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Abstract Multivariate engineering process control (MEPC)
and multivariate statistical process control (MSPC) are two
strategies for quality improvement that have developed inde-
pendently. MEPC aims to minimize variability by adjusting
process variables to keep the process output on target. On the
other hand, MSPC aims to reduce variability by monitoring and
eliminating assignable causes of variation. In this paper, the
use of MEPC alone is compared to using the MEPC coupled
with MSPC. We use simulations to evaluate the average run
lengths (ARL) and the averages of the performance meas-
ure. The simulation results show that the use of both MEPC
and MSPC can always outperform the use of either alone.
To detect small sustained shifts of the mean vector, combing
MEPC with a multivariate generally weighted moving aver-
age (MGWMA) chart (MEPC/MGWMA) is more sensitive than
the MEPC/multivariate exponentially weighted moving average
(MEWMA) chart and MEPC/Hotelling’s χ2 chart. An example
of the application, based on the proposed method, is also given.

Keywords Automatic process control · Control chart · EWMA
· GWMA · Multivariate engineering process control ·
Multivariate statistical process control

1 Introduction

Statistical process control (SPC) uses measurements to monitor
a process and looks for major changes. Most SPC techniques
assume that the process data can be described in terms of statis-
tically independent observations that fluctuate around a constant
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mean. On the other hand, engineering process control (EPC)
and automatic process control (APC) make regular changes to
adjustable process variables to keep the output quality character-
istic on target. Box and Kramer [1] mention that the origin of
statistical process monitoring was in the parts industry, whereas
EPC had its origins in the process industry. The concept of inte-
grating EPC and SPC techniques uses EPC to reduce the effect
of predictable quality variations, and uses SPC to monitor the
process for detection of assignable causes. MacGregor [2] and
Box and Kramer [1] have presented overview descriptions of this
integration concept.

Montgomery et al. [3] (including the minimum mean squared
error (MMSE) control rule [4]) and Keats et al. [5] (including the
proportional integral derivative (PID) control rule [4]) showed
that proper use of both EPC and SPC can always outperform
the use of either alone. Sachs et al. [6] developed a run-to-run
controller (RTR) which combines EPC/SPC to automate the re-
sponse to shifts and drifts, and has proven to be a successful
application. More recent discussions on the EPC/SPC integra-
tion can be seen in Tsung and Shi [7], Tsung [8], and Pan and
del Castillo [9]. However, these studies are restricted to single
input and single output (SISO) models. In practice, many manu-
facturing processes, such as the silicon epitaxy process and the
chemical-mechanical polishing process, are multiple input and
multiple output (MIMO). The integration of MEPC and MSPC
has a practical necessity. Although Raich and Cinar [10] have
applied principal components and discriminant analysis to quan-
titatively describe and interpret disturbances in the multivariate
process, integrating MEPC and MSPC still has received very lit-
tle attention in the literature.

The purpose of this paper is to demonstrate the potential
effectiveness of integrating MEPC and MSPC in a reasonably
general situation. We use the multivariate EWMA controller pro-
posed by Tseng et al. [11] as a feedback controller of the MIMO
process model, and apply some multivariate control charts to
detect the assignable causes. The remainder of this paper is or-
ganized as follows: in Sect. 2 the MIMO process model and
the multivariate EWMA controller are introduced. Sect. 3 de-
scribes some MSPC charts, such as Hotelling’s χ2 control chart,
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the MEWMA control chart, and the MGWMA control chart. In
Sect. 4 we compare the use of MEPC alone to using the MEPC
coupled with MSPC. An example of the application, based on
the proposed method, is given. In Sect. 5 the numerical simula-
tion is used to evaluate the average run lengths (ARL) before the
sustained shift of the mean vector is detected and the average Eu-
clidean distance of the deviations from the target vector. Finally,
we offer our conclusions in Sect. 6.

