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Abstract In this paper, the job shop scheduling problem is
studied with the objectives of minimizing the makespan and
the mean flow time of jobs. The simultaneous consideration
of these objectives is the multi-objective optimization problem
under study. A metaheuristic procedure based on the simulated
annealing algorithm called Pareto archived simulated annealing
(PASA) is proposed to discover non-dominated solution sets for
the job shop scheduling problems. The seed solution is gener-
ated randomly. A new perturbation mechanism called segment-
random insertion (SRI) scheme is used to generate a set of neigh-
bourhood solutions to the current solution. The PASA searches
for the non-dominated set of solutions based on the Pareto dom-
inance or through the implementation of a simple probability
function. The performance of the proposed algorithm is eval-
uated by solving benchmark job shop scheduling problem in-
stances provided by the OR-library. The results obtained are
evaluated in terms of the number of non-dominated schedules
generated by the algorithm and the proximity of the obtained
non-dominated front to the Pareto front.

Keywords Job shop scheduling · Multi-objective optimization ·
Simulated annealing

Notations

n Number of jobs
m Number of machines
q Number of objectives
Ci The completion time of job i
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pij The processing time of operation j of job i
mk Makespan of the schedule = max {Ci , i = 1, 2, 3, . . . , n}
m ft Mean flow time of the schedule = 1

n

∑n
i=1 Ci

Ss The seed or current solution
Oij jth operation of ith job
{Ss′ } Neighbourhood solution set generated by the perturbing

mechanism
Nnd Number of non-dominated solutions present in the neigh-

bourhood {Ss′ }
Ss′ The candidate solution selected from the neighbourhood

of Ss

mke The best makespan value obtained during the search
m fte The best total flow time value obtained during the search
wi The non-negative weight for the ith objective, such that∑q

i=1 wi = 1.0
Zi The weighted sum of the scaled objectives for the ith

neighourhood solution, 1 ≤ i ≤ Nnd

1 Introduction

The job shop scheduling problem (JSP) with a single objective is
a widely researched problem in the area of production schedul-
ing. In a job shop, several jobs require scheduling, each with
different processing times on different machines. Many applica-
tions of JSPs in industry have been discussed in the literature.
Operations research practitioners, production management ex-
perts, management scientists, mathematicians and computer sci-
entists have discussed the scheduling theory [1–7].

The solution procedure for solving the JSP differs as the ob-
jective of the scheduling differs. Most of the research concerning
the job shop scheduling problem have focused on developing
scheduling algorithms for a single objective measure [8]. A de-
tailed overview of the objectives of job shop is given in [5, 9, 10].
Much work has been done to solve JSPs by using single objective
metaheuristic procedures like simulated annealing algorithm, ge-
netic algorithm and tabu search algorithm [11]. These algorithms
are generic optimization algorithms, i.e. they are intended for use
on a wide range of optimization problems.
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The real-world scheduling problems are multi-objective in
nature. In such cases, several objectives are considered simul-
taneously when a schedule is generated. Simultaneous consid-
eration of several objectives during scheduling totally modifies
the scheduling approach. A scheduler who improves the sched-
ule with respect to one objective may want to know how the
schedule performs with respect to the other objectives. Thus
the goal is to generate a feasible schedule that minimizes sev-
eral objectives. This schedule is called a Pareto optimal solu-
tion. A single feasible schedule that minimizes several objectives
may not exist. In other words, individual optimal solutions of
each objective are usually different. Under such situations, the
scheduler may be interested in having a schedule with weighted
combination of several scheduling objectives as the performance
measure. It is possible that the weights of various objectives
are known before scheduling. This approach [12–14] permits
computing of a unique strict Pareto optimal solution. It is also
possible that the decision maker wants to choose a Pareto op-
timal solution according to the priorities existing at the time of
decision making. In that case, a family of best trade-off sched-
ules called the Pareto optimal set is to be found. The set of
Pareto solutions is called the Pareto front. Therefore solving
a multi-objective scheduling problem is a Pareto optimization
problem.

Generating the Pareto optimal set for the scheduling prob-
lem can be computationally expensive and is often infeasible,
because of the complexity of the scheduling problem [15]. More-
over, when metaheuristics are used, there is no guarantee that
the Pareto set for a given multi-objective optimization problem
like multi-objective scheduling can be generated. However, a set
of non-dominated solutions can be generated close to the Pareto
optimal set [15–17].

2 Literature survey

Researchers in the field of multi-objective optimization have de-
veloped several multi-objective optimization algorithms. Suresh
and Sahu [18] proposed a SA algorithm based multi-objective
optimization method for solving COPs. Extensions of single ob-
jective GAs were proposed in different forms for multi-objective
optimization by Schaffer [19], Fonseca and Fleming [20], Srini-
vas and Deb [21], Deb et al. [22] and Chang et al. [23]. The
vector evaluated GA (VEGA) proposed by Schaffer was criti-
cized for not generating a compromise solution by favouring the
extreme solutions. Fonseca and Fleming [20] used the Pareto
dominance relationship in their multi-objective genetic algo-
rithm (MOGA). The performance of the MOGA depends on the
value of the sharing factor. Srinivas and Deb [21] proposed the
non-dominated sorting genetic algorithm (NSGA). Absence of
elitism and sensitiveness to the value of sharing factor are re-
ported to be the major drawbacks of the NSGA approach. How-
ever, Deb et al. [22] proposed the fast and elitist NSGA known
as NSGA-II to overcome the above drawbacks. The above GA
based approaches have been tested on continuous or very small
discrete problems only.

Ishibuchi and Murata [24] proposed the multi-objective ge-
netic local search (MOGLS) algorithm for solving two and
three objective flow shop scheduling problems. Bagchi [17] pro-
posed the elitist non-dominated sorting GA (ENGA) for solv-
ing multi-objective flow shop scheduling problems. ENGA is an
adapted version of NSGA. The better performance of ENGA
is due to its elitist strategy. Ishibuchi et al. [15] proposed the
modified MOGLS algorithm and compared its performance with
the strength Pareto approach of Zitzler and Thiele [25] and
NSGA II algorithm by using the results obtained for the ran-
domly generated flow shop scheduling test problems with 20 ma-
chines. Chang et al. [23] proposed the GA based gradual priority
weighting approach called GPWGA to search the non-dominated
solutions.

Of late Varadharajan (2003, personal communication) pro-
posed a multi-objective simulated annealing algorithm (men-
tioned in this paper as “VR” algorithm) for scheduling in flow
shops to minimize makespan and total flow time of jobs and pre-
sented non-dominated solution sets for the benchmark flow shop
problems of Taillard [26]. The performance of the VR algorithm
was shown to be superior to the GA based algorithms such as
ENGA, GPWGA, and MOGLS and the a-posteriori approach
which is based on NEH heuristic [27]. To our knowledge, re-
search on multi-objective job shop scheduling is rather limited.

Scheduling problems are combinatorial optimization prob-
lems. In most cases, they are NP hard for even a single criterion
optimization and are therefore unlikely to be solvable in poly-
nomial time. This difficulty is due to their combinatorial com-
plexity. NP completeness proofs [28] are available for a number
of scheduling problems. JSP is proved to be NP hard [29, 30].
Chen and Bulfin [31] presented a thorough study on the com-
plexity analysis of the multi-machine, multi-objective scheduling
problems. It is shown that considering more than one objec-
tive does not simplify the scheduling problem. Multi-objective
scheduling problems are as complex as the corresponding single
objective problems [8].

