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Abstract The genetic algorithm (GA) is a heuristics, and
commonly used to solve combinational problems. It has
been proven to have high effectiveness and efficiency in
many application areas. However, a successful GA appli-
cation requires adapting the algorithm to the characteristics
of a problem. In the past decades, various articles on single
machine earliness and tardiness (SET) problem using a
heuristic approaching have been published. Yet, there are
few research addressing the area of the SET problem with
distinct due dates and ready times for jobs. In this paper, a
designed GA, modified optimal timing procedure, which
starts the searching with a feasible solution obtained by
applying the EXP-ET rule developed by Ow and Morton is
developed for the SET problem. Computational results in
the provided experiment show that the designed GA
improves the SET solution in both quality and efficiency.

Keywords Earliness and tardiness . Genetic algorithm .
Ready time . Scheduling . Single machine

1 Introduction

Because of the exploration of the just-in-time (JIT) oper-
ations management philosophy, a lot of literature has been
published on this topic in the last decade. Most of them,
however, focus on problems with jobs of common due
window or common due date, rather than on the problem of
distinct due dates [1]. In addition, almost all the published
literature assumed that all jobs are available in the be-
ginning. Practically speaking, jobs often have distinct
ready times for the process in the real world. This research

thus aims at developing a scheduling procedure concerning
the single machine earliness and tardiness (SET) problem
which contains jobs with distinct due dates and ready
times, and hopes that it can be systematically extended to
multi-machine environments in future studies.

The SET problems with common due date have directed
many researchers’ attention to finding effective solving
procedures. However, as pointed out by Baker and Scudder
[1], the SET problems with distinct due dates demanded
further extended works. Roughly speaking, there are two
main problem types that the research efforts have been
focused on in recent years. One allows the insertion of idle
time in the system, and the other one does not. Ow and
Morton [2] proposed the priority dispatching rules along
with a filtered beam search algorithm for systems; Abdul-
Razaq and Potts [3] obtained the lower bound by applying
the dynamic programming state-space relaxation, and Liaw
[4] proposed the Lagrangian relaxation based procedure
and applied it to the branch and bound algorithm. All of the
above researchers were not inserting idle time.

On inverse assertions, Baker and Scudder [1] figured out
that the assumption of not inserting idle time is inconsistent
with the objective function, and claimed that the proce-
dures should comprise two parts for problems allowing idle
time: an optimal sequencing procedure and an optimal
timing procedure. Yano and Kim [5] proposed a branch and
bound algorithm as the optimal sequencing and formulated
the SET problem in a dynamic programming model for the
optimal timing procedure. Lee and Choi [6] used a GA to
sequence jobs and presented an optimal timing procedure
for jobs with general penalty weights; Mazzini and
Armentano [7] developed a moving heuristics for sequenc-
ing and timing; Wan and Yen [8] utilized a similar approach
as Lee and Choi [6] for optimal timing but they adopted the
tabu search (TS) approach for sequencing jobs.

As an extended work of the SET problems with distinct
due dates, we consider different ready times should be
included in the model. The model reflects the fact that
many companies with supply chain management systems
require their suppliers moving toward lean production
systems or agile manufactories. Therefore, a ready time
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constraint must be considered in such a production
environment.

Since SET are NP-hard problems [1, 9], this research
tries to construct an algorithm which can handle large
problems and also provide high solution quality. The
principal strategy for achieving the objective is to employ
the GA algorithm (provided with an efficient searching
design) as the optimal sequencing procedure to obtain a job
sequence, and subsequently to employ the optimal timing
procedure for inserting idle times in the job sequence to
obtain an schedule for the SET problems. We outline the
approach in these steps as:

Step 1.
Use the priority dispatching rule proposed by Ow and
Morton [2] to generate the initial sequence and go to
step 3.

Step 2.
Utilize the designed GA to generate a job sequence.

Step 3.
Apply the optimal timing procedure to obtain a
schedule and evaluate the schedule to check whether
it satisfies the stopping criterion or not. If yes, then
stop; otherwise go to step 2.

