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Abstract In this paper, improved Shewhart control charts based
on hybrid adaptive and run rule schemes are introduced to
enhance the statistical performances of the traditional static
scheme, designed with consideration given to the fixed values
of sample size, the width of the control limits and the sam-
pling frequency. The proposed hybrid adaptive schemes consider
both variable sampling interval and variable sample size com-
bined with run rules. The objective of this research is to develop
a statistical comparison between adaptive schemes, charts with
run rules and hybrid adaptive schemes with run rules to help
decision-makers in the selection of the best performing chart for
an expected value of shift in the mean of a controlled parame-
ter. An extensive set of numerical results is presented to test the
effectiveness of the proposed models in detecting small and mod-
erate shifts in the process mean. The optimal statistical designs
of the charts are obtained through a heuristic algorithm, properly
modified to cope with the problem.

Keywords Adaptive schemes - Average time to signal -
Control charts - Optimisation - Run rules

1 Introduction

Nowadays, strong competition among industries, due to a global
market that considers customer satisfaction as a primary objec-
tive, requires high-quality and efficient products to be manu-
factured. Statistical process control (SPC) is a key approach to
achieve rational management of manufacturing processes that
allows final products, characterised by high quality, to be pro-
duced. Shewhart control charts are one of the most powerful
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tools in SPC; they are easy to implement and allow the sta-
tistical control state of a critical parameter in a manufacturing
process to be checked and plotted. These control charts are de-
signed by selecting the sample size n, the width of control limits
k and sampling frequency ¢. A statistical limit of these control
charts is represented by their poor sensitivity in the detection
of out-of-control conditions when small shifts in the mean of
the controlled parameters occur. A possible way to improve the
statistical behaviour of the chart could be to restrict the con-
trol interval, but this solution results in an excessive amount of
false alarms, which causes too large a number of operator inter-
ventions. For this reason, many authors have proposed models
of Shewhart control charts that modify the original scheme and
allow the statistical properties of these charts to be improved.
Traditionally, two main approaches have been investigated by the
researchers: the adaptive schemes, which permit the sample size
and sampling interval to be changed, and the run rules — that is,
the introduction of warning zones within the control interval of
the chart, which calls for an action not only when a point falls
outside the control limits, but also when a sequence of points
falling within a warning zone verify a particular rule.

The former approach has been widely investigated in litera-
ture for different kinds of control charts; Tagaras [1] presented
a complete survey of the developments in the design of several
adaptive charts; variable sampling interval (VSI) control charts
have been investigated by Reynolds et al. [2], Runger and Pig-
natiello [3], Runger and Montgomery [4], Reynolds [5]; the eco-
nomic design of VSI control charts has been proposed by Das
et al. [6], who compared the costs of the system when VSI and
traditional control charts are implemented. The obtained results
show that the cost savings obtained through a VSI approach with
respect to the traditional scheme decreases when large shifts in
the mean of the controlled parameter are considered.

Variable sample size control charts schemes (VSS) have been
proposed by Prabhu et al. [7], who considered several shift
sizes and measured their effectiveness through an Avaerage Run
Length (ARL) evaluation. Costa [8] investigated the efficiency
of the VSS charts through a comparison with several other con-
trol chart schemes, including an Exponentially Weighted Moving



Average (EWMA) chart, a Cumulative Sum (CUSUM) control
chart and a standard X chart with run rules. Zimmer et al. [9]
evaluated the effectiveness of three-state adaptive schemes and
demonstrated that the simpler two-state scheme works as well.

Combined adaptive control charts (VSSI) with variable sam-
ple size and variable sampling interval were also developed and
tested. Prabhu et al. [10] proposed several examples to demon-
strate the improvements obtained through the VSSI scheme; they
also determined optimal values for the maximum sample size
and studied a case from an industrial process to test their model.
Costa [11] compared the performances of the VSSI adaptive
scheme with Shewhart charts with and without run rules, and
combined Shewhart-CUSUM and EWMA schemes when the
assignable cause does not occur at the beginning of the pro-
cess but during the production time. The parameter used for the
comparison is the adjusted average time to signal, (AATS) and
the occurrence of a shift in the mean of the controlled parame-
ter is modelled as an exponentially distributed random variable.
The economic statistical design of VSSI X control charts was
developed and compared to a traditional Shewhart scheme by
Prabhu et al. [12]. The charts have been compared in terms of
cost of operation and average time to signal.

Control charts with run rules allow the statistical perform-
ance of the X chart to be improved through a set of waming
limits acting within the control interval of the chart itself [13].
The width of the warning zones can be determined with re-
spect to a statistical or an economic objective. Parkhideh and
Parkhideh [14] adapted the economic design of a Shewhart X
chart to the improved scheme with run rules, (Western Elec-
tric rules C1, C2 and C3) and showed how the introduction of
the warning zones allows a reduction in the expected costs to
be reached. Parkhideh and Parkhideh [15] analysed the statisti-
cal performances of a flexible zone control chart for individual
measurements with respect to a traditional Shewhart X chart;
the optimisation of the statistical performances was obtained
for both rules C1 and C2, (Cy2), as well as rules C1, C2 and
(3, (Ci23).

Adaptive control charts with run rules were developed to
take into account the past history of the process, in order to im-
prove the chart capability in detecting out-of-control conditions.
Run rules were added by Reynolds et al. [2] to a VSI adaptive
scheme to manage the presence of out-of-control conditions in
the process; the selected run rules considered r’ out of r sample
means falling within the warning zones of the chart or a point
falling outside the control limits as out-of-control signals: they
developed a set of examples where a VSI chart with run rules
considering r’ =2 out of r = 3 (called rule 1) and ' =5 out of
r =5 {five consecutive points, called rule 2) was compared with
a traditional Shewhart chart with the same run rules. They com-
pared the two charts on the basis of the AATS, (the in-control
AATS = ATS(0) should be the same for the different charts),
which was evaluated through the Markov chain approach pro-
posed by Champ and Woodall [16]. A similar approach was
followed by Reynolds [S] to improve the statistical performance
of a variable sampling interval control chart with sampling at
fixed times (VSIFT).
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Run rules were also introduced as switching rules in the se-
lection of the sampling interval by Amin and Letsinger [17] and
Amin and Hemashina [18]. Here, the length of the sampling in-
terval is a function of the last r plotted points on the chart: if r/
out of r last plotted sample means fall within the warning zones,
the sampling interval is reduced to #;; otherwise, it is maintained
such that 5 > ¢;. In this way, the number of switches between the
different sampling intervals is reduced.