3 The problem under study

The deterministic job shop scheduling problem considered in
this paper consists of a finite set J of n jobs to be processed on
a finite set M of m dedicated machines. Each job Ji must be
processed on every machine once and consists of a set of m op-
erations {Oi1, Oi2, Oi3, . . .Oim }, which have to be scheduled in
a predetermined order, a requirement called a precedence con-
straint. The routing of one job is independent of the routing of
another job. There are N operations in total, N = n ×m. Each op-
eration is to be processed for an uninterrupted processing period
of pij . In the proposed model, no machine breakdowns are as-
sumed to occur, transport times of jobs between machines are
ignored and all the jobs are assumed to be available at time zero.
The process time pij is assumed to be known in advance, and
necessary setup times are included in the processing times. In
the present work, regular measures of performance, namely min-
imizing the makespan and the mean flow time are considered.
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Benchmark job shop scheduling problem instances cov-
ering small, medium and large size problems, provided by
OR-library (http://mscmga.ms.ic.ac.uk/info.html) under various
classes have been solved by using the proposed PASA. The var-
ious benchmark JSP instances under study are: three instances
(ft06, ft10, and ft20) from Fisher and Thompson [1], forty in-
stances (la01–la40) proposed by Lawrence [32], five instances
(abz5–abz9) due to Adams et al. [33], ten instances (orb01–
orb10) proposed by Applegate and Cook [34], twenty instances
(swv01-swv20) proposed by Storer et al. [35] and four instances
(yn01–yn04) proposed by Yamada and Nakano [36].

4 The Pareto archived simulated annealing algorithm
(PASA)

General purpose optimization methods such as SA, GA and Tabu
search (TS) methods have been proposed for multi-objective op-
timization. The proposed method of solving JSP is based on SA
algorithm. Reviews of the theory and application of SA can be
found in Kirkpatrick et al. [37] and Aarts and Lenstra [38]. SA
has been applied to solve single objective job shop scheduling
problems [39–42]. Suresh and Sahu [18] and Czyzak and Jask-
iewicz [43] have proposed a SA algorithm based multi-objective
optimization approach. The approach proposed by Suresh and
Sahu [18] is an apriori approach. Czyzak and Jaskiewicz [43]
proposed Pareto simulated annealing (PSA) which is a kind of
parallel search with a set of solutions using a SA algorithm based
extension of simulated annealing. The primary contribution of
the present research is the development of a single point local
search metaheuristic to solve job shop scheduling problems with
multiple objectives.

The characteristic features of the proposed PASA are:

1. A single point local search heuristic is used.
2. A set of neighbourhood solutions are considered to identify

a candidate solution.
3. Pareto dominance is used as the criterion for accepting the

candidate solution.
4. An archive is created and maintained to preserve the updated

set of non-dominated solutions.
5. Re-annealing strategy is used to realize various search

directions.

4.1 Pareto search and archiving

A SA algorithm is as such not capable of returning the Pareto
optimal or non-dominated solution set from a single run. To pre-
serve the non-dominated solutions obtained during the search
process, an archive is maintained for storage. The Pareto search
and archiving procedures of the proposed algorithm are ex-
plained below.

PASA proceeds its search with a randomly generated solution
Ss in the direction specified by the objective axis. The objective
axis is fixed by the weighting coefficients (w1, w2) representing
the relative importance of the objectives. The new perturbation
scheme SRI returns a set of neighbourhood solutions of the seed

sequence in each iteration. Every member of the newly generated
neighbourhood set is compared with the other members in the set.
In the case of two objectives, an ith solution is said to dominate a
jth solution, if the following condition is satisfied.

[((mki ≤ mkj) AND (m fti ≤ m ftj))

AND ((mki < mkj) OR (m fti < m ftj))] (1)

Once a solution is identified as a dominated solution, it is re-
moved from the generated neighbourhood set. After all compar-
isons, non-dominated solutions among the {Ss′ } will be left. Then
a solution with the least value of Z is (see Eq. 2) returned as the
candidate solution Ss′ . If there is a tie, Ss′ is chosen randomly.

Zi =w1 ((mki −mke)÷mke)+w2 (m fti −m fte)

÷m fte ∗ (m fte/mke)) (2)

The candidate solution Ss′ is then compared with the current so-
lution Ss for non-domination. If the candidate solution dominates
the current solution, then Ss′ becomes the current solution. Oth-
erwise, the dominated candidate solution is accepted with the
acceptance probability paccept as given in Eq. 3.

paccept = exp−(∇/T ) (3)

where ∇ =
[

w1 ∗ (mks′ −mks)

mks
+ w2 ∗ (m fts′ −m fts)

m fts

]

(4)

Whenever a candidate solution Ss′ is accepted, it is taken as cur-
rent solution and is compared with every member of the archive.
If an archive member dominates the candidate solution, compari-
son is terminated. Otherwise, if the candidate solution dominates
any archive member, the dominated archive member is removed
from the archive. In the later case, the candidate solution is
copied into the archive after the comparison is over. Irrespective
of whether the candidate solution is added into the archive or not,
the search process is continued with the current solution. Thus,
the Pareto dominance relationship is used as the acceptance cri-
terion. However, an inferior candidate solution is accepted with
the probability computed using Eq. 3. The weighting coefficients
represent the relative importance of the objectives.

4.2 Re-start strategy

Sometimes during the search process, SA encounters non-
improving iterations continuously. To overcome such drawbacks,
a FIFO queue is maintained to store a set of recently accepted
candidate solutions. During such continuous non-improving
moves, PASA retrieves a seed solution at random from a FIFO
queue to encourage a different search trajectory. The maximum
number of non-improving moves is taken as 100, and the queue
size is limited to five based on the trial runs.

4.3 Parameter settings

The values of initial and final temperature during annealing are
fixed as follows [37]. By accepting an inferior candidate solution
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Ss′ , which is inferior by 30% (δ) relative to the current solution
Ss with the acceptance ratio (x0) of 0.9, the initial temperature
(Ti) is fixed as 285 (see Eq. 5).

Ti =
⎛

⎝
−δ

in
(

x−1
0

)

⎞

⎠ (5)

The temperature is reduced after a predetermined number of iter-
ations (E) at a given temperature, using the relationship (Ti+1 =
rc ∗ Ti). Reduction factor (rc) is fixed as 0.9. The final tempera-
ture, which is based on the value of the initial temperature and
reduction factor, is fixed as 5. These parameters are obtained
after conducting several trials on different JSP instances.