A detailed description of the optimal timing procedure,
initial schedule generation, and the designed GA will be
presented in Sect. 4. The remainder of this research will be
organized as follows: Sect. 2 provides the problem
definition, notions, objective formulations, and the adja-
cent condition; Sect. 3 presents the priority dispatching
rules proposed by Ow and Morton [2]; Sect. 4 describes
the optimal timing procedure and the GA procedure. The
computational results and the comparisons between the
proposed study and the branch and bound algorithm are
presented in Sect. 5. Finally, the conclusions of this
research are portrayed in Sect. 6.

2 Problem formulation

The SET problem dealt with in this paper focuses on
scheduling n jobs with positive integer processing times pj,
and due dates dj on a single machine. Each job j has a
distinct ready time rj and a finish time fj. Some assumptions
are also followed, such as that the setup time for each job is
included in the processing time, and preemption is not
allowed.

Lee and Choi [6] assumed all jobs are available at time
zero. However, most companies will generally not prepare
all materials for all jobs at time zero. Therefore, the objec-
tive of the SET problem approach here is minimizing total
earliness and tardiness penalties with distinct due dates,
distinct general early-tardy weights, and distinct ready
times.

For future convenience, the notations used throughout
this research are listed as follows:

– N={1,2,…,n}: the set of jobs to be processed on the
machine.

– pj: the processing time of job j.
– dj: the due date of job j.
– αj: the unit earliness penalty for job j.
– βj: the unit tardiness penalty for job j.
– rj: The ready time of job j.
– fj: The completion time of job j.
– tj=max(rj, fj): the starting time of job j given job i

precedes immediately job j.
– Ej=max{0, fj-dj}: the earliness of job j.
– Tj=max{0, fj-dj}: The tardiness of job j.
– gj=αj×Ej×+βj×Tj: The earliness and tardiness penalties

of job j, ∀j∈N.

Using the above notations, the objective function of the
SET problem is formulated as:

Z ¼ min
Xn
j¼1

gj (1)

Ow and Morton [2] presented an adjacency condition
that interprets the condition necessary for all optimal
schedules. This condition is also called dominance rule by
Liaw [4] to produce a precedence relation between jobs.
This precedence relation is the foundation of the priority
dispatching rule mentioned in the next section.

2.1 Theorem of adjacency condition

All adjacent pairs of jobs in an optimal SET schedule must
satisfy the following condition in an optimal schedule:

�ipj ��ij �i þ �ið Þ � �jpi ��ji �j þ �j

� �
(2)

where job i precedes immediately job j, and Ωij and Ωji are
defined as

�ij ¼
0 if si � 0
si if 0 � si � pj
pj otherwise

8<
: (3)

where si=di –(t+pi) is the slack of job i.

3 Priority dispatching rule

It is well known that a good initial solution for a GA to start
with has significant influence on its performance [6]. In this
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section, the good initial solution is constructed by applying
the priority dispatching rule. The algorithm proposed by
Ow and Morton [2] called the exponential earliness/
tardiness (EXP-ET) rule has exhibited good performance
for most problem settings.

The EXP-ET rule utilizes the priority index expressed
below at any time point t when the machine is available.

Ii tð Þ ¼

�i
pi

if si � 0
�i
pi
exp � �iþ�ið Þsi

�ip

h i
if 0 < si � �i

�iþ�i

� �
kp

��2
i

�i
pi
� �iþ�ið Þsi

kpip

h i3
if �i

�iþ�i

� �
kp < si � kp

��i
pi

otherwise

8>>>>><
>>>>>:

where si=di –t–pi is the slack of job i at time t, p is the
average processing time of all remaining ready jobs and k is
a look-ahead parameter which is determined through
experiments, and should reflect the average clash number
of jobs in the future when a sequencing decision is made. A
clash of jobs at time t is defined as a need of sequencing
more than one job at time t. Generally speaking, the tighter
the due dates are, the more job clashes will be incurred, and
a larger value of k should be used. Contrarily, when due
dates are uniformly distributed, k should be small since few
jobs will clash with another. For a single machine,
according to Vepsalainen and Morton [10], the used
value of k usually lies between 1 and 3. In this research,
k is set equal to 2, according to our preliminary exper-
iments. At the time a machine is available, the indices of all
remaining ready jobs are calculated and the job with the
highest index is chosen to be processed next. If there is no
ready job at time t, then sets t equal to the earliest ready
time of the unscheduled jobs, and calculates the indices of
all remaining ready jobs and selects the job with the highest
index to be processed next. Ow and Morton [2] have
pointed out that the EXP-ET rule will focus on the tardiness
penalty as the slack time of the job becomes small, and
conversely, when the slack time is large the earliness cost
will dominate.