Cui and Reynolds [19] developed VSI X control charts where
run rules work on both the signalling and switching procedure
from one sampling interval to another. In this model, sequences
of consecutive points are considered to decide if the process is
in an out-of-control condition or which sampling interval must
be selected to plot the following point in the chart. The results
show how the improved performance in AATS with respect to
a static chart is due to the run rules when small shifts are consid-
ered and due to the VSI scheme for larger shifts. The economic
design of the Cui and Reynolds [19] X chart was performed by
Das et al. [6].

Even if several papers dealing with the statistical proper-
ties of a variable sampling interval X chart with run rules were
investigated in literature, no research was devoted to the rule
application to variable sample size (VSS) and combined vari-
able sample size and interval (VSSI) schemes. Tagaras [1] does
not mention any paper dealing with such models. For this rea-
son, in this paper, the statistical properties of VSS and VSSI X
charts with run rules are investigated and compared with other
existing models. Here, the rules are introduced only as signalling
tools of an out-of-control condition; the selection of sampling
intervals and sample sizes depends only on the position of the
last plotted point on the chart. The AATS, when the process is
out of control, is the statistical performance parameter used to
compare the ability of the proposed schemes in the detection of
the process shift from p = g0 to = p1. The optimal statisti-
cal designs of the chart have been determined through a heuristic
algorithm; namely, simulated annealing, operating on a func-
tion which depends on the AATS with process in “in-control”
and “out-of-control” conditions and considering a specific set of
constraints acting 1o make possible the comparison between the
different chart schemes.

The rest of the paper is organised as follows: in the next sec-
tion, the formulation of the proposed charts without and with
run rules is developed; then, the optimising heuristic proced-
ure is presented; finally, the obtained results are reported and
discussed.

2 Description of the developed charts

The developed adaptive X control charts have been investigated
by assuming as a statistical performance index the adjusted aver-
age time to signal (AATS). This performance measure repre-
sents the expected time interval between the occurrence of an
assignable cause and the time the charts signal an out-of-control
condition. The AATS is computed with respect to the steady
state performance of the chart, i.e. assuming a process evolution
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characterised by a start in the *“in-control” condition and a suc-
cessive shift occurring at some random time in the future. The
shift in the mean po of the controlled parameter is expressed
as a multiple of the population standard deviation o; that is, as-
suming w1 = o+ 8o. The different adaptive schemes have been
statistically compared through the evaluation of their AATS cor-
responding to different values of the shift under the following
constraints: equal in-control ATS(0), expected sample size ng
and sampling interval tg. The following notation is adopted in the
rest of the paper:

ny, ny: smaller and larger sample size;

t1, ty: smaller and larger sampling interval;

ng: expected sample size when the process is “in-control”;

to: expected sampling interval when the process is “in-control”;

k, w, I: width of control and threshold limits;

wo: mean of the controlled parameter when the process is “in-
control”;

w1: mean of the controlied parameter when the process is “out-
of-control”;

o standard deviation of the controlled parameter;

§: shift in the mean of the controlled parameter;

ARL(0): chart average run length when the process is “in-
control”, i.e. the average number of samples to be taken
between two successive false alarms;

ARL(8): chart average run length when the process is “out-of-
control”, i.e. average number of samples to be taken between
the occurrence of the special cause and the signal;

ATS(0): chart average time to signal when the process is “in-
control”, i.e. average elapsed time between two successive
false alarms;

AATS(5): chart adjusted average time to signal when the process
is “out-of-control”, i.e. average elapsed time between the oc-
currence of the special cause and the signal,

2.1 Adaptive charts without run rules

The classical two-state adaptive charts have been investigated in
this paper. The schemes have been developed by considering the
standardised mean:

)

The control limits of the standardised charts, denoted as the
upper control limit (UCL) and lower control limit (LCL) are po-
sitioned at £k apart from 0. The threshold limits are positioned
at +w apart from 0, where w < k (see Fig. 1).

In particular, for the adaptive sampling interval VSI scheme,
the following function was adopted:

n if—-k<Z<-—w

t=48n f-w<Z<w 2)
nh fw<Z<k

where f| represents the shorter sampling interval, and ¢ is the

larger sampling interval. The sample size is constant and equal
to ng.
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Fig. 1. The VSSI adaptive scheme without run rules

The adaptive sample size VSS scheme was formalised
through the following function:

n if—k<Z<-w
if—w<Z<uw 3)
n, ifw<Z<k

n=4{n

where n; is the smaller sample size and n; is the larger sample
size. The sampling interval is constant and equal to #g.

The combined adaptive sample size and interval VSSI
scheme was formulated considering the following expression:

nyty if —k<Z<-—w
nt=3n,tp f—w<Z<w 4
nyty fw<Z<k

The Markov chain approach proposed in Zimmer et al. [9] was
considered to evaluate the in-control and out-of-control ARLs,
ARL(0) and ARL(3), corresponding to the developed adaptive
schemes reported above:

ARL(0) = b' (1* QO)_I 1
ARL®) =b' (I-0%) "1 (5)

where § > 0. b'(1 x 2) represents the vector of initial probabil-
ities corresponding to steady-state performance, I(2 x 2) is the
identity matrix, and (2 x 2) is the state transition matrix of the
Markov chain. Therefore, Q% and Q? are the state transition ma-
trices for an in-control and out-of-control process, respectively.
Similarly, the in-control ATS is computed using the following
expression;

ATS(0) = b’ (1— QO)_] t 6)

¢’ is the vector of sampling intervals. For more details about the
evaluation of Eqs. 5 and 6, see Zimmer et al. [9]. The out-of-
control ATS(8) evaluated here considers a process that starts in
the in-control state and then shifts to the out-of-control condition
after a generic time interval; therefore, the steady-state perform-



ance of the chart must be considered, and the ATS(8) coincides
with the adjusted average time to signal AATS(S) [1, 3]:

AATS)=E()+E()-(ARL®) - 1) )

where E(Y) is the time elapsed between the occurrence of the
process shift and the next sample; E(#;) is the expected length
of sampling frequency when the process is in an out-of-control
condition. In this way, it is possible to determine the AATS(S)
through the following expression:

n\ ®w) —d(—w) n
5) o) —d(—k) 1o
(2) 2-(@(K) - P(w)) 't_l}
2 D(k) — D(—k) to
—to+{¥'}- - 017" (1) (8)

AATS(S) = [(

This equation coincides numerically with that proposed by Das
et al. [6] for the VSI chart when the special cause is assumed
to occur in the middle of a sampling interval, whose expected
length is equal to 7p/2.