4.4 Re-annealing

Re-annealing refers to restart of the SA process with the best so-
lution obtained during the previous run as the seed solution. The
objective axis during the search process is changed by changing
the weighting coefficients to uncover more non-dominated solu-
tions in the solution space. This is done after every single run of
PASA to realize various search directions. Direction of search for
the present problem with two objectives is specified by (w1, w2),
such that w1 +w2 = 1.0. Initially w1 is taken as 0 and w2 is
taken as 1.0. After carrying out the search for a predetermined
number of iterations in a given direction specified by w1 and
w2, the search process is repeated again with w1 = (w1 + 0.2)

and w2 = (1.0−w1). This is because when temperature is low
the probability that an improving neighbour is chosen is small.
Since, no better solutions can be found in the direction when
the temperature is already low re-annealing is employed. During
re-annealing, the temperature and other parameters are re-set to
initial values. Re-annealing is done until w1 becomes 1.0. The
number of solutions evaluated by the search process in a given
direction is limited such that the total number of solutions eval-
uated equals (n ×m ×10000) solutions.

4.5 Solution structure and the perturbation mechanism

A schedule is expressed exactly using a finite length of string
representing various operations to be performed in the order
specified. Thus, the solution structure consists of a string of n ×
m integers. This covers all feasible solutions of a JSP instance.
For example, the string (0 1 0 2 1 2 . . . ) represents the first op-
eration of job 0 is to be processed first followed by the first
operation of job 1, the second operation of job 0, etc. The work-
ing of SRI scheme is explained through the following numerical
illustration. Consider a sequence of operations (0 1 0 2 1 2 1 0
2) of a 3 job 3 machine job shop scheduling problem. Job se-
quences of the machines m0, m1 and m2 are taken to be {( 0 1
2), (0 2 1), (1 0 2)}. It is to be noted that both the job number and
the machine number starts from 0. Let the sequence (0 1 0 2 1 2
1 0 2) be a seed sequence S. With known locus P and segment
length L , a sub-sequence is selected. Neighbourhood solutions
are obtained by random insertion of each element of the se-
lected sub-sequence to the left or right side of the sub-sequence.

Perturbed solutions along with corresponding job sequence for
various machines are shown in Table 1 and Table 2, respectively.
It is seen from the above tables that neighbours are generated
from the original solution within a small spread by changing
the job sequence of a machine. This is very much desirable for
a thorough exploration of the search space.

4.6 Proposed PASA algorithm for multi-objective scheduling

The pseudo code of the PASA algorithm for solving the job shop
scheduling problem is given below.

Step 1 Assign SA parameters such as final temperature (Tf ),
rate of cooling (rc), maximum number of iterations (E)

at a given temperature and maximum number of succes-
sive non-improving moves (B).

Step 2 Generate a seed solution SS randomly.
Step 3 Initialize w to 0 and the FIFO queue by adding SS.
Step 4 Initialize SA parameters such as current temperature

(Ti), the iteration counter (e), non-improvement counter
(r) and the weighting coefficients w1 = w and w2 =
(1.0−w1).

Step 5 Invoke SRI to generate a neighbourhood set {SS′}.
Step 6 Do non-dominated sorting of the neighbourhood and

identify SS′ .
Step 7 If (SS′ dominates SS)

copy SS′ into SS and into the archive,
update archive members,
assign r = 0,
go to Step 9.

else
compute ∇ using Eq. 3.
if

(
e−(∇/Ti ) < U

)

copy SS′ into SS,

Table 1. Perturbed solution set obtained (P = 4; L = 3)

Jobs selected* Random insert Resulting
for insertion position sequence (s)
(*bold letter)

0 1 0 2 1 2 1 0 2 3 S′
1 = 0 1 2 0 1 2 1 0 2

0 1 0 2 1 2 1 0 2 1 S′
2 = 1 0 1 0 2 2 1 0 2

0 1 0 2 1 2 1 0 2 2 S′
3 = 0 2 1 0 2 1 1 0 2

Perturbed solutions Job sequence

0 1 2 0 1 2 1 0 2 M0 0 1 2
M1 2 0 1
M2 1 0 2

1 0 1 0 2 2 1 0 2 M0 1 0 2
M1 0 2 1
M2 1 0 2

0 2 1 0 2 1 1 0 2 M0 0 1 2
M1 2 0 1
M2 1 0 2

Table 2. Job sequences of
the machines for the per-
turbed solutions using SRI



188

assign r = 0,
go to Step 9.

else
go to Step 8.

Step 8 If (r < B)

increment r ,
go to Step 9.

else
pick a solution S at random from the FIFO queue,
Set r = 0.

Step 9 Update FIFO queue and increment iteration counter e.
Step 10 If (e < E)

go to Step 5.
else

Ti = T ∗rc

set e = 0.
Step 11 If (Ti < Tf )

go to Step 5.
else

set w = w+0.2.
Step 12 If (w ≤ 1.0)

go to Step 4.
else

output archive members.

5 Quality measures of non-dominated solution set

In order to compare different non-dominated solution sets with
one another, some of the quality measures are explained below.
Some solutions in one set may be dominated by solutions in the
other set. When the number of objectives to be optimized is two
or three, graphical plots such as shown in Fig. 1 are useful. Multi-
dimensional objective space requires a different approach.

Many common metrics are used in the literature (see
Knowles [47] for complete study) for this purpose. Most of
the proposed metrics use the true Pareto optimal solution set
as the reference set for evaluating the quality of the given
non-dominated solution set. Ishibuchi et al. [15] generated the
reference set for each of the 20-job test problem with a much
longer computational time and larger computer memory. Gen-

Table 3. Net front contribution ratio by PASA, VR and modified MOGLS algorithms for the 20-job, flow shop scheduling problems of Taillard (1993)

n m Problem number Average
1 2 3 4 5 6 7 8 9 10 NFCR

20 5 PASA NFC1 1.000 0.909 0.417 0.500 0.938 0.750 0.818 0.667 0.706 0.580 0.730
VR NFC2 0.000 0.182 0.083 0.278 0.188 0.188 0.182 0.167 0.000 0.260 0.150
MMOGLS NFC3 0.000 0.000 0.500 0.278 0.125 0.188 0.091 0.222 0.353 0.110 0.190

20 10 PASA NFC1 0.400 0.607 0.538 0.556 0.500 0.261 0.588 0.500 0.400 0.260 0.460
VR NFC2 0.333 0.143 0.385 0.167 0.571 0.522 0.588 0.500 0.250 0.210 0.370
MMOGLS NFC3 0.333 0.357 0.538 0.333 0.071 0.217 0.412 0.056 0.500 0.580 0.340

20 20 PASA NFC1 0.333 0.458 0.655 0.706 0.704 0.176 0.000 0.667 0.625 0.520 0.480
VR NFC2 0.500 0.417 0.276 0.176 0.185 0.176 0.133 0.167 0.125 0.390 0.250
MMOGLS NFC3 0.375 0.167 0.276 0.176 0.111 0.706 0.867 0.167 0.281 0.260 0.340

Fig. 1. Graphical comparison of the quality of non-dominated fronts ob-
tained by the PASA and the modified MOGLS algorithm for the problem
instance ABZ5

erating the true Pareto front requires very high computational
effort especially for the JSP under study. The required com-
putational effort becomes very high when the problem size is
large. In this paper, a relative measure is used for comparison.
The net non-dominated front obtained by updating the combined
non-dominated front formed by adding non-dominated solutions
generated by various algorithms under comparison is used as
the reference set. Quality of the non-dominated solution gener-
ated by an algorithm is evaluated using net front contribution
ratio (NFCR). The computational aspect of the measure is out-
lined below. Let F1, F2 and F3 be the non-dominated fronts
obtained by different algorithms. These fronts are then combined
to form a combined front. A net front Fn is obtained by updating
the combined front. Let n1, n2 and n3 be the number of non-
dominated individuals contributed by F1, F2and F3 respectively
to the net front Fn . The net front contribution ratio of each of the
algorithm is computed using Eq. 6.