The work done by Ow and Morton is integrated in our
study to improve the GA procedure for SET problems. The
integration contributes in finding a good initial starting
point for the design GA.

4 The optimal timing procedure and the GA procedure
for the SET problem

4.1 The optimal timing procedure

Lee and Choi [6], and Wan and Yen [8] presented similar
optimal timing procedures to obtain the most valid
completion time for jobs. They used job blocks as basic
units for handling optimal timing procedure. Jobs con-
secutively scheduled without idle time form a job block,

and a job block can be shifted toward the minimum point
until one of the following three conditions are encountered:

1. The start time of the first job of a job block is zero.
2. The shift operation has reached the minimum point of a

block.
3. The start time of the first job of a job block equals to

the completion time of the last job of the preceding job
block.

However, their researches have a common assumption:
all jobs are available at time zero. This assumption isn’t
made in this research, as we assume a distinct ready time
for each job. Consequently, while on processing the
optimal timing procedure the start time of the first job of
a block must be the ready time of that job. This means the
block cannot be shifted backward and only shifting forward
is valid in shifting operation. In stead of a job-by-job
shifting operation in the procedure proposed by Lee and
Choi [6] and Wan and Yen [8], we use “job run” (defined
below) as the manipulation unit in the shifting procedure.

Before describing the details of the procedure, some
definitions are given as:

Supposed there are l blocks in a schedule, let Sk be a
partial sequence having kn jobs, Sk ¼ k1½ �; k2½ �; . . . ; kn½ �f g;
and is the kth block in the schedule, k=1,2,…,l. We divide a
block into several (may be only one at an extreme case)
subunits called job runs. A tardy job run is defined as the
consecutive tardy jobs being gathered backward from the
last job of each block, denoted TR; and the consecutive
early jobs form an early job run, denoted ER.

Four types of job runs in a block are shown in Fig. 1.
The detailed steps of the optimal timing procedure are

described in the following steps:

Step 1.
Start from the last job block, and let k =l.

Step 2.
(forward operation)
Given a job block Sk , if the last job run is an ER, that is
type 1 or type 3 job runs, shift this run forward until
one of the following two conditions are encountered,
and go to step 4. Otherwise, for type 2 job run go to
step 5 (because there is no improvement can be
obtained by shifting forward); for type 4 job run go to
step 3.

1. The minimum point has been reached.

ER  Type 1 

TR  Type 2 

* ER  TR  ER  Type 3 

* TR  ER  TR  Type 4 

Fig. 1 Four types of job runs in a block; * means whatever
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2. The completion time of the last job in this run
equals the start time of the first job of the next block.

Step 3.
(pair operation)
If the total penalties of the ER is larger than the total
penalties of the TR in the paired TR and ER, shifts this
pair forward until one of the above mentioned two
conditions are encountered; otherwise, keep the pair
unchanged and go to step 4.

Step 4.
If the left jobs are all in an ER, go to step 2; if the left
jobs are all in a TR, go to step 5 (because the TR can not
be improved by a shift forward); if the left jobs are not
in the above two cases, perform the same operation for
the next pair of TR and ER, and repeat the step 3 and
step 4 until all the runs in Sk are checked.

Step 5.
Let k=k –1 and repeat step 2 to step 4 until k=1.

4.2 The designed GA procedure

As mentioned in Sect. 3, the schedule obtained by EXP-ET
priority rule is only a good one, and can not guarantee the
global optimal one. Ow and Morton used the EXP-ET
priority rule to evaluate a partial sequence generated by
beam search and decide which node should be retained.
They claimed that the beam search used is a non-
backtracking algorithm; once a node is excluded from the
beam, it will be lost and the chance to find an optimal
solution is gone forever. Ow and Morton also reported that
their work was accomplished with an average deviations of
3% from the optimal solutions. The results proved that the
EXP-ET priority rule can provide a good initial sequence
for the GA.