2 The MIMO EWMA controller

Focusing on the process control problem, Ingolfsson and Sachs [12]
considered a first-order model for the process and discuss the
process stability conditions of a single exponentially weighted
moving average (EWMA) controller. Bulter and Stefani [13] pro-
posed a double EWMA controller to eliminate the deterministic
drift within the process. Recently, in the MIMO case, Tseng
et al. [11] proposed a multivariate EWMA controller for a lin-
ear MIMO model. Del Castillo and Rajagopal [14] proposed
an MIMO double EWMA feedback controller for drifting pro-
cesses. Tseng et al. [11] described a linear MIMO system with
m inputs and p outputs as follows:

yi = α+βci−1 + εi. (1)

In the above equation, yi is a (p×1) vector containing the qual-
ity characteristics (outputs), α is a (p×1) vector containing the
offset parameter of each output, β is a (p× m) process gain
matrix, ci−1 is an (m × 1) vector giving the levels of the input
recipes (or controllable factors), and εi is a (p× 1) vector de-
noting the process disturbance. It is assumed that the dynamics
come from εi .

The intercepts, α, will be estimated on-line and updated after
each run. Let α̂0 denote the estimate of α at the beginning with
i = 0. For simplicity, assume that an estimate, B, of the process
gain, β , will be obtained off-line using methods such as linear
regression and design of experiments techniques. Then, the pre-
dicted model is as follows:

ŷi = α̂0 +B ci−1.

When the feedback control scheme is not implemented, the input
recipe c0 will be:

c0 = B−1(τ− α̂0), (2)

where τ is the target vector. Therefore, the expected initial bias
γ0, a (p×1) vector, will be γ0 = α+Bc0 −τ.

Similar to the single EWMA controller proposed by Ingolf-
sson and Sachs [12], the multivariate EWMA controller can be
proposed as follows:

α̂i = ω(yi −Bci−1)+ (1−ω)α̂i−1

= α̂i−1 +ω(yi −τ), (3)

where ω is a discount factor (0 < ω < 1). In Tseng et al. [11], the
stability conditions of the multivariate EWMA controller and the

feasible region of ω are derived, and the determination of an op-
timal discount factor ω is within a finite number of production
runs, such that the trace of the total MSE is minimized. When
the ith run is completed, α̂i will be updated. Then, the new input
vector ci can be written as follows:

ci = (I−B′(BB′)−1B)ci−1 +B′(BB′)−1(τ− α̂i). (4)

Let ε0 = 0 and τ = 0; then, the off-target amount at run i can be
expressed as:

yi −τ = yi

= (1−ω)i−1γ0 +
i−1∑

t=0

(1−ω)t(εi−t − εi−t−1). (5)

When εi in Eq. 1 is a white noise series with mean vector µ and
a common covariance matrix � , the expected value of yi (from
Eq. 5) will be:

E(yi −τ) = E(yi) =

(1−ω)i−1γ0 + E(εi)−ωE

(
i−2∑

t=0

(1−ω)t εi−t−1

)
, (6)

the covariance matrix of yi will be:

�yi = � + ω

2−ω

(
1− (1−ω)2(i−1)

)
�

=
(

1+ ω

2−ω

(
1− (1−ω)2(i−1)

))
� . (7)

When 0 < ω ≤ 1, the process is asymptotically stable. That is,
when i → ∞, Eqs. 6 and 7 can be reduced to:

lim
i→∞ E(yi) = E(εi) = µ, (8)

and

lim
i→∞ �yi

∼= (2/(2−ω))� < ∞. (9)

If µ = 0, from Eq. 8, limi→∞ E(yi) = 0.
When εi in Eq. 1 is a multivariate IMA (1,1) time series, that

is

εi − εi−1 = ai −�ai−1,

where {ai}∞i=1 is a white noise series with a common covariance
matrix � , the covariance matrix of yi will be as follows:

�yi = � + 1− (1−ω)2(i−1)

1− (1−ω)2
[(1−ω) I−�]� [(1−ω) I−�]′.

If the multivariate EWMA controller defined in Eq. 4 is asymp-
totically stable, from Eq. 5, limi→∞ E(yi) = τ and limi→∞ �yi <

∞. For simplicity, we consider the case that εi is a white noise se-
ries only. For more detail refer to Tseng et al. [11].