NFCR1 = n1/nn, NFCR2 = n2/nn and NFCR3 = n3/nn (6)

Several researchers reported the best UB for the makespan [11]
and mean flow time [44, 45] in their study using single objective
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optimization algorithms. In the present work, effectiveness of the
proposed algorithm in obtaining the Pareto front is measured by
considering the extreme solutions, i.e. the best makespan and the

Table 4. Relative performance of PASA, compared to the best upper bound reported in the literature for the benchmark job shop scheduling problem instances
of Fisher and Thompson (1963), measured in terms of mean relative percentage increase (MRPI) in makespan and mean flow time

Bench n m Makespan Best makespan % Deviation MRPI in Mean flow Best mean flow time % Deviation MRPI in mean
mark (UB) obtained by PASA makespan time (UB) obtained by PASA flow time

ft06 6 6 55 55 0.000 0.00 44.167 44.170 0.008 0.00
ft10 10 10 930 938 0.860 0.86 750.100 750.500 0.053 0.86
ft20 20 5 1165 1165 0.000 0.00 692.100 685.550 0.000 0.00

Table 5. Relative performance of PASA, compared to the best upper bound reported in the literature for the benchmark job shop scheduling problem instances
of Lawrence (1984), measured in terms of mean relative percentage increase (MRPI) in makespan and mean flow time

Bench n m Makespan Best makespan % Deviation MRPI in Mean flow Best mean flow time % Deviation MRPI in mean
mark (UB) obtained by PASA makespan time (UB) obtained by PASA flow time

la01 10 5 666 666 0.000 483.200 483.200 0.000
la02 10 5 655 655 0.000 445.900 446.800 0.202
la03 10 5 597 597 0.000 0.00 415.100 417.500 0.578 0.16
la04 10 5 590 590 0.000 425.900 425.900 0.000
la05 10 5 593 593 0.000 407.200 407.200 0.000

la06 15 5 926 926 0.000 581.733 582.400 0.115
la07 15 5 890 890 0.000 550.067 542.800 0.000
la08 15 5 863 863 0.000 0.00 529.933 533.870 0.743 0.17
la09 15 5 951 951 0.000 615.667 609.870 0.000
la10 15 5 958 958 0.000 600.800 588.070 0.000

la11 20 5 1222 1222 0.000 729.500 723.800 0.000
la12 20 5 1039 1039 0.000 606.700 605.250 0.000
la13 20 5 1150 1150 0.000 0.00 680.850 691.650 1.586 0.51
la14 20 5 1292 1292 0.000 748.200 755.400 0.962
la15 20 5 1207 1207 0.000 731.050 728.100 0.000

la16 10 10 945 945 0.000 739.300 743.500 0.568
la17 10 10 784 784 0.000 653.700 656.400 0.413
la18 10 10 848 848 0.000 0.11 705.200 708.000 0.397 0.44
la19 10 10 842 842 0.000 726.000 722.700 0.000
la20 10 10 902 907 0.554 746.400 752.500 0.817

la21 15 10 1046 1055 0.860 838.000 840.530 0.302
la22 15 10 927 927 0.000 791.600 812.800 2.678
la23 15 10 1032 1032 0.000 0.61 845.267 867.000 2.571 2.22
la24 15 10 935 945 1.070 807.000 814.000 0.867
la25 15 10 977 988 1.126 785.733 822.600 4.692

la26 20 10 1218 1218 0.000 986.600 999.700 1.328
la27 20 10 1235 1264 2.348 1016.200 1110.350 9.265
la28 20 10 1216 1225 0.740 1.36 975.650 1026.500 5.212 4.26
la29 20 10 1152 1195 3.733 914.350 962.550 5.272
la30 20 10 1355 1355 0.000 1009.850 1012.300 0.243

la31 30 10 1784 1784 0.000 1229.633 1301.370 5.834
la32 30 10 1850 1850 0.000 1340.433 1396.670 4.195
la33 30 10 1719 1719 0.000 0.00 1204.867 1265.970 5.071 3.77
la34 30 10 1721 1721 0.000 1291.433 1289.530 0.000
la35 30 10 1888 1888 0.000 1268.000 1315.500 3.746

la36 15 15 1268 1282 1.104 1122.867 1144.730 1.947
la37 15 15 1397 1422 1.790 1186.267 1199.130 1.084
la38 15 15 1196 1208 1.003 0.00 1048.467 1048.870 0.038 0.00
la39 15 15 1233 1256 1.865 1055.600 1084.130 2.703
la40 15 15 1222 1241 1.555 1064.800 1076.070 1.058

best mean flow time, of the Pareto optimal or near Pareto opti-
mal solution set as the reference. An absolute measure namely
the mean relative percentage increase of the extreme solutions
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Table 6. Relative performance of PASA, compared to the best upper bound reported in the literature for the benchmark job shop scheduling problem instances
of Adams et al., (1988), measured in terms of mean relative percentage increase (MRPI) in makespan and mean flow time

Bench n m Makespan Best makespan % Deviation MRPI in Mean flow Best mean flow time % Deviation MRPI in mean
mark (UB) obtained by PASA makespan time (UB) obtained by PASA flow time

abz5 10 10 1234 1234 0.000 0.00 1056.300 1056.300 0.000 0.00
abz6 10 10 943 943 0.000 780.800 780.800 0.000

abz7 20 15 656 682 3.963 589.850 591.150 0.220
abz8 20 15 646 700 8.359 6.68 594.950 601.950 1.177 1.37
abz9 20 15 662 713 7.704 595.950 612.200 2.727

Table 7. Relative performance of PASA, compared to the best upper bound reported in the literature for the benchmark job shop scheduling problem instances
of Applegate and Cook (1991), measured in terms of mean relative percentage increase (MRPI) in makespan and mean flow time

Bench n m Makespan Best makespan % Deviation MRPI in Mean flow Best mean flow time % Deviation MRPI in mean
mark (UB) obtained by PASA makespan time (UB) obtained by PASA flow time

orb01 10 10 1059 1059 0.000 810.600 802.300 0.000
orb02 10 10 888 889 0.113 734.500 738.800 0.585
orb03 10 10 1005 1022 1.692 812.800 814.100 0.160
orb04 10 10 1005 1024 1.891 794.900 817.100 2.793
orb05 10 10 887 889 0.225 0.50 697.800 699.800 0.287 0.46
orb06 10 10 1010 1013 0.297 815.500 816.800 0.159
orb07 10 10 397 397 0.000 331.600 333.300 0.513
orb08 10 10 899 906 0.779 695.400 695.800 0.058
orb09 10 10 934 934 0.000 745.000 736.100 0.000
orb10 10 10 944 944 0.000 789.600 786.200 0.000

Table 8. Relative performance of PASA, compared to the best upper bound reported in the literature for the benchmark job shop scheduling problem instances
of Storer et al., (1993), measured in terms of mean relative percentage increase (MRPI) in makespan and mean flow time

