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Abstract It is observed that the optimization technique
Genetic Algorithm is gaining more importance over the
past several years. With high computing power we are able
to apply soft computing techniques to solve complex
problems in less time. An approach through Genetic
Algorithm to solve job shop scheduling problems using
inversion operator has been tried, with make-span objec-
tive. Computational experiments of this attempt have
shown better solutions coupled with appreciable reduction
in computer processing time. A set of 20 selected
benchmark problems were tried with the proposed heuristic
for validation and the results are encouraging. The
inversion operator is found to perform better.
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1 Introduction

Job shop problems have a set of n jobs to be processed on a
set of m machines. Job shop scheduling deals with the
allocation of jobs to various machines with the objective of
minimizing the total production time or make-span (the
time to complete all jobs), or minimizing the tardiness (not
meeting the due date) in jobs or any other required
objectives. Each job is composed of a set of operations and
operation order on various machines. Each operation is
characterized by the machine required and the processing
time required. Job shop problems occur mainly in
industries where each customer has specified characters
and order sizes are relatively small.

The following assumptions are made while solving the
job shop scheduling problems [1]

1. Each machine is an entity
2. No pre-emption is allowed

3. Each job has m distinct operations, one on each
machine

4. No cancellation of jobs
5. The processing times are independent of the schedule
6. In-process inventory is allowed
7. There is only one of each type of machine
8. Machines may be idle
9. No machine may process more than one operation at a

time
10. Machines never breakdown and are available through-

out the scheduling period
11. The technological constraints are known in advance

and are immutable
12. There is no randomness; all the data are known and

fixed

There are several constraints on jobs and machines [2].
The constraints are,

(1) a job does not visit the same machines twice
(2) there are no precedence constraints among operations

of different jobs
(3) operation can not be interrupted
(4) each machine can process only one job at a time
(5) neither release times nor due dates are specified

In general, an infinite number of feasible schedules is
possible for any job shop problem, as one can insert any
arbitrary amount of idle time at any machine between
adjacent pairs of operations [3]. Job shop scheduling
problem (JSP) is well known as one of the most difficult
NP-hard combinatorial problems. The JSP is harder than
the traveling salesman problem (TSP).

The job shop scheduling problems have been tried with
simulated annealing, neural networks, Tabu search and
Genetic Algorithms (GA) for the past two decades. Applica-
tions of GA for job shop scheduling problems have been
reported by researchers Yamada and Nakano [4, 5]. Specific
works on the use of GA for job shop scheduling problems
with Operation-based representation have been presented by
Fang et al. [6] and Gen et al. [7]. Use of inversion operator
for traveling salesman problems (TSP) has been discussed

K. S. Amirthagadeswaran (*) . V. P. Arunachalam
Mechanical Engineering, Government College of Technology,
Coimbatore, India
e-mail: ksagp@yahoo.co.in

32:(2007) 780–786



by Ferreira [8] and Shubra Sankar Ray et al. [9]. TSP serves
as the simple case of a variety of combinatorial problems,
which are of enormous relevance to the industrial
scheduling problems.

Genetic algorithms (GA), developed by John Holland,
are search algorithms based on the mechanics of natural
selection and natural genetics. A GA comprises a set of
individual elements (known as the population) and a set of
biologically inspired operators defined over the population
itself. According to evolutionary theories, only the most
suited elements in a population are likely to survive and
generate offspring, thus transmitting their biological
heredity to new generations. A GA operates through a
simple cycle of stages:

(1) creation of a ‘population’ of strings
(2) evaluation of each string
(3) selection of ‘best’ strings, and
(4) Genetic manipulation (crossover and mutation) to

create new population.

2 Solution methodology

2.1 Objective function

The objective of the problem is to find the job sequence of
operations for which the make-span Cmax is minimum.

Objective function ¼ f xð Þ

2.2 Fitness function

Since genetic agorithms are most suitable for maximization
problems, the above minimization problem is converted
into an equivalent maximization problem by the following
transformation.