2.2 Adaptive charts with run rules

Run rules are added to control charts to improve their statisti-
cal performance when small shifts in the mean of the controlled
parameter are expected. The rules have been implemented in
Shewhart control charts to detect possible shifts in the mean
of the controlled parameter. Rules considering both consecu-
tive and non-consecutive points have been developed by the re-
searchers. For traditional Shewhart control charts, run rules that
give an out-of-control signal when r of the last m plotted points
fall within the interval (a, b) were considered by Champ and
Woodall [16] and Parkhideh and Parkhideh [15]. They are usu-
ally denoted by T(r, m, a, b). Following the notation proposed in
Champ and Woodall [16], the following rules have been consid-
ered in this paper:

Cl ={T(1,1, —o0, —k), T(1, 1, k, c0)}
C2={12,3, -k, —w), I(2,3, w, k)}
C3={T4,5, —k, ~1),T4,5,1, k)} )]

where | < w < k are the threshold limits whose values are op-
timised with respect to the ATS. Rule C1 corresponds to the
out-of-control condition of the standard Shewhart chart; rules C2
and C3 consider short sequences of non-consecutive points to
signal a possible out-of-control condition. The rules can be com-
bined to improve the statistical properties of the chart.

The AATS(S) of Shewhart control charts with run rules can
be computed as ¢ - ARL(8), where ¢ is the length of the sampling
interval and the ARL(S) is computed assuming that the process
starts in the “in-control” condition, i.e. with a point falling in
the internal zone of the chart control interval. A Markov chain
approach based on the possible states of the process correspond-
ing to the position of plotted points was proposed by Champ and
Woodall [16] to compute the ARL ().
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The AATS(S) evaluation for adaptive charts with run rules
needs the formulation of a Markov chain approach as well. Cui
and Reynolds [19] and later, Das et al. [6], developed a Markov
chain model for VSI schemes when consecutive points are mon-
itored to select the sampling interval and to call for an out-
of-control condition. In this research, a proper Markov chain
model, based on the approach given by Artiles-Leon et al. [20],
is developed; this depends on the possibility of considering non-
consecutive points and varying the sample sizes. Due to these
two assumptions, each possible state of the process must consider
almost the last m plotted points and the corresponding selected
sample sizes. The implemented run rules operate only to signal
out-of-control conditions and not as a decision rule to select the
sample size and/or the sampling interval. To explain the adopted
Markov chain model, let us consider the adaptive VSSI scheme
with run rules C1, C2 and C3 (VSSI123) reported in Fig. 2.

The standardised chart control interval is divided by the
threshold limits into five warning zones: A(w, k), B(, w),
o(-11), C(—w, =), and D(—k, —w). A dual sample size and
sampling interval policy is adopted:

ny,ty if —k<Z<—I
nt={n,th if-I<Z<l (10)
nyty ifl<Z<k

In the proposed scheme, the threshold limit / and the control
limit k are used both for implementing the adaptive scheme and
the run rules, whereas the threshold limit w works only on run
rules. As an example, in Fig. 1, the points 7 and 9, falling within
the A(w, k) zone, signal for an out-of-control condition, in ac-
cordance with run rule C2. As threshold limit of the adaptive
scheme ! was selected instead of w to improve the statistical ef-
fects of the chart; this allows the selection of the couple (n2, f1)
to be extended to a wider portion of the control interval than with
w as adaptive policy threshold limit. The same limits for an adap-
tive scheme and run rules were selected in order to simplify the
chart interpretation and construction.

The developed Markov chain model requires the position
of the last m plotted points on the chart to list all of the pos-
sible states characterising the process. Considering the VSSI123

Z;
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Fig. 2. The hybrid VSSI adaptive scheme with run rules C1, C2 and C3
(VSSI123)
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scheme, the five mentioned warning zones and the last m =4
plotted points must be considered to determine the set of non-
absorbing states of the chain. By denoting a plotted point, i.e.
a standardised mean Z;, falling within a warning zone with the
corresponding zone identifier, (A, B, C, D, or 0O), the generic
state of the process can be represented with a four-letter vec-
tor [X X X X]. For example, four consecutive points falling
within zone O constitute a possible state denoted as [0 O O O];
similarly, in Fig. 1 points 1-4 correspond to [B A C O]. With
consideration of this notation, it is possible to determine the en-
tire set of non-absorbing states of the chain for the VSSI scheme
with run rules C1, C2 and C3, (C|23 scheme). Denoting as S
the complete space state, the total number of states |S]|, includ-
ing absorbing and non-absorbing ones, is equal to N", where N
is the number of warning zones and r the length of the sequence
of consecutive points. For the VSSI123 scheme, |S| = 54 = 625.
The absorbing states are those including one point falling out of
control limits (rule C1), two out of three points falling within
zones A or D (rule C2), and four out of five points falling within
zones A and/or B or, alternatively, zones C and D (rule C3).
As an example, [A O A O] is an absorbing state with respect
to rule C2 and [A B A B] leads to absorption due to rule C3.
Once the state space dimension has been fixed, it is possible
to determine the state transition matrix P, whose dimension is
625 x 625. Each element of this matrix represents the probability
of transition from one state to another. Eliminating the absorb-
ing states from the state space, the cardinality of § is reduced
to |$*| = 423. As a consequence, the non-absorbing state tran-
sition matrix @ can be obtained from P by deleting the rows
and columns corresponding to absorbing states; therefore, Q has
dimension 423 x 423:

0000 0004 ... ... DCOD
0000 po  pa 0
0004 0 0 0

Q = rae . (11)
DCOD 0 0 0

The elements of this matrix equal to 0 correspond to non-
allowable one-step transitions ([OOQ0O] — [DCODY)), or to
transitions to absorbing conditions ((CCOC] — [COCC(], i.e.
four of the last five plotted points fall within zone C). The elem-
ents of matrix @ not equal to O correspond to the probability of
a point falling within a warning zone of the chart control inter-
val. This probability is a function of k, w and / when the process
works in an “in-control” condition and also of 8, n, ny, when
the process operates in an “out-of-control” condition. Therefore,
by denoting as Q° the “in-control” non-absorbing state transition
matrix, the expressions of the transition probabilities are:

P4 = k) — d(w)

Py =ow)— & ()

PH=2N)—® (-]

PL=0(-1)—P(-w)

P = d(—w) — B(—k) (12)

whereas, in the “out-of-control” condition, by denoting as Q‘S
the “out-of-control” non-absorbing state transition matrix, the
transition probabilities are evaluated through the following
expressions:

P = Pk —8/np) — P(w —8/m))

Ph = d(w—8/n;) — B —-8m7)

P =@ —8/ni) — B(—1— /)

pe = B(—1—8/n;) — B(—w—8./A;)

Pl = O(—w—8/n;) — P(—k — 8./n7) (13)

where § is connected to the entity of the shift in the mean of the
controlled parameter through the expression p| = g+ éo. The
values of n; (i = 1,2) to be introduced within the above expres-
sions depend on the position of the last plotted point on the chart.
If this point falls within zones A + B or C + D, i.e. considering
transitions from states characterised by A, B, C, or D as final
point, ny > n; must be considered; otherwise, when transition
probabilities from states characterised by a final point labelled
as O are evaluated, it must be selected such that n; = n,. The
consequence of this assumption is that two standardised shifts,
Ay =68,/ny and A; = §,/nz, must be defined. As stated before,
the comparison between the different charts’ statistical perfor-
mances is carried out assuming the same “in-control” ATS(0),
“in-control” expected sample size ng and sampling interval #,.
The evaluation of these quantities requires the definition of two
subsets of non-absorbing states §” and S” such that §' 4+ §" = S.
Subset S’ includes all of the states characterised by O as the final
point. A successive point to one of them is plotted considering
the lower sample size n| and the larger sampling interval r;. Sub-
set S” includes all of the states characterised by A, B, C, or D
as the final point: a successive point to one of them is plotted
considering the upper sample size n; and the shorter sampling
interval ¢;. Therefore, ng and fg are computed respectively as:

n0:ann1+27tkn2 (14)

jes’ keS”
to=Zﬂjt2+Zﬂkh (15)
jes’ keS”
where 7;, (i =1, ..., |S*]), are the steady-state probabilities with
an “in-control” process condition:
r=nxQ’
1™

Zm =1 (16)

The “in-control” ATS(0) is computed assuming that the process
starts in the “in-control” condition in the state [0 O O O]; as
a consequence, the average time to signal before a false alarm is
equal to the first element of the vector

(EDY =11-0°1 " x (T
ATS(0) = E(T)) (17)



The AATS(S) is computed in the same way as for simple adap-
tive schemes — by introducing the summations of the steady-state
probabilities with the process “in control” and, similarly to the
ATS(0) computation, referring to [0 O O O] as the initial state
of the Markov chain:

t t t t
AATS(S) = <32>an£+<51) T~
keS”

jes' fo
— 1o+ ATS(S)
ATS(8) = E(D} (18)

3 The optimisation procedure

The statistical designs of the charts were achieved by running
a heuristic algorithm; namely, simulated annealing (SA). The al-
gorithm was coded in FORTRAN and its structure refers to the
one proposed by Kirkpatrick [21]. The efficiency of the proposed
optimisation method in determining optimal designs for adap-
tive control charts was tested in a previous paper, Campisi et
al. [22], where a comparison with other numerical methods was
carried out to economically design both static and adaptive con-
trol charts. The SA algorithms operate through an analogy to sta-
tistical mechanics of condensed matter physics. They represent
an enhanced version of the traditional techniques of local opti-
misation or iterative improvement and allow the probability of
accepting poor local optimal solutions to be reduced. The latter
issue is possible since SA gives the possibility to probabilisti-
cally accepting “retrogressive” movements towards worse solu-
tions, thus allowing new possible optimal solutions to be found.

The variables needed to define the statistical design of the
chart are grouped within a design vector D, whose length de-
pends on the selected chart to be designed (see Table 1).

The objective function OBJ(D) corresponding to each se-
quence D was formulated assuming that a feasible design must
respect the constraints relative to in-control ATS(0), (ATS(0)
equal to an ATS(0)* properly selected by the decision-maker)
and on ng and #y. All of the compared charts must be charac-
terised by the same expected sample size and interval. Therefore,
the following function OBJ(D) was adopted:

JATS(0) — ATS(0)*) + AATS(S)

if |[ATS(0) — ATS(0)*| <e €€ (0.5;1)
10- (JATS(0) — ATS(0)*| + AATS(8))

if |[ATS(0) — ATS(0)*| > ¢

OBI(D) =

(19)

The constraints on ng and ty are respected by entire set of in-
vestigated solutions when the static and adaptive chart schemes
without rules are optimised. In fact, as shown in Table 1, some
variables of the problem are determined as a function of the
others assuming E(n) = ng and E(#) = t. For further details, see
Prabhu et al. [12] and Zimmer et al. [9]. When schemes with
run rules are adopted, the design optimisation is more compli-
cated, due to an higher number of variables and difficulty in
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Table 1. The sequences optimised by the SA to design the investigated
charts

Shewhart Simple D={nk,t}
Ciz D={nk w,t}
Ci23 D={nk w1t}
VSS Simple D ={ny, ny, k, 1t}
with n} < ny and
w = w(k, n, na) calculated
C12 (VSS12) D={ni,ny, k,w,t}
with ny < ny
Ci23 (VSS123) D={n,ny, k,w, it}
with ny < ny
VSI Simple D={nk 1,0}
with ) < #; and
w = w(k, i, 1) calculated
Ci2 (VSI12) D={nk w1, n}
with 1) < 2
Ci23 (VSI123) D= {nk,w,l t, 0}
with 1) < 8
VSSI Simple D ={n,ny, k, t1}

with n| < np and

ty < tr, w=wlk,ny,ny) and
t; calculated

D ={n,ny, k,w, 11, 1}
withny <npand ) <t
D={n,ny, k, w1 11,1}
withn) <nyand ty <t

Cip (VSSI12)