Bench n m Makespan Best makespan % Deviation MRPI in Mean flow Best mean flow time % Deviation MRPI in mean
mark (UB) obtained by PASA makespan time (UB) obtained by PASA flow time

swv01 20 10 1407 1473 4.691 983.700 1008.300 2.501
swv02 20 10 1475 1479 0.271 1053.300 1031.850 0.000
swv03 20 10 1398 1474 5.436 3.75 1045.050 1077.400 3.096 3.16
swv04 20 10 1450 1510 4.138 1054.450 1104.150 4.713
swv05 20 10 1424 1484 4.213 1037.950 1094.800 5.477
swv06 20 15 1591 1806 13.514 1417.300 1430.100 0.903
swv07 20 15 1447 1736 19.972 1317.250 1354.650 2.839
swv08 20 15 1641 1914 16.636 15.55 1438.100 1483.350 3.147 2.04
swv09 20 15 1605 1798 12.025 1400.550 1429.550 2.071
swv10 20 15 1632 1887 15.625 1438.150 1455.700 1.220
swv11 50 10 2983 3233 8.381 2011.800 2075.040 3.143
swv12 50 10 2972 3276 10.229 2029.500 2086.980 2.832
swv13 50 10 3104 3295 6.153 2091.360 2133.680 2.024
swv14 50 10 2968 3126 5.323 1948.460 2011.540 3.237
swv15 50 10 2885 3146 9.047 3.91 1949.460 2005.760 2.888 2.12
swv16 50 10 2924 2924 0.000 1904.060 1857.640 0.000
swv17 50 10 2794 2794 0.000 1805.400 1876.040 3.913
swv18 50 10 2852 2852 0.000 1824.060 1808.120 0.000
swv19 50 10 2843 2843 0.000 1866.580 1925.480 3.156
swv20 50 10 2823 2823 0.000 1813.560 1789.220 0.000

Table 9. Relative performance of PASA, compared to the best upper bound reported in the literature for the benchmark job shop scheduling problem instances
of Yamada and Nakano (1992), measured in terms of mean relative percentage increase (MRPI) in makespan and mean flow time

Bench n m Makespan Best makespan % Deviation MRPI in Mean flow Best mean flow time % Deviation MRPI in mean
mark (UB) obtained by PASA makespan time (UB) obtained by PASA flow time

yn1 20 20 846 920 8.747 827.150 840.950 1.668
yn2 20 20 870 956 9.885 10.64 867.400 881.450 1.620 2.34
yn3 20 20 840 948 12.857 827.050 851.750 2.987
yn4 20 20 920 1022 11.087 894.400 922.150 3.103
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of the obtained non-dominated front with respect to the best UB
reported in the literature is used as the second quality measure.

6 Computational study

The program coding is done using ‘C’ language and exe-
cuted on AMD Athlon XP 2000 processor. Since, SA algo-

Table 10. Net non-dominated front obtained by PASA for the benchmark
JSP instances proposed by Fisher and Thompson (1963)

FT06 FT10 FT20
(n = 6, m = 6) (n = 10, m = 10) (n = 20, m = 5)
mk mft mk mft mk mft

1 55 50.170 938 789.000 1165 778.150
2 57 49.500 939 786.900 1167 776.400
3 58 46.670 944 785.600 1173 747.850
4 60 45.000 945 785.300 1175 722.500
5 64 44.170 950 784.000 1176 722.250
6 951 783.800 1178 720.650
7 958 782.200 1180 708.600
8 964 778.600 1182 705.750
9 965 775.600 1190 705.200

10 971 767.700 1200 704.900
11 972 766.800 1202 704.200
12 975 766.300 1204 703.450
13 1010 759.700 1207 700.300
14 1024 758.200 1210 696.500
15 1035 756.300 1227 696.300
16 1048 755.700 1233 696.300
17 1056 754.000 1234 694.650
18 1068 753.000 1275 694.200
19 1112 750.500 1278 692.000
20 1281 691.450
21 1284 690.250
22 1289 685.550

LA01 LA02 LA03 LA04 LA05
(n = 10, m = 5) (n = 10, m = 5) (n = 10, m = 5) (n = 10, m = 5) (n = 10, m = 5)
mk mft mk mft mk mft mk mft mk mft

1 666 495.300 655 491.000 597 528.600 590 487.100 593 422.700
2 677 494.000 660 489.100 598 526.500 594 484.700 600 416.500
3 678 491.100 663 472.100 603 484.300 598 465.000 605 416.200
4 679 489.300 669 459.500 606 478.500 605 456.300 606 412.100
5 682 489.100 687 458.000 614 477.300 608 455.600 643 409.100
6 684 488.100 694 457.700 618 472.300 610 448.900 648 408.300
7 691 485.800 699 457.600 619 459.800 616 446.200 656 407.200
8 751 484.700 709 457.600 627 459.500 630 445.100
9 766 483.300 714 453.300 628 450.200 636 440.000

10 937 483.200 729 448.300 631 445.200 648 434.800
11 747 447.900 632 444.700 652 432.300
12 867 446.800 636 442.900 655 426.000
13 638 440.800 686 425.900
14 640 427.500
15 665 425.300
16 672 422.700
17 677 421.100
18 684 418.100
19 689 417.500

Table 11. Net non-dominated
front obtained by PASA
for the benchmark JSP in-
stances proposed by Lawrence
(1984)

rithm involves sampling of random numbers all experiments
have been conducted twice using the uniform random num-
bers u1, u2, u3, u4 . . . in the first run and (1.0 − u1), (1.0 −
u2), (1.0− u3), (1.0− u4) . . . in the second run, so that these
two sets of uniform random numbers are negatively correlated.
The non-dominated solutions obtained from the two runs are
combined to form the combined front. The combined front
is updated to yield the net non-dominated front. Updating
refers to deletion of dominated solutions within the combined
front.

The proposed PASA algorithm is compared with the ex-
isting algorithms namely VR algorithm and modified MOGLS
algorithm. First, the non-dominated solutions generated by the
PASA algorithm for a set of benchmark flow shop scheduling
problems of Taillard [26] are compared with the results pre-
sented by Varadharajan (2003, personal communication) and
the results obtained using the modified MOGLS algorithm. The
results of comparison in terms of the average NFCR is pre-
sented in Table 3. It indicates that the modified MOGLS and
PASA perform better than VR algorithm. Therefore, the per-
formance of PASA for solving JSPs is compared with the modi-
fied MOGLS algorithm. Eighty-two benchmark JSP instances
provided by OR-library (www.mscmga.ms.ic.ac.uk) under vari-
ous classes are solved using the PASA and the modified MOGLS
algorithms and the results are compared. The average NFCR is
found to be 1.0 for all JSPs except the instance FT06. The supe-
rior performance of the PASA can be attributed to its acceptance
mechanism.