Fitness function value F xð Þ ¼ Cmaxp � f xð Þ

where Cmaxp is taken as the largest make-span value
observed in the current population. So, Cmaxp varies
dynamically with varying population.

2.3 Input

The input data are: Job numbers, operation sequences, and
operation time.

2.4 Initialization

This module deals with the creation of all possible
chromosomes, within the population size. The operation
of GA begins with a population of random strings
representing decision variables. Since job numbers are

involved in this problem, and operation based representa-
tion is followed, coding is done by integer coding method.
As it is observed from literature that minimum make-span
is found in operation based representation, this representa-
tion has been tried. Operation based representation has
been adopted by Fang et al. [6] and Gen et al. [7] in solving
Job shop problems using GA. In this method, strings
(chromosomes) are coded as a sequence of numbers
(genes) with each gene representing one of the operations
of the jobs involved. The specific operations represented by
the genes are interpreted according to the order of presence
of the genes in the chromosome. Each of the n (jobs)
differently named (coded) genes will appear m (machines)
times spread over the entire chromosome.

Let us consider a three jobs four machines problem.
Processing time matrix of the problem:

Jobs

Operations
1 2 3 4

1Þ 10 8 4 3
2Þ 8 3 5 6
3Þ 4 7 3 3

Machine sequence matrix of the problem:

Jobs

Operations
1 2 3 4

1Þ 1 2 3 4
2Þ 2 1 4 3
3Þ 1 2 4 3

For the above problem a coded string comprising 3*4
numbers is generated randomly. The string say, 3 2 3 1 1 3 2
2 3 1 1 2 is a typical chromosome, where 1 stands for job-1,
2 for job-2 and 3 for job-3. Because each job has four
operations, each job occurs exactly four times in the
chromosome. There are four 3 s in the chromosome,
representing the four operations of job-3. The first 3
corresponds to the first operation of job-3, which will be
processed on machine 1, the second 3 corresponds to the
second operation of job-3 which will be processed on
machine 2, the third 3 corresponds to the third operation of
job-3 which will be processed on machine 4, and the fourth
3 corresponds to the fourth operation of job which will be
processed on machine 3. Ten random strings are created to
form the initial population.

2.5 Evaluation

The objective criterion for the problems has been chosen as
the make-span. The population of chromosomes is
evaluated for this objective. Population size (p-size) is
kept constant throughout the trial and the fitness value for
each string generated is calculated. This value is used for
reproduction operation. For the pattern of chromosome, 3 2
3 1 1 3 2 2 3 1 1 2, the make-span is found by placing the
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jobs in various machines as per the operation sequence and
as dictated by the chromosome. The placement of jobs for
the chromosome discussed is shown in Fig. 1.

2.6 New population creation

Creation of new population deals with selection of chromo-
somes and application of crossover and mutation operators.

2.6.1 Reproduction

At this step, we select good strings in the current
population to form the mating pool. Roulette-wheel
selection operator is used for reproduction. The action of
reproduction operator is to clear the inferior points from
further consideration by probabilistic elimination.

x ¼ p size

p xð Þ ¼ F xð Þ
.X

F xð Þ
x ¼ 1

p(x)=Probability of selection of chromosome x.

Through the generation of random numbers the
chromosomes are probabilistically picked in proportion to
their weight and put into the mating pool.

One of the important and distinctive features of all
Genetic Algorithms is the population handling technique.
The original GA adopted a generational replacement
policy, according to which the whole population is replaced
in each generation. Conversely, the steady-state policies
used by much subsequent Genetic Algorithms selectively
replace the population.

It is possible, for example, to keep one or more
population members for several generations, while those
individuals sustain a better fitness than the rest of the
population [10]. Steady state replacement policy has been
adopted in this attempt to retain the current best of the
strings in the population always. As the best individual is
copied, probably, more than once, the second and other
copies of the best individual are also disturbed, keeping
open the chance of the present best string becoming still
better. The evaluation and reproduction of chromosomes is
shown in Table 1.