Ci3 (VSSI123)

explaining a set of equations corresponding to the selected con-
straints; therefore, the search of the optimal design is performed
by following three successive stages: first of all, a subset of D
including feasible control and threshold limits k', w’ and I’ is
determined within the space of solutions, which respects the fol-
lowing constraint:

[ARL(K', w', Iy — ATS(0)* /19| < &' & €(0;0.5) 20)
where ATS(0)* and 1 are fixed a priori. Once a candidate triple
of limits has been identified, the heuristic search is focused on
the sampling intervals #; and #; (VSI and VSSI schemes); in the
whole set of possible intervals, a candidate couple is selected,
which satisfies

[ATSO)[K', w', I, 1}, 5] — ATSO*| <" €" €(0;0.5) 21

Finally, the sample sizes n; and n (VSS and VSSI schemes) are
investigated in order to verify the constraint on expected sample
size:

Z mik', w', n] + Z (k' w', by —ng| < "
jes’ keS”
" €(0;0.5) (22)

where ng is fixed a priori. At the end of the three-stage procedure,
a feasible design of the chart respecting all of the constraints is
assumed as an actual sequence D of the simulated annealing and
the search is continued by perturbing D and trying to determine
better feasible solutions.
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The SA investigates the space of allowable solutions through
a neighbourhood search scheme, which modifies the actual se-
quence D to the perturbed D’ by randomly varying one or more
elements of D and recalculating the dependent variables through
the three-stage procedure in order to respect the fixed constraints.

The SA algorithm evolves through a series of levels, called
“temperatures”. A cooling schedule based on the variation of the
objective function OBJ(D) and on the actual temperature stage
has been chosen, Kirkpatrick [21]. At each temperature stage T;,
a local search is performed in the neighbourhood of the current
sequence according to a “last improvement-basis” scheme: the
current sequence is perturbed according to the neighbourhood
search scheme proposed above. If the newly evaluated vector D’
has an objective function whose value is lower than the one cor-
responding to the original vector D, it is accepted and becomes
the new actual sequence.

On the other hand, if the vector D’ has a worse value of
OBJ(D'), it is accepted only if the following expression is
verified:

rand(x) < exp{—[OBJ(D’) — OBJ(D)]/T} 23)

where rand(x) € [0, 1]. Therefore, the probabilistic acceptance of
a worse sequence strongly depends on the counteraction between
variation in the objective function and the actual temperature
stage.

The cardinality maxiter of the neighbourhood in the local
search at each temperature level depends on the problem size;
that is, on the length of vector D. The last accepted sequence dur-
ing the local search will be the actual sequence in the successive
temperature stage. A low value of 7; has been chosen in order
to reach a good compromise ratio between the analysed and the
worst accepted sequences. The algorithm is judged to be frozen
when the temperature reaches a final value Ty, When adaptive
schemes with run rules are investigated, the high computational
effort due to the three-stage procedure and the dimensions of
transition probability matrices require a shortened SA evolution
with a reduced initial temperature and a low value of maxiter.
The procedure of the modified SA algorithm for the adaptive
charts with run rules is proposed below:

Step 1: Initialise: 7;, o, maxiter and iter = 1. Read the input
data of the problem: ATS0*, 1y and ng.

Step 2: Randomly create a feasible seed sequence and assign it
to the D and MEM vectors.

Step 3: Evaluate the OBJ(D) value for D and assign it to the
variable BEST .

Step 4: Generate the perturbed sequence D’ with the neigh-
bourhood operator following the three-stage procedure,
iter = iter + 1.

Step 5: Evaluate the OBJ(D') value for DV,

Step 6: If OBJ(D’) < BEST, then
let D=D", MEM =D'. Goto Step 11.

Step 7: Evaluate A = OBJ(D') — OBJ(D).

Step 8: If A <0, then

let D = D’. Go to Step 11.

Step 9:  Generate a random number x.

Step 10: If f(x) < exp(—A4/T), then
letD=D.
Step 11: If iter < maxiter then
Go to step 4
else
let T =T and iter = 1.
Step 12: If T > T, then go to Step 4.
Step 13: STOP. Best chart design memorised in MEM.

4 Computational results

The statistical performances of the investigated charts have been
compared by taking into account different levels of in-control
ATS(0), expected sample sizes E(n) = ng and expected sam-
pling interval E(¢) = tp. In contrast to previous literature [10, 23],
no specific values were imposed on the shorter sampling inter-
val or on the sample size; thus, a fully optimised statistical de-
sign can be achieved. However, a partial optimisation with fixed
values for a subset of design variables can be easily obtained
through the proposed SA algorithm by fixing a priori one or more
of the elements of the array D. The following constraints have
been considered to test the charts statistical performances: two
levels for in-control ATS(0): ATS(0)* = 370.4 and 499.6; three
levels for the expected sample size E(n) = no =3, 5, 10 and one
level for the expected sampling interval E(t) =ty = 1. As stated
above, the adopted run rules are C1, C2 and C3 (see Eq. 9).
The sample size can range within the interval [1,30], whereas
the sampling interval within [0.1,2]. The statistical design was
determined for a wide range of process mean shifts between O
and 2.25. Tables 2-7 show the obtained results, grouped with
reference to the value of in-control ATS(0) and expected sam-
ple size ng. The statistical designs corresponding to the lowest
AATS(8) are reported with a bolded italic notation. From the re-
sults, it can be noted that the VSSI scheme with rules C1, C2 and
C3 (VSS1123) always outperforms the other charts when small
shifts are expected in the mean of the controlled parameter; that
is, when § < 0.6. Assuming ATS(0)* = 370.4 and ng = 3, a max-
imum reduction of AATS(8) between simple VSSI and VSSI123
equal to approximately 50% can be achieved; this reduction in-
creases to 55% and to 62% when ng = 5, 10, respectively. When
ATS(0)* = 499.6 is selected as in-control ATS, the gap goes up
to 51%, 59% and 65% for ng = 3, 5, 10, respectively. The same
trend can be noted for VSI123 and VSS123. Thus, the larger the
ATS(0) and expected sample size, the larger the statistical per-
formance improvement of the adaptive scheme with run rules
with respect to a simple adaptive scheme. As expected, when the
entity of the shift is moderate to large, the performances of adap-
tive schemes with run rules slightly deteriorate due to the run
rules; however, their AATS(8) still remains quite similar to that
of the other charts. This fact can be easily explained by compar-
ing Shewhart charts with run rules and simple adaptive schemes.
The run rules outperform the adaptive schemes only when very
small shifts (6§ < 0.3) occur to the mean of the controlled pa-
rameter, whereas the adaptive schemes are particularly suited for
moderate to large deviations. The positive effect of run rules is
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Table 2. Comparison among the optimal AATS(8) corresponding to the charts: ATS(0) =370.4, ng =3, =1