The control action of Eq. 3 assumes that there are no
assignable causes present. The only source of disturbance is the
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white noise series εi in Eq. 1. We now investigate how this sys-
tem operates when additional assignable causes occur. Assume
that this MIMO process model is appropriate and that the statis-
tical monitoring scheme will only signal external changes (i.e.,
assignable causes). Applying MSPC to monitor the output de-
viation from target can result in rapid detection of assignable
causes; we assume the assignable cause takes the form of a sus-
tained shift in the process mean vector. If the assignable causes
are eliminated, then the output deviation will be reduced. Using
MEPC alone in the MIMO process will be compared to using
MEPC coupled with MSPC. In this paper, three different MSPC
charts for monitoring the output deviation from the target are
used: Hotelling’s χ2 control chart, the MEWMA control chart,
and the MGWMA control chart.

3 Some MSPC charts

3.1 Hotelling’s χ2 control chart

Hotelling’s χ2 control chart is a direct analog of the univari-
ate Shewhart X̄ control chart for monitoring the mean vector
of the process. In this paper, we denote the set of positive in-
tegers as I+ (i.e., I+ = {1, 2, 3, . . .}). According to the MIMO
system defined in Sect. 2, let the white noise series εi , i ∈ I+,
in Eq. 1 be independent multivariate normal random vectors
with mean vectors µi and a common covariance matrix � (i.e.,
εi ∼ N(µi ,� ), � is non-singular). By measuring deviation from
the target vector (τ = 0), yi , i ∈ I+, we denote the known co-
variance matrix of yi as �yi (Eq. 7). Then, Hotelling’s χ2 control
chart gives an out-of-control signal as soon as the statistic T 2

i ,
as

T 2
i = y′

i�
−1
yi

yi

= y′
i

((
1+ ω

2−ω

(
1− (1−ω)2(i−1)

))
�

)−1

yi > h1

(10)

at time i, where the upper control limit (UCL) h1 (> 0) is chosen
to achieve a specified in-control ARL (ARL0). Details concern-
ing Hotelling’s χ2 control chart can be found in Hotelling [15]
and Montgomery [16].

3.2 The MEWMA control chart

Because Hotelling’s χ2 control chart is based on only the most
recent observation, it is not sensitive to small shifts in the mean
vector. Lowry et al. [17] proposed an EWMA-based multivariate
control procedure (MEWMA) for monitoring the process mean
vector. If εi in Eq. 1 is a white noise series with mean vector
0 and a common covariance matrix � , and there is no a priori
reason to weight past observations differently for the p quality
characteristics being monitored, the equation for the MEWMA
control chart is as follows:

Zi = ryi + (1− r)Zi−1, (11)

where Zi is a (p×1) vector , i ∈ I+, Z0 = 0, 0 < r ≤ 1. From

Eqs. 7 and 11, the covariance matrix of Zi is:

�Zi = [r(1− (1− r)2i)/(2− r)]�yi

=
[
r(1− (1− r)2i)/(2− r)

]

×
[

1+ ω

2−ω

(
1− (1−ω)2(i−1)

)]
� . (12)

The MEWMA control chart gives an out-of-control signal as
soon as the statistic T 2

i ,

T 2
i = Z′

i�
−1
Zi

Zi > h2, (13)

where the UCL h2 (> 0) is chosen to achieve a specified ARL0.

3.3 The MGWMA control chart

Sheu and Lin [18] proposed a generally weighted moving aver-
age (GWMA) control chart which is a generalization of the
EWMA control chart. Due to the added adjustment parameter α,
the GWMA control chart has been shown to perform much better
than Shewhart’s chart and the EWMA chart in monitoring small
shifts of the process mean under the univariate case. In the mul-
tivariate case, we propose the multivariate GWMA (MGWMA)
control chart which is a natural extension of the GWMA control
chart. If εi in Eq. 1 is a white noise series with mean vector 0 and
a common covariance matrix � , and there is no a priori reason to
weight past observations differently for the p quality characteris-
tics being monitored, then the equation for the MGWMA control
chart is as follows:

gi =
i∑

t=1

[
q(i−t)α −q(i−t+1)α

]
yt , i ∈ I+, (14)

where gi is a (p×1) vector (g0 = 0), the design parameter q is
constant ( 0 ≤ q < 1), and the adjustment parameter α is deter-
mined by the practitioner. From Eqs. 7 and 14, the covariance
matrix of gi is:

�gi = var

{
i∑

t=1

[
q(i−t)α −q(i−t+1)α

]
yt

}

= (q0α −q1α

)�yi (q
0α −q1α

)+ (q1α −q2α

)�yi (q
1α −q2α

)

+· · ·+ (q(i−1)α −qiα )�yi (q
(i−1)α −qiα )

= Qi�yi

= Qi

[(
1+ ω

2−ω

(
1− (1−ω)2(i−1)

))
�

]
, (15)

where Qi = (q0α −q1α
)2 + (q1α −q2α

)2 +· · ·+ (q(i−1)α −qiα )2.
The MGWMA control chart gives an out-of-control signal as
soon as

T 2
i = g′

i[Qi� yi ]−1gi

= g′
i

[
Qi

(
1+ ω

2−ω

(
1− (1−ω)2(i−1)

))
�

]−1

gi > h3,

(16)

where the UCL h3 (> 0) is chosen to achieve a specified ARL0.
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Here, the in-control mean vector of yi is µ = µ0 = 0, and
the out-of-control mean vector is µ = µ1. Lowry et al. [17] have
shown that the ARL performance of the MEWMA control chart
depends only on the mean vector µ1 and covariance matrix �yi

through the value of the non-centrality parameter λ, where:

λ =
[
(µ1 −µ0)

′�−1
yi

(µ1 −µ0)
]1/2 =

[
µ′

1�
−1
yi

µ1

]1/2
. (17)

In the MGWMA case, if we let

g∗
i = Mgt

=
i∑

t=1

[q(i−t)α −q(i−t+1)α ]Myt ,

where i ∈ I+, M is a p× p full-rank matrix. It follows that:

T ∗2

i = g∗′
i �−1

g∗
i

g∗
i = g′

i�
−1
gi

gi = T 2
i , i ∈ I+.

It means that the values of the MGWMA statistic in Eq. 16 are
invariant to any full-rank transformation of the data. Therefore,
the ARL performance of the MGWMA procedure also depends
only on µ1 and �yi through the value of the non-centrality pa-
rameter λ in Eq. 17.

When α = 1 and q = 1 − r , gi (from Eq. 14) will be as
follows:

gi =
i∑

t=1

[(1− r)(i−t) − (1− r)(i−t+1)]yt

= ryi + (1− r)gi−1,

q = 0.7 q = 0.8 q = 0.9
α = 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

λ h3 = 10.29 10.23 10.20 10.13 9.96 9.83 9.75 9.71 9.25 9.03 8.85 8.78

0.00 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
0.25 99.2 104.9 109.7 110.9 74.8 79.8 88.7 95.5 63.7 64.0 69.3 73.9
0.50 37.3 39.3 41.6 43.6 28.7 30.0 31.5 33.6 23.6 23.7 23.9 25.0
0.75 17.7 17.8 18.8 19.4 14.7 14.5 14.7 15.3 12.7 12.2 12.2 12.5
1.00 10.7 10.3 10.3 10.7 9.3 9.0 8.8 9.1 8.0 7.7 7.7 7.7
1.25 6.9 6.8 6.7 6.8 6.3 6.1 5.9 6.2 5.6 5.4 5.4 5.2
1.50 5.0 4.9 4.8 4.8 4.6 4.5 4.5 4.4 4.2 4.1 4.0 4.0
2.00 3.1 3.0 3.0 2.9 2.9 2.8 2.8 2.8 2.7 2.6 2.5 2.5

Table 1. ARLs of MGWMA
control charts (p = 2)

q = 0.7 q = 0.8 q = 0.9
α = 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