GA based heuristic procedures for scheduling problems
were successful in many applications. The algorithm was
initially proposed by John Holland in the 1970s [11]; it is
an iterative improvement procedure with the ability to
avoid from a local optimal solution. The whole process
adapted for this research can be sketched briefly as follows:

Step 1.
Use the EXP-ET rule to obtain an initial solution x0,
and use it to generate an initial population by adjacent
interchanging.

Step 2.
Reproduce a new string as the new offspring. Evaluate
the new offspring and replace the old population.

Step 3.
Check whether the stopping criterion is satisfied. If
yes, then stop; otherwise go to step 2. The stopping
criterion can be either reaching the maximum number
of generations or having found no improvement after a
certain number of successive generations.

The structural elements of the designed GA procedure
are described in detail in Sect. 4.2.1 to Sect. 4.2.8.

4.2.1 Encoding

Chromosomes are encoded typically in binary vectors in
GA. This simple representation has a drawback of a long
vector in large scaled scheduling problems for detracting
from the efficiency. This flaw can, however, be resolved by
considering that the jobs appear only one time in the work
list and by adopting the order encoding method in estab-
lishing chromosomes. For example, assuming six jobs are
scheduled with an encoding as: B, C, A, D, F, and E. It
means that job B is produced first, job C is produced
second, and so on. The sequence of chromosomes is set the
same as the sequence of jobs.

4.2.2 Initial population

The initial solution population can be generated by random
or heuristic generation. The most popular and traditional
method is random generation, but this may cut down the
efficiency of GA in large-scale scheduling problems. It is
valid making use of the characteristics of the problem and
adopting an appropriate heuristics for generating the initial
population. For example, Lee and Choi [6] utilized the
earliest due date (EDD) and earliest starting time (EST) rules
in figuring out the initial solutions. Following that effort, a
similar approach was made in our study. This study com-
bines using the characteristics of a problem, accepting the
EXP-ET algorithm, and extending the adjacent interchange
to generate the population. The population size is set as the
number of jobs. In this research, the size of population is
maintained equal to the number of jobs on each step.

4.2.3 Fitness function

To determine which chromosomes will survive, the fitness
function plays a similar role as nature does in its own way.
The chromosome with a higher fitness value has higher
probabilities to survive. In addition, after a few generations
in the GA process, the fitness values of chromosomes will
approximate each other, and it is hard to identify the
difference between chromosomes. Hence, the fitness func-

tion in this study is purposely constructed as fvj ¼ gj � g�
� �2

,
where g* is the biggest objective value in the population.

4.2.4 Reproduction/selection

The commonly used selection technique is the roulette
wheel selection. It uses the total fitness values as the
denominator and the individual value as the numerator.
This implies that the one which has a higher fitness value
has a higher probability to be selected. This technique
requires extensive calculations in large-scale problems, as
shown in the detailed steps in Goldberg [12] and Li et al.
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[13]. We modified the tournament selection method to
process this procedure, which is described as the following:

Step 1.
Pick two or more chromosomes randomly from the
current population (Based on our computational experi-
ence, two chromosomes chosen randomly are suggested).

Step 2.
Compare the fitness values of the two chromosomes
and keep the one with the higher fitness value.

Step 3.
Utilize the Boltzmann distribution to decide whether the
one with lower fitness value should be discarded or not.

The Boltzmann distribution implements the following
formula calculating the acceptance probability of the
one with a lower fitness value:

p ¼ exp
fvlow � fvhigh

T

� �
�

Where T is initially set at 10N, N is the number of jobs,
and has a decreasing rate of 0.9 from generation to
generation. After calculating the value of p, we gen-
erate a random number from a uniform distribution
between 0 and 1. If the random number is smaller than
p, accept the one with a lower fitness value; otherwise,
abandon it and go to step 4.

Step 4
Repeat the process until the population size is fulfilled.

4.2.5 Crossover

Crossover is the fundamental operator of GA. It recombines
the parents and produces the offspring. In its process of
exchanging genes, however, may lose some good features
of parents and result in inappropriate solutions. To avoid the
inappropriate solutions, various crossover techniques have
been developed, such as the uniform order-based crossover
proposed by Davis in 1991 [14], the partially matched
crossover, the cycle crossover, and the order crossover seen
in Goldberg [12]. The uniform order-based crossover seems
to be the most suitable for scheduling problems except that
the binary template used in the uniform order-based cross-
over is generated randomly; it cannot be guaranteed not to
lose good features of the parents. In this research, a
modified uniform order-based is proposed. The principal
steps include:

Step 1.
Calculate the exchange number. This number equals to
the population size times the crossover rate. Here, we
set the crossover rate as 0.7.