8
0 0.1 0.15 0.2 0.25 0.3 0.35 04 0.5 0.6 0.75 1 1.25 1.5 175 2 2.25

No rules (Cy)
Shewhart  370.40 321.60 275.16 227.22 183.74 147.03 117.24 93.54 60.19 3953 2198 926 445 241 145 097 0.73
VSS 370.40 316.35 254.38 184.03 121.09 75.04 4590 2899 1446 9.46 558 306 199 160 131 097 092
VSI 37040 31843 268.77 217.79 171.74 132.83 10192 7796 4586 2685 1294 435 186 185 089 0.83 0.67
VSSI 370.40 31491 252.85 181.22 117.85 7227 4358 2750 1393 791 469 282 160 146 083 097 073

Rules C1, C2 (Cy2)
Shewhart  370.40 290.98 22790 172.23 128.61 96.17 7249 5487 3272 20.64 1132 513 287 187 135 104 0383

VSS 370.40 237.37 157.43 10249 70.18 47.04 3251 2342 1356 9.01 580 368 271 206 161 132 1.09
VSI 370.40 289.31 225.20 170.41 12653 92.60 70.04 5273 31.10 2363 1231 498 245 141 094 071 0.60
VSSI 37040 236.82 157.19 103.21 68.28 45.66 32.66 2337 1323 876 527 296 192 156 114 089 073

Rules C1, C2, C3 (C}23)
Shewhart  370.40 258.61 18493 129.61 91.55 6592 4857 3663 2231 1476 9.05 522 370 283 217 165 127

VSS 370.40 21996 14231 9261 6221 4336 3134 2345 1441 984 648 421 312 243 199 174 1.61]
VSI 370.40 256.77 181.93 125.89 87.53 61.85 44.61 3287 1900 1187 6.65 329 206 153 129 118 1.12
VSSI 370.40 218.56 140.24 90.24 59.74 4092 29.01 2123 1241 802 487 291 221 183 159 142 131

Table 3. Comparison among the optimal AA7TS(8) corresponding to the charts: ATS(0) =370.4, np =5, =1

8
0 0.1 0.15 0.2 0.25 0.3 0.35 04 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25

No rules (Cy)
Shewhart  370.40 29525 233.15 177.23 132.66 99.05 7426 5609 3290 20.06 1026 400 1.8 107 0.72 058 0.52
VSS 37040 285.85 204.08 12840 7446 4211 2448 1594 791 5.30 3.68 192 134 097 080 065 0.56
VSI 37040 290.22 22394 164.70 117.89 83.71 59.58 41.87 2187 11.56 489 190 097 089 066 057 053
VSSI 370.40 283.06 199.74 123.41 69.81 38.05 21.56 12.87 6.73 3.9 250 128 085 079 071 065 062

Rules C1, C2 (Cj3)
Shewhart  370.40 25397 178.65 122.58 84.46 59.15 4230 3054 1701 1036 560 265 160 1.11 082 065 0.55

VSS 370.40 206.46 12591 77.50 4898 3224 2216 1550 854 550 349 224 188 106 072 057 0.52
VSI 37040 251.38 177.12 12048 81.07 5693 4042 2899 1921 11.15 552 222 115 075 059 053 051
VSSI 37040 206.38 12555 76.69 4822 3095 2103 1452 776 482 285 1.67 1.04 078 065 058 0.55

Rules C1, C2, C3 (C123)
Shewhart 370.40 213.82 13558 R86.62 57.20 39.27 28.02 2074 1253 8.46 5.52 353 251 177 126 093 0.71

VSS 370.40 168.46 9567 57.14 3637 2461 17.61 1325 8.5] 625 459 321 243 201 181 169 1.60
VSI 370.40 211.25 13193 8258 53.17 3545 2449 1750 9381 6.12 354 1% 139 120 112 108 1.06
VSSI 37040 166.66 9337 5475 34.06 2245 1560 1138 6.88  4.57 280 176 140 124 116 1.13 1.10

Table 4. Comparison among the optimal AATS(8) corresponding to the charts: ATS(0) =3704, no=10,1p=1

5
0 0.1 0.15 0.2 0.25 0.3 0.35 04 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25

No rules (Cy)
Shewhart  370.40 243.64 165.33 109.47 7277 49.11 33.76 23.67 1233 6.90 327 127 071 054 051 050 050
AN 370.40 230.79 136.82 7372 3879 21.68 1260 7.97 4.38 2.66 198 1.14 071 055 051 050 050
VSI 370.40 234.88 151.88 9397 57.83 3567 2196 1387 6.19 2.96 1.57 084 065 055 052 052 052
VSSI 37040 223.77 127.78 6474 3180 1578 8.67 5.45 2.60 1.84 1.60 080 070 054 051 050 0.50

Rules C1, C2 (Cj3)
Shewhart  370.40 190.33 111.87 66.69 41.34 26.80 18.18 1248 6.58 4.02 230 124 081 059 051 050 0.50

VSS 370.40 156.87 83.61 4648 2750 17.37 11.69 794 430 287 197 138 082 075 058 051 050
VSI 370.40 187.31 110.02 64.33 3949 2538 2048 13.65 6.67 3.72 185 08 059 052 051 051 051
VSSI 370.40 156.01 8241 4525 2634 1631 1072 7.06 3.51 214 140 080 070 056 053 052 052

Rules C1, C2, C3 (C123)
Shewhart 37040 146.71 78.05 4448 2740 18.14 1282 9.58 6.14 4.50 324 200 123 081 059 052 050
VSS 37040 11136 54.80 3032 1873 12.714 942 7.47 5.44 4.42 348 259 219 197 180 1.69 1.60
VSI 37040 143.19 7399 40.58 2389 1504 1007 7.12 4.07 2.69 1.75 124 112 1.07 105 104 1.04
VSSI 37040 102.89 4853 2575 1524 992 1703 5.36 3.25 2.29 1.59 123 113 109 106 1.05 1.04
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Table 5. Comparison among the optimal AATS(8) corresponding to the charts: ATS(0) =499.6, np =3, 1 =1