2.6.2 Crossover

Gen and Cheng [11] presented that the performance of
Genetic Algorithm depends, to a great extent, on the
performance of the crossover operator used. A number of
crossover operators are available for use with operation
based representation of jobs. Among them are the GOX
(generalized order crossover) proposed by Bierwirth [12]
and GPX (generalized position crossover) proposed by
Mattfeld [13]. The GPX operator is reported to be better in
performance compared to GOX operator [14]. The inver-
sion operator (INV) has been reported to be surpassing all
the modified forms of crossover especially tailored to deal
with combinatorial problems [8]. It is also stated in the
earlier reports that order based mutation when used at small
rates and in combination with inversion may be useful for
finer adjustments.

Fig. 1 Gantt chart for the chromosome (Make-span=33)

Table 1 Evaluation and reproduction of chromosomes

Ch
no.

Chromosomes in
Initial population

Objective
function value
f(x)

Fitness function
value F(x)

Probability of
selection p(x)

Cumulative
probability of
selection

Rand
no.

Chrom.
no.

Chromosomes for
mating pool

1 221133332121 36 8 0.1194 0.1194 0.28 3 133131321222
2 312332213211 36 8 0.1194 0.2388 0.78 9 211131332322
3 133131321222 39 5 0.0746 0.3134 0.78 9 211131332322
4 213233232111 42 2 0.0299 0.3433 0.09 1 221133332121
5 331311213222 44 0 0.0000 0.3433 0.38 6 332312312121
6 332312312121 37 7 0.1045 0.4478 0.42 6 332312312121
7 311311332222 44 0 0.0000 0.4478 0.93 10 211233332112
8 323312113212 33 11 0.1642 0.6120 0.32 4 213233232111
9 211131332322 31 13 0.1940 0.8060 211131332322*
10 211233332112 31 13 0.1940 1.0000 0.13 2 312332213211

*Best string is taken to the mating pool
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The working of GPX operator is explained below. Let
the parent strings are as follows.

– parent1=3 2 3 1 1 3 2 2 3 1 1 2
– parent2=1 3 3 1 3 1 3 2 1 2 2 2

First a substring is chosen from the donating chromo-
some. The underlined sub-string is taken from parent 1. It
consists of two operations of job 1 (index 1 and 2), one
operation of job 3 (index 3) and one operation of job 2
(index 2).

– parent1=3 2 3 1 1 3 2 2 3 1 1 2
– parent2=1 3 3 1 3 1 3 2 1 2 2 2

After choosing the substring all the operations of the
sub-strings are deleted with respect to their index in the
receiving chromosome (parent 2).

– parent1=3 2 3 1 1 3 2 2 3 1 1 2
– parent2=1 3 3 1 3 1 3 2 1 2 2 2
– Offspring=3 3 1 1 1 3 2 3 2 1 2 2

Finally the donor’s substring is implanted into the
receiver at the position where it occurs in the donor to
create the offspring.

The inversion operator (INV), in its mechanism,
corresponds basically to the inversion operator firstly
described by Holland [15]. In operation it randomly selects
two points (genes), known as the points of inversion, in the
chromosome selected for inversion, and inverts the
sequence between these points. In this study only one
inversion point is selected and the other point is taken to be
the last gene. A typical feature of the operator is that it
operates on individual strings and not on pairs. Each
chromosome transforms itself into a new chromosome,
without combining with any other chromosome. Multiple
inversions have been adopted in the algorithm SWAP-
GATSP for solving TSP [9].

If a chromosome qualifies for crossover, a random
number from 1 to m*n is generated to select the site for
crossover (inversion) operation. When the inversion point
is, say 3, inversion happens as indicated below.

Before inversion: 3 2 3 1 1 3 2 2 3 1 1 2
After inversion: 3 2 3 2 1 1 3 2 2 3 1 1

Crossover is the operation mainly responsible for the
search of new chromosomes/strings. The probability of
crossover, p_cross, is taken as 0.80 to cover 80% of the
chromosome for inversion to produce children. A random
number between 0 and 1 is generated for each chromosome
and crossover (inversion) is effected if the number is less
than or equal to p-cross (0.80). The process is repeated for
9 (p_size-1) chromosomes, keeping the best of the
chromosomes in the mating pool undisturbed. As the
operator selected for crossover is of inversion type, it
operates on individual chromosomes.