The extreme solutions obtained by the PASA are pre-
sented and the results are then compared with the correspond-
ing upper bound reported in the literature. Different authors
for different problems reported the best UB for the makespan
(see http://www.uni-weimar.de/∼henning3). The best UB for
the mean flow time is computed from the total flow time re-
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Table 12. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Lawrence (1984)

LA06 LA07 LA08 LA09 LA10 LA11 LA12 LA13 LA14 LA15
(n = 15, m = 5) (n = 15, m = 5) (n = 15, m = 5) (n = 15, m = 5) (n = 15, m = 5) (n = 20, m = 5) (n = 20, m = 5) (n = 20, m = 5) (n = 20, m = 5) (n = 20, m = 5)
mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft

1 926 591.200 890 564.930 863 571.800 951 620.07 958 608.4 1222 736.700 1039 620.300 1150 722.100 1292 756.3 1207 750.650
2 961 588.730 891 561.730 865 570.730 966 617.47 965 607.13 1229 736.450 1041 616.900 1159 714.400 1321 755.4 1211 747.900
3 984 585.070 892 561.730 866 569.600 968 617.27 984 604.67 1249 734.150 1063 616.800 1172 711.750 1212 743.050
4 989 584.530 895 559.600 868 568.730 972 612.67 985 598.13 1251 731.050 1070 616.500 1176 705.600 1221 739.850
5 1067 583.270 904 557.270 869 565.800 975 609.87 1042 592.2 1309 730.950 1072 615.900 1203 703.300 1228 738.200
6 1086 582.400 905 555.870 870 564.200 1044 591.47 1310 729.050 1081 610.100 1215 703.000 1251 737.850
7 906 552.600 871 563.270 1050 588.8 1318 723.800 1112 607.450 1219 701.300 1252 734.550
8 968 550.330 878 562.270 1053 588.07 1138 606.200 1230 699.750 1257 733.300
9 1038 546.470 883 552.930 1160 605.250 1247 698.300 1279 732.950

10 1106 542.800 887 549.470 1258 697.400 1283 732.650
11 894 547.330 1266 696.850 1307 730.050
12 900 544.470 1299 696.400 1336 728.100
13 908 543.400 1309 691.650
14 909 543.200
15 910 542.730
16 913 538.730
17 940 533.870

Table 13. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Lawrence (1984)

LA16 LA17 LA108 LA19 LA20 LA21 LA22 LA23 LA24 LA25
(n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 15, m = 10) (n = 15, m = 10) (n = 15, m = 10) (n = 15, m = 10) (n = 15, m = 10)
mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft

1 945 863.500 784 734.200 848 762.200 842 752.700 907 798.000 1055 920.730 927 852.530 1032 877.930 945 876.130 988 900.470
2 946 825.300 785 724.500 853 751.300 849 744.600 911 773.100 1056 908.870 930 846.400 1038 876.070 951 842.000 990 895.330
3 967 823.200 786 722.500 857 748.800 850 731.900 912 772.600 1058 908.000 932 844.930 1045 870.600 952 828.870 992 890.530
4 975 806.300 787 715.000 861 728.500 856 722.700 914 770.000 1060 903.730 946 844.870 1051 870.270 954 827.930 994 879.730
5 979 806.200 790 714.600 871 726.400 915 758.500 1062 897.870 947 839.000 1052 869.930 958 817.930 996 853.800
6 980 801.600 797 703.000 886 715.400 945 757.500 1064 891.270 953 837.800 1053 867.000 964 815.470 1000 847.330
7 981 773.800 798 690.900 954 713.000 946 752.500 1065 890.200 958 837.670 967 814.000 1001 843.070
8 984 763.300 802 689.500 967 711.200 1070 886.800 966 832.200 1003 839.270
9 995 762.500 808 689.200 1007 708.000 1071 885.600 995 831.270 1005 837.070

10 996 755.200 810 679.700 1120 880.870 1020 825.070 1011 834.270
11 998 749.500 831 677.800 1126 880.130 1024 824.130 1023 824.670
12 1004 748.900 835 675.100 1137 878.330 1031 820.200 1029 824.130
13 1024 748.500 843 666.700 1140 877.670 1041 814.330 1030 823.930
14 1028 748.400 865 660.900 1146 870.330 1047 812.800 1050 823.730
15 1043 746.300 1040 659.200 1147 869.200 1053 822.600
16 1047 743.500 1069 656.400 1148 869.130
17 1152 866.070
18 1156 863.670
19 1179 850.930
20 1192 846.730
21 1213 841.400
22 1314 840.530

Table 14. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Lawrence (1984)

LA26 LA27 LA28 LA29 LA30 LA31 LA32 LA33 LA34 LA35
(n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 15, m = 10) (n = 15, m = 10) (n = 15, m = 10) (n = 15, m = 10) (n = 15, m = 10)
mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft

1 1218 1077.100 1264 1110.750 1225 1077.500 1195 1049.100 1355 1063.900 1784 1301.370 1850 1454.070 1719 1319.470 1721 1388.830 1888 1345.130
2 1220 1073.400 1277 1108.000 1227 1076.100 1196 1041.750 1357 1063.350 1852 1453.370 1721 1311.300 1724 1384.400 1919 1344.030
3 1221 1069.550 1280 1099.850 1236 1069.850 1202 1038.950 1359 1053.550 1855 1453.330 1725 1295.870 1725 1384.030 1922 1341.570
4 1228 1069.550 1281 1097.500 1240 1067.800 1208 1012.550 1360 1052.500 1856 1444.030 1737 1289.730 1729 1380.470 1924 1341.400
5 1232 1068.700 1282 1094.050 1241 1059.300 1210 1011.800 1361 1043.900 1859 1440.800 1749 1289.200 1731 1373.400 1926 1340.600
6 1233 1067.950 1292 1093.450 1247 1059.000 1226 1008.000 1367 1043.300 1863 1423.930 1753 1277.300 1733 1373.230 1942 1338.530
7 1234 1066.250 1293 1072.700 1248 1058.900 1228 1007.250 1369 1028.450 1876 1422.300 1754 1273.670 1735 1372.130 1973 1336.230
8 1239 1065.800 1299 1067.300 1251 1051.400 1278 1001.100 1370 1019.950 1881 1417.470 1761 1271.030 1748 1371.200 1985 1315.500
9 1240 1065.450 1370 1066.650 1252 1048.450 1300 991.350 1403 1019.250 1892 1413.370 1772 1270.200 1749 1370.400

10 1242 1060.400 1378 1061.350 1260 1041.400 1323 990.950 1421 1019.050 1896 1409.930 1830 1268.000 1750 1364.370
11 1246 1057.500 1314 1037.850 1330 987.100 1436 1012.300 1908 1399.570 1832 1267.630 1755 1339.930
12 1248 1049.750 1326 1036.800 1333 974.000 1928 1399.530 1836 1265.970 1764 1336.770
13 1250 1046.350 1330 1035.050 1375 973.750 1976 1397.930 1796 1320.700
14 1254 1030.400 1339 1032.100 1379 966.050 1987 1396.670 1830 1320.430
15 1272 1029.700 1357 1029.950 1406 964.250 1851 1319.400
16 1314 1025.150 1360 1026.500 1438 963.200 1853 1318.670
17 1318 1024.250 1468 962.650 1892 1317.200
18 1325 1011.700 1472 962.550 2023 1310.930
19 1328 1008.600 2112 1307.600
20 1361 1006.300 2120 1289.530
21 1394 999.700
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Table 15. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Lawrence (1984)