Step 2.
Choose a pair of chromosomes randomly from the
population obtained from the Selection procedure.

Step 3.
Generate the binary template.

a. Check parent 1 where the adjacent pair genes obey
the Adjacency Condition, and mark the binary
template 1 at the same position. Since we do not
swap the adjacency pair of jobs, it is unconcerned
with whether the start time will be changed or not.

b. Check parent 2 where the adjacent pair genes obey
the adjacency condition, and mark the binary
template 0 at the same position.

c. Generate 1 or 0 for the binary template step 4 used
at the overlapped and unmarked position randomly.

Step 4.
Copy the genes from parent 1 (or parent 2) to offspring
1 (or offspring 2) whenever the binary template
contains a “1” (or “0”).

Step 5.
Fulfill the unfilled position of offspring 1 (or offspring
2) with genes which have not appeared in offspring 1
(or offspring 2) in the same order they appear on parent
2 (or parent 1).

Step 6.
Repeat steps 2–5 until the exchange number has been
fulfilled.

4.2.6 Mutation

The purpose of mutation is departing from the local optimal
solution toward the global optimal one. This unique feature
makes GA different from other traditional search methods
that sink sometimes in a local optimal position easily and
cannot escape from it. GA can, nonetheless, depart from it
through the mutation process. The principal steps of
mutation in here are set as:

Step 1
Decide a mutation rate. If the mutation rate is set too
high, GA will degenerate to random search; on the
other hand, if it is too low, GAwill become a traditional
search method. Here, we choose a mutation rate equal
to 0.1 according to our pilot experiments.

Step 2
Execute the position-based mutation. It is a simple
random culling of two genes from the chosen chro-
mosome and exchanging the two genes.

Step 3
Repeat step 2 to fulfill the candidate list, and pick up
the one with the highest fitness value to replace the
chosen chromosome. The length of the candidate list
equals the size of population.

4.2.7 Representation

After the three operators of GA-selection, crossover and
mutation-the parent population will produce an offspring
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population and the offspring population will replace the
parent population. There are two different directions to
execute representation: whole representation and elitism
representation. The whole representation replaces the par-
ent population totally, no matter whether the offspring
population is better or worse. It decreases the effectiveness
and efficiency of a GA in large-scaled scheduling problems.
Elitism representation is selected in this research and
implemented by keeping chromosomes with the highest
fitness value of the parent population and offspring
population. This technique guarantees that the new popu-
lation will never decline.

4.2.8 The stopping criterion

After the representation step, the minimum objective value
(gj) is recorded in order to conclude whether the GA
procedure will stop or not. The GA procedure can be
stopped on two conditions:

1. After a certain number of generations and no improve-
ment on the objective value is obtained.

2. After a certain predetermined number of generations.

Based on the pilot experiments of this research, the
procedure will stop after 500 iterations or after 30
generations and no improvement of objective value has
been made.

5 Computational results

Four hundred and fifty generated problems were tested
and the results were compared with the solutions obtained
by the branch and bound algorithm proposed by Chang
[15]. The GA procedure was executed with Microsoft
Visual C++ software on a PC with Intel Pentium IV
1.6 GHz CPU and 512 MB DDR RAM.

5.1 Problem generation

The problems tested were generated using the method
proposed by Potts and Van Wassenhove [16]. Researchers
such as Liaw [4], Chang [15], Mazzini and Armentano [7],
and Wan and Yen [8] also used this problem generating
method in their work. The parameters required for testing
in our study are generated as follows. The processing times
pj were uniformly and discretely distributed between 1 and
100. The unit tardiness penalties βj were randomly
generated from uniform distribution [1, 10] and the unit
earliness penalties αj were c times of βj, where c was a
uniform random variable from 0 to 1. The due dates were
generated from U P � 1� T � R

