ZR PS
NB NB NB NB NB NM NS ZR
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– Sliding condition: When the state trajectory reaches to
sliding surface, the state will slide in the plan and
approach to the equilibrium point.

– Stable: The final state will arrive at stable point,
x(∞)=0. This is so called the equilibrium point.

4.3 Control scheme approval

Assuming that a sliding surface is as shown in Fig. 8,

σ ¼ αeþ βe
� ¼ 0 (16)

where α ≥ 0, β ≥ 0 and

e ¼ r � y (17)

e
� ¼ r � y

�

(18)

where r is the objective value, y is the system actual output,
e is the error.

If the state is in the sliding surface

σ tð Þ ¼ α r � yð Þ þ β �y
�

� �
¼ 0 (19)

By using Laplace transform with step input,

α
r
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From inverse Laplace transform
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and get

y tð Þ ¼ r � re�
α
βt (23)

lim
t!1y tð Þ � r: (24)

By choosing suitable values of α and β, it can be shown
that at finite time, the final state of the system output will
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approach to the objective value. For example, if we want
the system to get 99% of that value at finite time 0.8 s, then

y

r
¼ 1� e�

α
βt ¼ 1� e�

α
βð0:8Þ≥ 0:99 (25)

By choosing α
β ¼ 6; then

y

r
¼ 1� e�6ð0:8Þ ¼ 0:99177≥ 0:99 (26)

where α
β is the slope of the sliding surface.

This result of the simulation will be shown in the next
section.

The sliding-mode controller combines with the fuzzy
controller as shown in Fig. 9. The error e and error rate ė are

combined to be one variable for the sliding surface. Instead
of using two variables for setting up fuzzy rule base on the
fuzzy controller, this corresponding value will be the input
for constituting the fuzzy sliding-mode rule base. This
means that in the fuzzy controller, the 7×7 rule base will be
reduced to only a 7×1 rule base.

The triangles as shown in Figs. 10 and 11 are chosen for
the membership functions [13] of the two linguistic variables,
the input of the fuzzification and the defuzzification are as
follows:

T σoutð Þ ¼ NB;NM ;NS; ZR;PS;PM ;PBf g
¼ �15;�7:5;�2; 0; 2; 7:5; 15f g (27)

T wð Þ ¼ NB;NM ;NS; ZE;PS;PM ;PBf g
¼ �15;�10;�5; 0; 5; 10; 15f g (28)

The rule base of fuzzy sliding-mode controller is as
shown in Table 3.

5 Simulation results

The system transient responses of fuzzy and fuzzy sliding-
mode controllers for a step input 1,500, 1,200, and 900 rpm
are as shown in Figs. 12, 13, 14, respectively. The objective
of the system is to get 99% of the objective value at finite
time 0.8 s. The fuzzy control uses 7×7 fuzzy rule base, and
the proposed fuzzy sliding-mode controller only uses 7×1
rule base. In fuzzy control, the average settling time is 0.7 s,
but in the proposed fuzzy-sliding control, the average
settling time is 0.35 s. These transient responses of the
proposed fuzzy-sliding mode control systems do not
exhibit any overshoots; that is, the outputs never exceed
their final values during the transients. The proposed fuzzy-
sliding mode control system can minimize the settling time,
make precise tracking property, and eliminate steady-state
errors with better time optimal control. This advanced
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Fig. 12 Transient response comparison for a step input 1,500 rpm
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Table 3 The rule base of fuzzy sliding-mode controller

Input variable σout NB NM NS ZR PS PM PB
Output variable u NB NM NS ZR PS PM PB
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Fig. 14 Transient response comparison for a step input 900 rpm
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precisely manufactured technology of the proposed PMSM
controller is very suitable in robotics or assembly when one
wants to push the state-of-the-art with faster and more
accurate velocity profile of the control systems.
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