2.6.3 Mutation

The next step is to perform mutation on chromosomes in
the intermediate population. Mutation is to maintain
diversity in the population. This operator in Genetic
Algorithm enables to explore the search space properly
before converging to a region prematurely reaching only a
local minimum. The probability of mutation is taken as
0.05 to cover 5% of the chromosomes for mutation. A
random number between 0 and 1 is generated and mutation
is effected, if the number is less than or equal to p-mute
(0.05). Order-based mutation (OBM) has been applied,
wherein two genes at random positions in the chromosome
are swapped. Two random numbers between 1 to m*n
(Machines*Jobs) are generated for the selection of genes
and the selected genes are interchanged for position.

When the genes selected for mutation are say, 6 and 9,
mutation takes place as follows.

– Before mutation: 3 2 3 2 1 1 3 2 2 3 1 1
– After mutation: 3 2 3 2 1 2 3 2 1 3 1 1

The above steps are repeated with the new population for
the required number of generations. The application of
inversion and mutation operators on the chromosomes is
shown in Table 2.

Table 2 Application of crossover and mutation operators

Ch. no. Population in the
mating pool

Rand no. Crossover point,
if selected

Population after
crossover

Rand no. Genes for mutation,
if selected

Population after
mutation

1 133131321222 0.86 N.S. 133131321222 0.44 N.S. 133131321222
2 211131332322 0.82 N.S. 211131332322 0.51 N.S. 211131332322
3 211131332322 0.59 7 211131322323 0.94 N.S. 211131322323
4 221133332121 0.76 4 221112123333 0.12 N.S. 221112123333
5 332312312121 0.88 N.S. 332312312121 0.51 N.S. 332312312121
6 332312312121 0.78 7 332312312121 0.04 4, 6 332213312121
7 211233332112 0.95 N.S. 211233332112 0.25 N.S. 211233332112
8 213233232111 0.47 8 213233231112 0.41 N.S. 213233231112
9 211131332322** Not genetically operated
10 312332213211 0.37 3 312112312233 0.66 N.S. 312112312233

p_cross=0.80; p_mute=0.05; N.S. – Not selected
**One copy of the best string in the mating pool is not genetically operated

783



2.7 Output

The solution, which gets improved during each iteration/
generation, is available as the result.

3 Validation

To validate the proposed heuristic, two instances from the
suite of Fisher and Thompson (mt06 and mt10) [16], two
instances set by Adams et al. (abz5 and abz6) [17], four
instances set by Yamada and Nakano (yn1, yn2, yn3 and
yn4) [5], six instances set by Applegate and Cook (orb01,
orb02,orb07,orb08,orb09 and orb10) [18] and six instances
set by Lawrence (la16,la36,la37,la38,la39 and la40) [19]
have been selected (problems are available in operations
research (OR) library [20]). Roulette wheel selection,
inversion reordering (INV) operator and order based
mutation (OBM) are selected as GA operators. The

inversion and mutation probabilities are assigned to be
0.80 and 0.05 respectively. It has been decided to have the
population size as 10 and number of generations as 1,000.

A typical benchmark problem (Fisher and Thompson
6×6 alternate name - mt06) [16] has been taken for
illustration. The first line contains the number of jobs and
the number of machines, followed by one line for each job
listing the machine number and processing time for each
step of the job. The machines are numbered starting with 0.