λ h3 = 14.58 14.50 14.43 14.36 14.28 14.12 14.05 13.93 13.48 13.23 13.08 12.93

0.00 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
0.25 83.4 86.4 90.3 94.0 64.8 67.9 74.2 77.9 48.6 49.6 53.2 56.1
0.50 26.0 26.4 28.2 29.9 20.9 20.6 21.3 22.6 16.9 16.6 16.8 16.9
0.75 11.8 11.9 11.9 12.3 10.3 10.0 9.9 10.1 8.8 8.7 8.5 8.6
1.00 7.0 6.7 6.7 6.6 6.3 6.0 5.9 6.0 5.5 5.4 5.3 5.3
1.25 4.6 4.4 4.4 4.4 4.3 4.2 4.1 4.1 3.9 3.8 3.7 3.7
1.50 3.3 3.3 3.2 3.2 3.2 3.1 3.1 3.0 2.9 2.8 2.8 2.8
2.00 2.1 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.9 1.8 1.8

Table 2. ARLs of MGWMA
control charts (p = 4)

which is similar to Eq. 11 of the MEWMA control chart. Then,
�gi and T 2

i (from Eqs. 15 and 16) will be

�gi = [(q0 −q1)2 + (q1 −q2)2 +· · ·+ (q(i−1) −qi)2]�yi

= [r(1− (1− r)2i)/(2− r)]�yi

and

T 2
i = g′

i[[r(1− (1− r)2i )/(2− r)]�yi ]−1gi ,

which is similar to Eqs. Eq. 12 and Eq. 13. That is, the MEWMA
control chart is a special case in the MGWMA control chart
when α = 1.

When the process is under control, ARL0 should be suf-
ficiently large to avoid false alarms; however, when the pro-
cess is out of control, the ARL (named ARL1) should be suf-
ficiently small to rapidly detect shifts. The design parameters
of the MGWMA control chart are the value of q, α, and h
to achieve a specified ARL0. Simulation [19] is used to es-
timate the ARL of the MGWMA control chart. With various
design parameter q ∈{0.7, 0.8, 0.9}, different adjustment pa-
rameters α ∈{0.7, 0.8, 0.9, 1.0}, and in-control (λ = 0) ARL0
is maintained at approximately 200 by changing the width of
the control limits (h3). Each simulation runs 20 000 iterations
and each iteration ends when T 2

i > h3. The ARL performance
for several MGWMA control schemes is shown in Table 1 and
Table 2 with p = 2 and p = 4, respectively. When α = 1.0, the
MGWMA control chart reduces to the MEWMA control chart.
Based on Table 1 and Table 2, the adjustment parameter α of
the MGWMA control chart is more sensitive to small shifts in
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the process mean vector than to that of the MEWMA control
chart.

4 An example

We first show a simple example (m = p = 2), and then give
the results of a more comprehensive simulation study. Let the
number of production runs n = 100. Assume the white noise se-
ries εi in Eq. 1 follows the bivariate normal distribution. The
mean vector of εi is on target at [0 0]′ for the first 20 ob-
servations. At time i = 21, a disturbance consisting of a sus-
tained shift of magnitude (0.875, 0) units is introduced into
the process. That is, µ0 = [0 0]′, µ1 = [0.875 0]′. Let ω = 0.1,
α̂0 = [1 1]′,

B =
[

1 0
0 1

]
, � =

[
1.0 0.5
0.5 1.0

]
, γ0 = [0.2 0.2]′.

From Eqs. 2, 9, and 17, we get c0 = B−1(τ− α̂0) = [−1 −1]′,

�yi
∼= 2

2−ω
� = 2

1.96

[
1.0 0.5
0.5 1.0

]
,

and λ =
(
µ′

1�
−1
yi

µ1

)1/2 = 1.0.

After Johnson and Wichern [20], if we want to simulate
a random vector ε from a multivariate normal distribution with
mean µ and covariance matrix � (i.e., ε ∼ N(µ,� )), let κi be
the ith eigenvalue of the covariance matrix � , ei be the ith nor-
malized eigenvector, and N be a p× 1 vector of independent
standard normal deviates (i.e., N ∼ N(0, I)). To generate one ran-
dom multivariate normal vector ε from a population with mean µ

and covariance matrix � , begin by generating p random standard
normal deviates as the elements of vector N. Let

N = A(ε−µ),

where

A =
[

1√
κ1

e′
1,

1√
κ2

e′
2, · · · ,

1√
κp

e′
p

]′
.