LA36 LA37 LA38 LA39 LA40 ABZ5 ABZ6 ABZ7 ABZ8 ABZ9
(n = 15, m = 15) (n = 15, m = 15) (n = 15, m = 15) (n = 15, m = 15) (n = 15, m = 15) (n = 10, m = 10) (n = 10, m = 10) (n = 20, m = 15) (n = 20, m = 15) (n = 20, m = 15)
mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft

1 1282 1224.270 1422 1272.130 1208 1086.800 1256 1165.600 1241 1110.270 1234 1094.900 943 833.3 682 630.7 700 649.650 713 636.450
2 1283 1202.270 1426 1268.070 1213 1085.530 1257 1165.270 1243 1109.670 1239 1081.100 945 827.2 686 630.45 701 649.550 717 626.850
3 1292 1180.930 1427 1266.600 1214 1082.470 1258 1148.330 1246 1104.330 1242 1062.800 947 822.5 689 621.75 702 649.400 722 625.600
4 1318 1158.870 1439 1261.000 1224 1076.930 1259 1123.330 1249 1104.200 1344 1061.100 950 821.6 693 620.6 706 643.750 725 625.100
5 1321 1157.070 1444 1257.670 1243 1071.670 1264 1118.400 1251 1093.530 1376 1060.900 954 817.6 695 616.8 711 643.150 729 624.050
6 1324 1155.330 1446 1246.870 1246 1061.600 1273 1108.930 1255 1083.600 1386 1060.800 964 811.9 703 612.85 712 637.650 733 623.950
7 1326 1153.670 1447 1240.530 1259 1058.000 1280 1102.200 1303 1076.070 1444 1056.300 971 808 704 611.25 716 634.700 740 622.700
8 1363 1152.130 1453 1239.530 1286 1054.530 1331 1084.130 976 806 707 609.9 717 633.150 743 622.150
9 1370 1151.670 1454 1235.530 1305 1054.130 979 803.4 708 609.15 718 628.600 746 620.900

10 1385 1144.730 1456 1233.730 1306 1052.530 982 803.4 709 608.55 720 627.050 757 615.050
11 1464 1230.270 1307 1049.800 985 787 723 596.25 723 623.750 777 612.200
12 1466 1223.930 1310 1049.000 1001 786.2 725 591.75 725 622.550
13 1470 1210.070 1389 1048.930 1053 783.6 740 591.15 732 606.050
14 1483 1209.530 1391 1048.870 1058 780.8 735 605.900
15 1492 1203.470 760 605.500
16 1495 1199.130 762 601.950

Table 16. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Applegate and Cook (1991)

ORB01 ORB02 ORB03 ORB04 ORB05 ORB06 ORB07 ORB08 ORB09 ORB10
(n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10) (n = 10, m = 10)
mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft mk mft

1 1059 824.7 889 789.600 1022 888.900 1024 970.800 889 781.900 1013 839.800 397 351.800 906 825.700 934 799.900 944 803.400
2 1072 806 891 780.800 1023 884.400 1025 887.400 890 768.000 1016 834.500 398 346.800 911 745.400 937 797.400 951 787.700
3 1095 804.7 903 768.500 1026 872.100 1031 873.700 891 744.700 1021 831.600 399 343.400 913 732.700 939 795.800 982 786.200
4 1211 802.3 911 765.800 1029 868.500 1032 866.900 896 738.500 1034 828.800 401 340.400 921 731.400 943 778.400
5 925 762.300 1036 868.500 1053 866.000 898 734.900 1046 825.100 402 339.800 922 731.000 952 746.300
6 926 750.800 1038 856.200 1057 860.400 899 731.300 1053 820.600 408 336.600 923 724.000 975 746.100
7 933 745.500 1041 814.100 1060 841.700 904 726.500 1057 820.500 411 333.300 937 702.900 978 743.200
8 965 742.600 1065 832.300 905 722.800 1074 816.800 947 701.600 1056 741.800
9 971 741.700 1066 823.400 907 722.100 988 695.800 1059 741.100

10 986 741.500 1082 822.500 908 718.700 1078 738.200
11 1056 740.600 1086 819.300 914 713.400 1082 738.000
12 1084 738.800 1197 817.100 921 709.400 1086 736.100
13 932 703.000
14 942 702.700
15 953 702.000
16 955 701.400
17 976 700.800
18 978 699.800

Table 17. Net non-dominated front obtained by PASA for the benchmark
JSP instances proposed by Yamada and Nakano (1992).

YN01 YN02 YN03 YN04
(n = 20, m = 20) (n = 20, m = 20) (n = 20, m = 20) (n = 20, m = 20)

mk mft (n = 20, m = 10) (n = 20, m = 10) (n = 20, m = 10)

1 920 871.550 956 903.100 948 878.250 1022 922.950
2 922 861.800 960 901.800 949 875.100 1135 922.150
3 923 848.700 962 894.750 950 874.450
4 958 847.600 981 893.350 954 872.250
5 966 846.500 984 889.350 961 863.450
6 969 844.050 991 887.850 963 861.700
7 976 842.400 992 887.700 983 858.150
8 988 842.350 1001 887.400 993 855.350
9 1018 840.950 1006 885.400 995 855.300

10 1009 881.450 1009 854.200
11 1027 851.750

ported by Henning [45]. The mean relative percentage increase
(MRPI) in makespan and mean flow time yielded by PASA
with respect to the upper bound is presented in Tables 4 to

9. It is observed that the extreme solutions of non-dominated
fronts generated by PASA are very close to extreme solutions
of the corresponding Pareto front. Net nominated fronts ob-
tained for different problem size are presented in Tables 10
to 20.

7 Summary

The problem of job shop scheduling is solved with the objec-
tives of minimizing the makespan and the mean flow time of
jobs and presented a multi-objective simulated annealing algo-
rithm called Pareto archived simulated annealing (PASA). The
proposed algorithm made use of both Pareto dominance and
a simple aggregating function to accept the candidate solution
among the neighbourhood set of solutions generated by the
segment random insertion (SRI) neighbourhood structure. An
archive is created, maintained and updated during successive it-
erations to preserve non-dominated solutions identified during
the search. Two simple quality measures namely, net front con-
tribution ratio and mean relative percent increase are used to
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Table 18. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Storer et al., (1993)

SWV01 SWV02 SWV03 SWV04 SWV05
(n=20, m=10) (n=20, m=10) (n=20, m=10) (n=20, m=10) (n=20, m=10)

mk mft (n = 20, m = 10) (n = 20, m = 10) (n = 20, m = 10) (n = 20, m = 10)

1 1473 1101.350 1479 1124.050 1474 1184.550 1510 1173.750 1484 1139.550
2 1474 1053.150 1489 1120.150 1479 1157.700 1516 1141.300 1503 1135.550
3 1483 1043.850 1490 1115.350 1480 1151.150 1524 1131.600 1513 1134.350
4 1488 1042.650 1491 1063.500 1483 1150.550 1533 1126.150 1520 1131.800
5 1489 1040.600 1494 1052.900 1484 1143.200 1539 1122.550 1521 1131.200
6 1505 1039.800 1497 1052.500 1490 1142.900 1554 1121.800 1535 1124.650
7 1511 1038.250 1548 1046.800 1494 1135.700 1557 1121.350 1536 1119.200
8 1516 1034.250 1559 1042.950 1498 1133.850 1568 1121.300 1539 1118.900
9 1518 1025.200 1579 1035.400 1506 1117.950 1577 1120.400 1553 1118.750