8

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25
No rules (Cy)
Shewhart  499.60 430.71 365.75 299.50 240.15 190.61 150.80 119.43 7576 49.10 26.78 10.96 5.13 271 160 1.05 0.77
VSsS 499.60 418.86 334.83 236.48 150.80 90.22 53.21 3243 1414 9.14 5.86 346 277 172 127 106 095
VSI 499.60 426.73 356.66 28593 22380 17195 130.81 99.86 5693 3296 1583 486 237 143 089 068 0.90
VSSI 499.60 420.67 331.95 232.52 146.67 86.50 5048 30.80 13.84 8.78 467 224 146 094 082 074 084
Rules C1, C2 (Cy2)
Shewhart  499.60 399.93 317.06 241.77 181.34 135.61 101.85 7673 4499 2769 1455 6.13 319 221 139 097 0.74
VSS 499.60 308.64 197.96 124.15 79.26 51.11 3544 2525 1581 9.63 629 407 281 215 172 143 120
VSI 499.60 397.88 324.24 249.30 181.87 135.65 105.86 79.56 46.11 2786 1410 548 260 146 094 070 0.59
VSSI 499.60 300.88 197.82 123.98 79.10 5232 36.17 27.04 1454 9.68 6.21 349 230 172 141 088 077
Rules C1, C2, C3 (C123)
Shewhart  499.60 340.06 23833 16391 113.80 80.64 5853 4354 2585 16.73 10.00 563 397 3.09 241 183 138
VSS 499.60 287.27 181.73 11589 76.36 5228 37.17 2738 1637 1094 701 439 316 238 194 171 157
A 499.60 337.54 234.37 159.13 108.72 7559 53.69 3899 2194 1338 727 347 212 134 127 114 1.08
VSSI 499.60 28542 179.10 11294 7336 49.38 3442 2480 1410 889 524 302 223 182 156 139 127
Table 6. Comparison among the optimal AATS(8) corresponding to the charts: ATS(0) =499.6, ng =5, 1 =1
8
Q 0.1 Q.15 0.2 0.25 0.3 0.35 04 Q.5 0.6 0.75 1 1.25 1.5 1.75 2 225
No rules (Cy)
Shewhart  499.60 393.76 307.64 231.33 171.36 126.69 94.10 70.45 4062 2437 12.18 459 210 116 076 059 0.53
AAN 499.60 37991 265.61 16242 91.20 49.88 28.04 1690 8.85 5.29 337 194 142 193 095 089 0.79
VSI 499.60 386.96 294.83 213.87 151.80 106.85 7491 52.85 2588 1398 5.53 194 099 072 089 088 082
VSSI 499.60 376.44 259.41 155.40 84.80 44.74 2432 1474 730 4.76 273 127 090 070 0.69 061 057
Rules C1, C2 (Cy3)
Shewhart  499.60 352.14 250.78 172.88 118.75 8238 5805 4165 2270 1333 682 359 165 1.06 074 059 053
VSS 499.60 273.13 158.58 96.32 58.85 37.59 2521 1735 94] 6.05 384 236 168 129 1.00 079 0.65
VSI 499,60 349.09 246.81 168.76 11490 7893 55.02 39.01 2071 11.80 574 226 1.17 077 061 050 050
VSSi 499.60 27295 161.75 9578 57.61 36.34 2397 1655 892 5.56 366 180 1.71 086 073 064 060
Rules C1, C2, C3 (Ci23)
Shewhart  499.60 277.88 171.86 107.38 6949 46.83 3285 2394 1409 932 596 3.8 277 197 137 098 074
VSS 499.60 209.80 114.33 66.06 40.92 27.08 19.04 14.13 894 6.50 459 309 222 176 1.57 157 1.38
VSI 499.60 274.44 167.15 102.29 64.52 4220 2863 20.13 1095 6.67 3.75 1.99 139 1.17 108 1.03 101
VSSI 499.60 207.46 111.50 63.22 3825 2463 1679 1206 7.14 4.67 299 199 157 133 120 113 L10
Table 7. Comparison among the optimal AATS(8) corresponding to the charts: ATS(0) =499.6, ng =10, 1p = 1
8
0 0.1 0.15 0.2 0.25 0.3 0.35 04 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25
No rules (Cy)
Shewhart  499.60 322.10 215.24 14048 92.16 6142 41.72 2891 1473 8.08 3.73 1.39 074 055 051 050 050
VSS 499.60 303.49 17523 91.74 4692 2474 1396 8.68 4.79 2.79 1.80 117 091 072 059 053 051
VSI 499.60 309.96 197.73 120.84 72.71 43.88 26.79 1685 696 344 1.88 080 088 085 0.81 080 0.80
VSSI 499.60 294.72 163.45 80.72 38.87 18.69 9.60 5.96 2.76 1.87 121 089 0.84 082 077 073 0.69
Rules C1, C2 (C13)
Shewhart  499.60 266.74 157.76 93.25 56.66 3569 2336 1587 8.14 4.72 2.51 1.25 073 055 051 050 0.50
VSS 499.60 204.25 10572 5697 32.60 19.86 1285 8.80 4.82 3.14 2,10 141 100 072 05 050 050
VSI 499.60 274.08 157.78 96,78 58.35 36.24 2326 1544 749 4.08 1.97 0838 061 055 054 053 053
VSSI 499.60 205.60 105.04 56.42 32.14 19.47 1251 850 4.57 292 1.89 123 0.89 0.67 055 050 0.50
Rules C1, C2, C3 (Cy23)
Shewhart  499.60 186.72 96.27 5337 32.08 20.80 1442 1061 6.65 4.83 351 222 134 085 061 052 050
VSS 499.60 129.40 60.07 31.85 19.06 12.66 9.17 7.14 5.03 3.89 28 185 145 124 101 077 0.6l
VSi 499.60 182.16 91.18 48.61 27.89 17.17 11.26 7.81 434 2.80 .78 122 1.07 102 099 099 0.98
VSSI 499.60 126.54 57.17 2923 16.74 1057 727 537 3.21 2.23 1.61 1.24 1.11 1.06 103 1.01 0.99