6 6
2 1 0 3 1 6 3 7 5 3 4 6
1 8 2 5 4 10 5 10 0 10 3 4
2 5 3 4 5 8 0 9 1 1 4 7
1 5 0 5 2 5 3 3 4 8 5 9
2 9 1 3 4 5 5 4 0 3 3 1
1 3 3 3 5 9 0 10 4 4 2 1

Best schedule found in 1,000 generations:

5 2 2 0 5 3 0 4 3 3 5 1 1 4 4 0 0 1
2 5 0 3 5 5 4 4 2 1 2 3 1 3 2 4 1 0

Best Make-span=65; CPU time=0.60 secs.
The variation in average make-span and best make-span

recorded in first 500 cycles are shown in Fig. 2.
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Fig. 2 A typical online performance of the proposed method with
INV operator on the mt06 benchmark problem

Table 3 Result showing performance of INV and GPX operators

Problem no. Problem instance Size GPX Operator INV Operator

Make-span CPU Time(sec) Make-span CPU Time(sec)

1 abz5 10×10 1,887 7 1,775 1.54
2 abz6 10×10 1,392 6 1,356 1.53
3 mt06 6×6 69 5 65 0.60
4 mt10 10×10 1,636 7 1,395 1.65
5 yn1 20×20 1,857 22 1,541 6.15
6 yn2 20×20 1,822 21 1,564 6.15
7 yn3 20×20 1,856 18 1,699 6.10
8 yn4 20×20 1,862 19 1,852 6.15
9 la36 15×15 2,168 13 1,840 3.52
10 la37 15×15 2,431 13 2,232 3.51
11 la38 15×15 2,153 15 2,006 3.46
12 la39 15×15 2,310 12 2,165 3.46
13 la40 15×15 2,146 13 2,007 3.52
14 orb07 10×10 616 7 561 1.56
15 orb08 10×10 1,533 7 1,377 1.64
16 orb09 10×10 1,555 7 1,411 1.59
17 la16 10×10 1,523 7 1,432 1.59
18 orb10 10×10 1,499 9 1,392 1.60
19 orb01 10×10 1,696 6 1,428 1.59
20 orb02 10×10 1,370 6 1,289 1.59
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4 Results and discussions

The details about the name of the problem, size of the
problem, the make-span found and the CPU time using
inversion reordering (INV) operator and generalized
position crossover (GPX) operator are presented in
Table 3. The results are also presented in the form of
charts in Figs. 3 and 4.

The same parameter settings used in the technical paper
with GPX operator [14] have been adopted in this study for
ease of comparison. The values of make-span presented
under INV column are the values observed in a typical run
and not the best. Better values have been observed in many
runs. It may be inferred that inversion (INV) reordering
operator clearly performs better than generalized position
crossover (GPX) operator.

The experiments with GPX operator were reported to
have been conducted with Intel Celeron - MMX CPU at
266 MHz, 32 MB RAM computing system. Experiments
with inversion (INV) operator, reported in this paper, have
been conducted using an Intel Pentium MMX CPU at
200 MHz, 32 MB RAM system. The algorithm has been
implemented in C.

5 Conclusions

In this paper, an attempt has been made to evaluate the
performance of Genetic Algorithm in solving job shop
scheduling problems. The performance of inversion (INV)
reordering operator has been compared with Generalized
Position Crossover (GPX) operator. The make-span and
CPU time observed are presented in the form of tables and

charts. The results show that inversion reordering operator
performs better than the Generalized Position Crossover
operator. The heuristic is also found to give better solutions
in shorter computational time.

6 Statement of contribution

This paper deals with the job shop scheduling problems.
The objective is to find the sequence of operations of jobs in
various machines for minimum make-span - the time
required to complete all jobs. Operation based representa-
tion scheme has been considered in solving the problems.
One of the soft computing techniques, namely, Genetic
algorithm has been applied in this study. The performance
of the algorithm for two different operators viz Generalized
position crossover (GPX) and inversion reordering (INV)
operator have been compared. The results for a set of 20
benchmark problems available in OR library have been
presented. The performance of generalized position cross-
over operator for operation based representation reported in
Production Planning and control (An International Journal)
on the 20 problem instances have been taken. The finding is
that by using the inversion reordering operator better
solutions in make-span are found with appreciable reduc-
tion in computational time.
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