Then we can get

ε = A−1N+µ. (18)

According to Eq. 18 and the data mentioned above, the first 20
random vectors of εi are computed as follows:

εi =
[

ε1

ε2

]
= A−1N+µ0

= 1√
2

[ √
0.5

√
1.5

−√
0.5

√
1.5

][
N1

N2

]
+

[
0
0

]
,

i = 1, 2, . . . , 20.

The last 80 random vectors of εi are computed as follows:

εi =
[

ε1
ε2

]
= A−1N+µ1

= 1√
2

[ √
0.5

√
1.5

−√
0.5

√
1.5

][
N1
N2

]
+

[
0.875
0

]
,

i = 21, 22, . . . , 100.

Figure 1 shows the output for 100 observations of the pro-
cess under the MIMO process model given by Eq. 1 with the
MEWMA controller given by Eqs. 3 and 4. At time i = 21, a dis-
turbance consisting of a sustained shift of magnitude (0.875, 0)
units is introduced into the process. Figure 2 shows the result-
ing control actions from Eq. 4. Without using MSPC to detect
the shift, the MEWMA controller (c1) compensates for this sus-
tained shift to a large degree.

Figures 3 to 5 show the process output assuming that in add-
ition to the MEPC rule, a Hotelling’s χ2 chart, an MEWMA
chart, and an MGWMA chart are applied to the output devi-
ation from target, respectively. The values of T 2

i that corres-
pond to Hotelling’s χ2 chart are obtained using Eq. 10. The
values of T 2

i that correspond to the MEWMA chart are obtained
using Eq. 13 with the design parameter r = 0.20. The values of

Fig. 1. Output deviations from the target using MEPC alone. A sustained
shift of (0.875, 0) units occurs at i = 21 and PM = 1.296

Fig. 2. Control actions for the process in Fig. 1 (using MEPC alone)
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Fig. 3. Output deviations from the target using MEPC and a Hotelling’s χ2

chart. A sustained shift of (0.875, 0) units occurs at i = 21 and PM = 1.109

Fig. 4. An MEWMA chart applied to the output deviations from the target
with r = 0.2. A sustained shift of (0.875, 0) units occurs at i = 21 and PM
= 1.054

T 2
i that correspond to the MGWMA chart are obtained using

Eq. 16 with the design parameter q = 0.8 (equivalent to r = 0.2
in MEWMA) and the adjustment parameter α = 0.9. The con-
trol limits h1 = 10.6, h2 = 9.71 (with q = 0.8, α = 1.0), and
h3 = 9.75 (with q = 0.8, α = 0.9) are obtained from Lowry et

Table 3. ARL1s and averages of PM (in parentheses) for MEPC/MSPC charts (ARL0 = 200, m = p = 2, n = 500)

λ Prior to (1) MEPC (2) MEPC/ (3) MEPC/MGWMA (4) MEPC/MEWMA
Shift alone Hotelling’s q = 0.7 q = 0.8 q = 0.9

χ2, h1 = 10.6 (3) (4) (3) (4) (3) (4)
α = 0.7 α = 1.0 α = 0.8 α = 1.0 α = 0.8 α = 1.0
h3 = 10.29 h2 = 10.1 h3 = 9.83 h2 = 9.71 h3 = 9.03 h2 = 8.78

0.25 168.3 121.1 129.4 103.50 113.8 80.9 89.9
(1.253) (1.264) (1.262) (1.258) (1.259) (1.256) (1.258) (1.254) (1.256)

0.50 137.8 48.0 56.1 37.4 42.4 30.5 31.0
(1.253) (1.293) (1.293) (1.263) (1.267) (1.260) (1.262) (1.258) (1.258)

0.75 96.8 22.1 24.4 18.4 19.3 17.2 16.5
(1.253) (1.342) (1.317) (1.263) (1.265) (1.260) (1.262) (1.259) (1.260)