10 1545 1018.950 1583 1031.850 1512 1101.150 1593 1117.350 1562 1117.100
11 1560 1012.600 1539 1100.100 1596 1112.650 1563 1115.200
12 1567 1008.750 1550 1099.750 1599 1104.150 1565 1114.100
13 1599 1008.450 1556 1099.400 1585 1100.300
14 1622 1008.300 1561 1088.900 1595 1097.300
15 1591 1088.550 1599 1096.200
16 1597 1085.000 1601 1095.150
17 1599 1084.900 1711 1094.800
18 1604 1082.550
19 1608 1080.500
20 1614 1077.400

Table 19. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Storer et al., (1993)

SWV06 SWV06 SWV07 SWV08 SWV09 SWV10 SWV10
(n = 20, m = 15) (n = 20, m = 15) (n = 20, m = 15) (n = 20, m = 15) (n = 20, m = 15) (n = 20, m = 15) (n = 20, m = 15)
mk mft mk mft mk mft mk mft mk mft mk mft mk mft

1 1806 1584.000 1916 1466.500 1736 1549.500 1914 1573.850 1798 1639.550 1887 1693.950 2027 1504.900
2 1808 1581.650 1927 1466.500 1739 1537.950 1957 1560.650 1806 1597.650 1895 1639.850 2030 1500.750
3 1810 1577.950 1934 1465.700 1740 1512.450 1958 1551.350 1809 1590.600 1899 1613.700 2044 1494.500
4 1812 1523.750 1936 1465.050 1741 1512.100 1971 1551.200 1810 1589.200 1913 1609.400 2083 1492.450
5 1816 1523.650 1942 1460.850 1742 1497.050 1974 1545.200 1813 1560.150 1927 1606.750 2110 1462.200
6 1824 1521.450 1951 1459.650 1746 1474.400 1978 1544.800 1815 1535.650 1933 1593.300 2113 1459.150
7 1826 1521.150 1960 1453.950 1760 1473.100 1979 1538.150 1822 1478.900 1939 1592.750 2116 1455.700
8 1827 1519.250 1996 1453.200 1772 1449.000 1983 1516.600 1828 1476.500 1944 1591.700
9 1828 1518.200 1998 1452.650 1779 1436.200 1985 1503.500 1837 1475.100 1945 1587.250

10 1839 1517.100 2052 1451.750 1800 1421.200 1986 1494.350 1866 1456.700 1946 1586.400
11 1853 1514.700 2059 1438.950 1835 1420.750 1991 1491.500 1867 1448.850 1949 1585.650
12 1855 1511.750 2069 1430.300 1839 1412.550 2040 1485.000 1886 1448.600 1952 1585.400
13 1869 1509.800 2108 1430.150 1841 1398.000 2041 1483.350 1906 1440.250 1953 1575.250
14 1870 1509.700 2133 1430.100 1855 1371.650 1916 1434.100 1969 1537.350
15 1877 1487.100 1870 1356.500 2029 1433.100 1971 1536.600
16 1882 1486.850 1892 1354.650 2031 1432.700 1974 1536.100
17 1887 1485.750 2033 1429.550 1975 1531.400
18 1907 1485.450 1976 1530.300
19 1912 1484.600 1994 1512.850
20 1914 1470.450 2025 1512.850

compare the quality of non-dominated fronts obtained by dif-
ferent algorithms and the effectiveness of the Pareto search by
PASA respectively. It has been found that the performance of
PASA is better compared to other algorithms considered in this
paper. The superior performance of the PASA can be attributed
to its acceptance mechanism used to accept the candidate solu-
tion. The non-dominated set of solution generated is quiet useful

to any decision maker. From the available set of non-dominated
solutions, the decision maker can choose the final solution that
satisfy the required objectives based on the conditions existing
in the shop floor at the time of decision making. The proposed
PASA can handle any number of objectives because the non-
dominated sorting and weight vector can be extended to any
number of objectives.
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Table 20. Net non-dominated front obtained by PASA for the benchmark JSP instances proposed by Storer et al., (1993)

SWV11 SWV12 SWV13 SWV14 SWV15 SWV16 SWV17 SWV18 SWV19 SWV20
(n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10) (n = 50, m = 10)
mk mft (n = 20, m = 10) (n = 20, m = 10) (n = 20, m = 10) (n = 20, m = 10) mk mft mk mft mk mft mk mft mk mft

1 3233 2200.260 3276 2163.880 3295 2208.860 3126 2140.680 3146 2060.680 2924 1964.560 2794 1915.920 2852 1890.240 2843 2034.100 2823 1888.540
2 3241 2162.760 3280 2140.320 3296 2207.940 3136 2131.940 3169 2060.160 2931 1961.400 2797 1908.500 2854 1889.540 2849 2021.740 2824 1885.300
3 3246 2158.640 3294 2137.480 3315 2202.260 3138 2130.780 3191 2043.060 2935 1961.320 2810 1901.360 2879 1888.420 2855 2010.520 2825 1880.420
4 3249 2154.100 3299 2129.040 3326 2197.960 3143 2125.360 3202 2015.200 2939 1961.000 2819 1899.200 3342 1844.440 2879 2010.320 2827 1875.040
5 3256 2153.320 3303 2119.700 3328 2197.140 3146 2110.460 3205 2009.220 2942 1960.460 2827 1897.560 3344 1839.540 2885 2005.880 2828 1870.660
6 3260 2138.160 3341 2102.940 3329 2187.100 3147 2091.380 3206 2006.380 2944 1956.480 2834 1887.340 3345 1837.620 2892 2004.300 2829 1861.120
7 3266 2123.060 3422 2099.120 3335 2179.640 3157 2071.680 3212 2005.760 2946 1952.960 2853 1879.060 3346 1823.080 2894 2003.240 2872 1861.040
8 3268 2117.760 3424 2091.500 3354 2179.220 3163 2070.600 3026 1950.920 2858 1876.040 3353 1808.120 2896 2002.640 2878 1853.140
9 3303 2093.920 3437 2086.980 3355 2171.700 3170 2062.800 3056 1949.500 2902 1997.000 2909 1852.860

10 3305 2093.540 3357 2165.980 3176 2057.340 3106 1949.080 2913 1996.720 3084 1849.960
11 3316 2079.620 3362 2165.120 3178 2057.180 3119 1948.100 2960 1990.420 3111 1829.340
12 3334 2078.500 3372 2138.240 3196 2020.040 3452 1918.660 2993 1987.980 3117 1813.440
13 3341 2076.280 3382 2136.300 3261 2020.020 3453 1891.260 3719 1964.340 3143 1789.220
14 3373 2075.040 3384 2133.680 3281 2013.220 3455 1890.680 3730 1960.120
15 3283 2011.540 3475 1889.640 3733 1957.780
16 3478 1887.760 3741 1955.640
17 3504 1883.580 3784 1950.420
18 3517 1857.640 3787 1925.480
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