then reflected to the adaptive schemes when the hybrid charts are
considered. Furthermore, this synergistic effect allows the opti-
mal interval to be extended to § = 0.5. Figures 3-8 graphically
show this behaviour when ATS(0)* = 370.4 or 499.6 and ng =3,
5. Similar conclusions can be drawn for the other scenarios. An-
other interesting conclusion that can be deduced by the analysis
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Fig.3. ATS(0) =370.4, ng =5, 1y = 1. Comparison among the AATS(S)
corresponding to the VSS schemes: simple (VSS), with rules C1 and C2
(VSS12) and with rules C1, C2 and C3 (VSS123)
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Fig.4. ATS(0) =499.6, no =5, 1ty = 1. Comparison among the AATS(S)
corresponding to the VSS schemes: simple (VSS), with rules C1 and C2
(VSS12) and with rules C1, C2 and C3 (VSS123)
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Fig.5. ATS(0) =370.4, ng =5, 1o = 1. Comparison among the AATS(S)
corresponding to the VSI schemes: simple (VSI), with rules C1 and C2
(VSI12) and with rules C1, C2 and C3 (VSI123)
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Fig.6. ATS(0) =499.6, ng =5, 1ty = 1. Comparison among the AATS(S)
corresponding to the VSI schemes: simple (VSI), with rules C1 and C2
(VSI12) and with rules C1, C2 and C3 (VSI123)
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Fig.7. ATS(0) =3704, np =5, 1y = |. Comparison among the AATS(5)
corresponding to the VSSI schemes: simple (VSSI), with rules C1 and C2
(VSSI12) and with rules C1, C2 and C3 (VSS1123)

500,00

450,00
400,00
350,00 +
300,00
25000 +—

20000 +——
150,00 4—

100,00

2 2
0.7 08_o veg !
—l— VS§SI12

&— VSSI123
Fig.8. ATS(0) =499.6, np =5, to = 1. Comparison among the AATS(8)
corresponding to the VSSI schemes: simple (VSSI), with rules C1 and C2
(VSSI12) and with rules C1, C2 and C3 (VSSI123)

of the results is that the possibility of varying sample size (VSS
and VSSI) allows more performing charts to be implemented
than with a variable sample interval (VSI) scheme. Furthermore,
this tendency is not affected by the introduction of run rules. This
aspect is shown in Figs. 9—10, which show AATS(8) versus shift
8 for adaptive charts with run rules assuming A7S(0)* = 370.4,
ng=Sandr=1.
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Once the positive effects of adding run rules to adaptive
schemes with variable sample size and/or sampling interval have
been demonstrated, a further interesting analysis examines the
comparison with other kinds of control charts. In a recent pub-
lication, Carot et al. [24] proposed a chart, denoted as DSVSI,
derived from the combination of a double sampling X chart (DS)
with a variable sampling interval (VSI) approach. They show
how such a new hybrid scheme outperforms the tradition adap-
tive and run rule Shewhart charts. Therefore, a comparison with
the DSVSI scheme allows the efficiency of the proposed ap-
proach to be confirmed. In Tables 8 and 9, the results of this
analysis are reported with respect to different scenarios. Further-
more, Table 9 shows a comparison with CUSUM and EWMA
charts, in the same way as suggested by Carot et al. [24].

Table 8. Comparison of AATS(8) for VSSI123 versus DSVSI (ATS(0) =
3704, n9g=4,10=1)

Shift & DSVSI chart VSSI123
(n1,n2) = (1, 16) (n1,n2)=(1,11)
(h1, h2) =(0.25,1.19) (hy, h2) = (0.1, 1.371)

k1, ko) = (4.191, 2.596) (I, w, k) = (1.048,2.678, 4.019)
(wn, wi) = (1.318, 1.269)

0 370.37 370.36

0.05 317.96 303.20

0.1 219.55 192.88

0.125 170.3 149.4

0.15 139.88 115.71

0.2 88.67 71.00

0.25 52.63 4548

0.375 19.13 18.12

0.5 8.45 9.14

0.625 449 5.28

0.75 2.79 3.52

1 1.51 2.13

1.5 0.92 1.39

2 0.94 1.18

The obtained results show how the adaptive scheme with run
rules allows a reduction of AATS(5) for small shifts with respect
to the DSVSI chart and the CUSUM (for moderate and large
shifts, quite similar performances are provided) and allows equal
results to be reached with respect to an EWMA scheme.

5 CGonclusions

In this research, sample size and sampling interval adaptive X
charts with run rules have been proposed to control the state of
statistical control in a production process. The run rules were
added to the adaptive schemes only for signalling purposes by
considering sequences of non-consecutive plotted points. The
performances of these charts were evaluated by determining their
optimal statistical design and comparing it with that of other
chart schemes commonly used in the literature. The optimal de-
sign was obtained by a heuristic algorithm; namely, simulated
annealing, which works to determine the minimum AATS(S)
under the set of selected constraints. The obtained results show
how the positive effects of adaptive chart parameters and run
rules can be considered additive. The adaptive charts working
together with run rules work better than the separated schemes
when small to moderate shifts in the mean of the controlled pa-
rameter are expected. In particular, a combined sample size and
sampling interval adaptive scheme added with western electric

Table9. ATS(0) =250, no =3,
fo =3. AATS(8) for VSSI123,

DSVSI, CUSUM and EWMA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
charts
CUSUM 250 201.3 124.5 74.0 46.1 30.8 22.0 16.6 13.2 10.8 9.2
EWMA 250 188.8 108.1 62.6 394 270 19.8 153 12.3 10.3 88
DSVSI 250 195.0 1154 67.0 41.5 27.9 20.3 15.7 129 10.9 9.6
VSSIi123 2504  187.6 107.1 62.4 39.5 27.1 19.8 154 12.5 10.6 9.3




rules C1, C2 and C3 has been demonstrated to be very effect-
ive, allowing large A ATS(8) reductions with respect to the other
schemes when § < 0.6; when larger shifts are considered, the
VSSI123 statistical performance remains quite similar to that
of other charts. Furthermore, the statistical performance of this
chart has also been compared with that of CUSUM and EWMA,
i.e. charts that take into account the past history of the process.
Once again, the results confirm the effectiveness of the proposed
scheme.
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