2

� �
;P � 1� T þ R

2

� �� �
;

where T is the tardiness factor, R is the due date range

Table 1 Experiment results when due date range R=0.5

CPU seconds

R T n gapET(%) gapGA(%) GA Branch and bound

0.5 0.2 20 139.32 0.00 0.45 35.58
30 139.72 0.00 1.02 436.8
50 109.75 0.00 7.33 2070
80 171.16 0.29 8.74 >6000
100 162.99 0.36 34.60 >6000

0.5 20 133.27 0.00 0.48 36.66
30 136.84 0.00 1.10 420.56
50 151.59 0.00 8.97 2206.4
80 164.05 0.28 9.96 >6000
100 162.07 0.39 35.94 >6000

0.8 20 115.00 0.00 0.49 36.78
30 134.28 0.00 1.05 399.76
50 126.11 0.00 8.24 2331.8
80 134.15 0.30 9.85 >6000
100 167.16 0.35 36.03 >6000

Table 2 Experiment results when due date range R=1.0

CPU seconds

R T n gapET(%) gapGA(%) GA Branch and bound

1.0 0.2 20 148.66 0.00 0.50 30.69
30 137.82 0.00 1.48 411.76
50 190.47 0.00 8.37 2046.8
80 154.18 0.30 10.25 >6000
100 128.52 0.36 36.26 >6000

0.5 20 125.06 0.00 0.48 35.49
30 127.33 0.00 1.86 416.96
50 150.04 0.00 8.75 2226
80 163.23 0.32 9.97 >6000
100 154.18 0.40 35.81 >6000

0.8 20 156.35 0.00 0.52 37.29
30 135.04 0.00 1.54 424.32
50 132.28 0.00 8.12 2127.8
80 177.48 0.28 10.38 >6000
100 133.69 0.37 35.79 >6000

Table 3 Experiment results when due date range R=1.5

CPU seconds

R T n gapET(%) gapGA(%) GA Branch and bound

1.5 0.2 20 139.67 0.00 0.51 34.83
30 147.79 0.00 1.13 412.4
50 145.19 0.00 8.5 2048.4
80 194.12 0.24 9.69 >6000
100 118.21 0.37 36.18 >6000

0.5 20 178.81 0.00 0.46 37.32
30 148.99 0.00 1.2 421.84
50 141.36 0.00 8.21 2153.4
80 122.31 0.28 10.22 >6000
100 131.83 0.36 35.5 >6000

0.8 20 155.92 0.00 0.47 36.21
30 140.46 0.00 1.15 423.84
50 163.77 0.00 8.63 2060.8
80 139.26 0.30 10.08 >6000
100 141.93 0.35 36.05 >6000
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and P is the sum of the processing times of all jobs. Three
values were chosen for these two factors: T=0.2, 0.5, 0.8
and R=0.5, 1.0, 1.5. The ready time is distributed in a
uniform distribution between 0 and P. The problem size n
equals to 20, 30, 50, 80 and 100. Each combination of T, R
and n generates 10 problem instances, i.e., a total of 3 × 3 ×
5 × 10=450 problem instances were tested in the study.

5.2 Computational results

Computational results are presented in Tables 1, 2, 3. The
gap value shown in column 4 and 5 in Table 1 through
Table 3 is calculated using the following formulas.

gapET ¼ gj ETð Þ�gj BBð Þ
gj BBð Þ

� 100%

gapGA ¼ gj GAð Þ�gj BBð Þ
gj BBð Þ

� 100%

where gapET and gapGA are the gap values between the
EXP-ET rule and the proposed GA procedure with the
branch and bound procedure, respectively; gj(GA) is the total
penalties obtained by the proposed GA procedure; gj(BB) is
the total penalties obtained by the branch and bound
procedure.

According to Tables 1, 2, 3, one can easily discover that
both the branch and bound algorithm and the proposed GA
procedure find the optimal solutions when the number of
jobs is less than 50. For problems with more than 50 jobs,
the proposed GA does not find optimal solutions. Because
of the computational complexity, the branch and bound
algorithm will be terminated if an optimal solution can not
be reached in 6,000 s of CPU time. At the termination step,
a lower bound was calculated using algorithm statement 1
given in Chang [15], and the lower bound was used as the
final solution. According to the results, the gapET average is
about 150%. The results shows that the proposed GA
algorithm is very effective, even for problems with 100
jobs, the average gap being only about 0.4%. Besides, it
also shows that the average gap reduces as the due date
range increases. Note that the approach should be robust
since the tables show that the results are independent of the
tardiness factor and number of jobs.