1.00 59.6 13.2 13.3 11.6 11.7 11.8 11.2
(1.253) (1.407) (1.321) (1.263) (1.264) (1.261) (1.262) (1.261) (1.261)

2.00 9.2 4.7 4.6 4.8 4.8 5.4 5.4
(1.253) (1.782) (1.283) (1.264) (1.264) (1.264) (1.264) (1.267) (1.267)

5.00 2.1 2.1 2.3 2.3 2.5 2.6 2.9
(1.253) (3.230) (1.266) (1.266) (1.270) (1.269) (1.273) (1.274) (1.278)

Fig. 5. An MGWMA chart applied to the output deviations from the target
with q = 0.8 and α = 0.9. A sustained shift of (0.875, 0) units occurs at i =
21 and PM = 1.046

al. [17] and Table 1 to provide ARL0’s of 200. The control lim-
its (h1, h2, and h3) are shown on the control charts. Assume that
the shift is eliminated as soon as it is detected. The Hotelling’s
χ2 chart (in Fig. 3) signals out-of-control after the 45th obser-
vation, whereas the MEWMA chart (in Fig. 4) signals after the
27th observation, and the MGWMA chart (in Fig. 5) signals after
the 26th observation. Under the assigned parameters described
above, it takes only 11.7 samples and 11.6 samples in average for
the MEPC/MEWMA chart and the MEPC/MGWMA chart after
the shift to detect an out-of-control signal, while 59.6 samples
are needed for the MEPC/Hotelling’s χ2 chart (see Table 3).

The performance measure we used is the average Euclidean
distance of the deviation from the target 0. That is,

PM = 1

n

n∑

j=1

[ p∑

i=1

y2
ij

]1/2

, (19)

where, in this case, n = 100, p = 2. The performance measures
(PM) in Figs. 1, 3, 4, and 5 are PM = 1.296, 1.109, 1.054, and
1.046, respectively. Because the sustained shift is detected most
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quickly by the MGWMA chart and is eliminated as soon as
possible, the PM value of MEPC/MGWMA is smallest. Thus,
among the four control schemes, MEPC/MGWMA is the best,
and MEPC alone is the worst. Figures 6 to 8 show the resulting

Fig. 6. Control actions for the process in Fig. 3 (MEPC/Hotelling’s χ2

chart). A sustained shift of (0.875, 0) units occurs at i = 21 and the
assignable cause is eliminated after i = 45

Fig. 7. Control actions for the process in Fig. 4 (MEPC/MEWMA chart).
A sustained shift of (0.875, 0) units occurs at i = 21 and the assignable
cause is eliminated after i = 27

Table 4. ARL1s and averages of PM (in parentheses) for MEPC/MSPC charts (ARL0 = 200, m = p = 4, n = 500)

λ Prior to (1) MEPC (2) MEPC/ (3) MEPC/MGWMA (4) MEPC/MEWMA
Shift alone Hotelling’s q = 0.7 q = 0.8 q = 0.9

χ2, h1 = 14.9 (3) (4) (3) (4) (3) (4)
α = 0.7 α = 1.0 α = 0.8 α = 1.0 α = 0.8 α = 1.0
h3 = 14.58 h2 = 14.36 h3 = 14.12 h2 = 13.93 h3 = 13.23 h2 = 12.93

0.25 177.5 145.1 151.2 128.5 137.5 101.7 113.0
(1.879) (1.894) (1.883) (1.880) (1.881) (1.880) (1.880) (1.878) (1.880)

0.50 160.3 69.0 81.6 52.0 61.1 38.3 41.3
(1.879) (1.917) (1.911) (1.888) (1.892) (1.884) (1.887) (1.881) (1.882)

0.75 128.9 30.4 35.3 23.9 26.1 20.7 20.3
(1.879) (1.954) (1.942) (1.888) (1.891) (1.884) (1.886) (1.883) (1.883)

1.00 91.7 17.0 18.1 14.5 14.7 14.1 13.3
(1.879) (2.005) (1.958) (1.887) (1.889) (1.885) (1.885) (1.884) (1.884)

2.00 15.0 5.5 5.3 5.5 5.4 6.1 6.0
(1.879) (2.314) (1.920) (1.887) (1.887) (1.887) (1.887) (1.889) (1.889)