The used CPU times in seconds for calculating the results
are presented in column 6 for the GA, and in column 7 for
the branch and bound of Tables 1, 2, 3. Because the used
CPU time for the EXP-ET rule is almost zero, we do not list
it in Tables 1, 2, 3. It is obvious that the proposed GA
procedure is much more efficient than the branch and
bound. The proposed GA procedure only takes less than
40 s to obtain a solution on average in problems with 100
jobs, whereas, the branch and bound needs more than
6,000 s. The number of jobs is the major factor of effi-
ciency, and the due date range and tardiness factor have
little influence on the solution quality and efficiency.

6 Conclusions

A designed GA procedure for enhancing the searching
capability was developed in the paper for SET problems.
The improvement was attributed to the integrating of a
traditional sound heuristic search and the designed GA
process.

The proposed GA has successfully generated the optimal
solutions for problems with up to 50 jobs. In addition, the
CPU time for obtaining an optimal solution of a problem
with 100 jobs is less than 40 s. The results demonstrate that
the proposed GA is an improvement over the branch and
bound. Based on the intelligent capability of the GA in a
flexible computing environment, the approach should be
very promising in the industry applications when extending
the study to a job shop environment with JIT practice.

References

1. Baker KR, Scudder GD (1990) Sequencing with earliness and
tardiness penalties: a review. Oper Res 38:22–36

2. Ow P, Morton T (1989) The single machine early-tardy
problem. Manage Sci 35:177–191

3. Abdul-Razaq T, Potts C (1988) Dynamic programming state-
space relaxation for single-machine scheduling. J Oper Res Soc
39:141–152

4. Liaw CF (1999) A branch-and-bound algorithm for the single
machine earliness and tardiness scheduling problem. Comput
Oper Res 26:679–693

5. Yano CA, Kim YD (1991) Algorithms for a class of single
machine weighted tardiness and earliness problems. Eur J Oper
Res 52:167–178

6. Lee CY, Choi JY (1995) A genetic algorithm for job
sequencing problems with distinct due dates and general
early-tardy penalty weights. Comput Oper Res 22:857–869

7. Mazzini R, Armentano VA (2001) A heuristic for single
machine scheduling with early and tardy costs. Eur J Oper Res
128:129–146

8. Wan G, Yen BP-C (2002) Tabu search for single machine
scheduling with distinct due windows and weighted earliness/
tardiness penalties. Eur J Oper Res 142:271–281

9. Garey MR, Tarjan RE, Wilfong GT (1988) One-processor
scheduling with symmetric earliness and tardiness penalties.
Math Oper Res 13:330–348

10. Vepsalainen A, Morton TE (1987) Priority rules for jobshops
with weighted tardiness costs. Manage Sci 33:1035–1047

11. Holland JH (1975) Adaptation in natural and artificial systems.
The University of Michigan Press, Ann Arbor, MI

12. Goldberg DE (1989) Genetic algorithms in search, optimization
& machine learning. Addison-Wesley, Boston

13. Li Y, Ip WH, Wang DW (1998) Genetic algorithm approach to
earliness and tardiness production scheduling and planning
problem. Int J Prod Econ 54:65–76

14. Davis L (1991) Handbook of genetic algorithms. Van Nostrand,
Princeton

15. Chang PC (1999) A branch and bound approach for single
machine scheduling with earliness and tardiness penalties.
Comput Math Appl 37:133–144

16. Potts CN, Wassenhove LNV (1982) A decomposition algorithm
for the single machine total tardiness problem. Oper Res Lett
1:177–181

1000


	A genetic algorithm for solving the single machine earliness/tardiness problem with distinct due dates and ready times
	Abstract
	Introduction
	Problem formulation
	Theorem of adjacency condition

	Priority dispatching rule
	The optimal timing procedure and the GA procedure for the SET problem
	The optimal timing procedure
	The designed GA procedure
	Encoding
	Initial population
	Fitness function
	Reproduction/selection
	Crossover
	Mutation
	Representation
	The stopping criterion


	Computational results
	Problem generation
	Computational results

	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