5.00 2.2 2.2 2.5 2.5 2.7 2.8 3.0
(1.879) (3.650) (1.888) (1.890) (1.893) (1.893) (1.896) (1.898) (1.901)

Fig. 8. Control actions for the process in Fig. 5 (MEPC/MGWMA chart).
A sustained shift of (0.875, 0) units occurs at i = 21 and the assignable
cause is eliminated after i = 26

control actions (c1, c2) from Eq. 4. As soon as the shift is de-
tected and is eliminated, the magnitude of the control actions (c1,
c2), especially the c1 value (i.e., the solid line in Figs. 6 to 8), will
be reduced immediately.

5 Simulation results

The simulation study is performed to further investigate the per-
formance of this integrated MEPC rule and MSPC rule. Assume
the assignable cause is a sustained shift. Several different MSPC
control charts for the output deviation from the target are in-
vestigated. An in-control (λ = 0) ARL (ARL0) is maintained at
approximately 200 by changing the width of the control limits
(h). The shift magnitudes investigated are λ = 0.25, 0.5, 0.75, 1,
2, and 5. When α = 1.0, the MGWMA chart is reduced to the
MEWMA chart. The assignable cause occurs at i = 251 and is
eliminated as soon as it is detected by the MSPC chart. The out-
of-control ARL1s and the averages of performance measures are
used for comparison. The ARL comparisons based on the non-



136

centrality parameter (λ) assume that a shift to µ = µ1 will be
detected as quickly as a shift to µ = µ2, if λ = (

µ′
1�

−1µ1
)1/2 =(

µ′
2�

−1µ2
)1/2

. PM results are calculated across 500 periods
(n = 500) per simulation run; the MEPC rule continues for all
500 periods. The random vector εi in Eq. 1 is assumed to be an
independent multivariate normal distribution with mean µi and
a common covariance matrix � (i.e., εi ∼ N(µi ,� )). We con-
sider the numbers of inputs (m) and outputs (p) are (m = p = 2)
and (m = p = 4) only. Let the discount factor be ω = 0.1. Each
simulation runs 20 000 iterations. All programs are written in
the SAS programming language (the SAS system for Windows,
Release 8.02).

Table 3 (with m = p = 2) and Table 4 (with m = p = 4) show
the simulation results of ARL1s and the averages of PM (in
parentheses). The second columns of Tables 3 and 4 give the per-
formance measures prior to the introduction of the shift (i.e., for
periods 1-250). The next column gives the performance mea-
sures for period 251-500 for either the MEPC alone or some
combination of MEPC and an MSPC chart. Based on the bold-
face numbers in Tables 3 and 4, a variance of the adjustment
parameter α (α < 1) indicates that the MGWMA chart is more
sensitive to small shifts than the MEWMA chart (α = 1) with the
same q value, and the Hotelling’s χ2 chart. When q is smaller,
the properties become even more obvious. For instance, when
(q = 0.8, α = 0.8) or (q = 0.7, α = 0.7), and λ ≤ 1, the ARL1s
and the averages of PM are smaller than those of the MEWMA
chart and the Hotelling’s χ2 chart.

6 Conclusion

Most of MEPC schemes are designed to react to process dis-
turbances and do not make any effort to remove the assignable
causes. The MSPC chart can be used to monitor, identify, and
subsequently eliminate the assignable causes. In this paper,
we have demonstrated the potential effectiveness of integrating
MEPC and MSPC in a reasonably general situation. Although
we consider the case that the disturbance is only a white noise
series, when the disturbance is a multivariate, IMA (1, 1) time
series will get the similar results.

Combining MEPC and MSPC charts always results in
the reduction of overall variability if the process has external
assignable causes that lead to sustained shifts. Especially in de-
tecting small shifts of the mean vector (due to the added adjust-
ment parameter), the combined MEPC/MGWMA chart is more

sensitive than a MEPC/MEWMA chart and MEPC/Hotelling’s
χ2 chart. We conclude that proper use of both MEPC and MSPC
can always outperform the use of either one alone.
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