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Abstract  In this paper, improved Shewhart control charts based 
on hybrid adaptive and run rule schemes are introduced to 
enhance the statistical performances of the traditional static 
scheme, designed with consideration given to the fixed values 
of sample size, the width of the control limits and the sam- 
pling frequency. The proposed hybrid adaptive schemes consider 
both variable sampling interval and variable sample size com- 
bined with run rules. The objective of this research is to develop 
a statistical comparison between adaptive schemes, charts with 
run rules and hybrid adaptive schemes with run rules to help 
decision-makers in the selection of the best performing chart for 
an expected value of shift in the mean of a controlled parame- 
ter. An extensive set of numerical results is presented to test the 
effectiveness of the proposed models in detecting small and mod- 
erate shifts in the process mean. The optimal statistical designs 
of the charts are obtained through a heuristic algorithm, properly 
modified to cope with the problem. 

Keywords Adaptive schemes �9 Average time to signal �9 
Control charts �9 Optimisation �9 Run rules 

1 Introduction 

Nowadays, strong competition among industries, due to a global 
market that considers customer satisfaction as a primary objec- 
tive, requires high-quality and efficient products to be manu- 
factured. Statistical process control (SPC) is a key approach to 
achieve rational management of manufacturing processes that 
allows final products, characterised by high quality, to be pro- 
duced. Shewhart control charts are one of the most powerful 
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tools in SPC; they are easy to implement and allow the sta- 
tistical control state of a critical parameter in a manufacturing 
process to be checked and plotted. These control charts are de- 
signed by selecting the sample size n, the width of control limits 
k and sampling frequency t. A statistical limit of these control 
charts is represented by their poor sensitivity in the detection 
of out-of-control conditions when small shifts in the mean of 
the controlled parameters occur. A possible way to improve the 
statistical behaviour of the chart could be to restrict the con- 
trol interval, but this solution results in an excessive amount of 
false alarms, which causes too large a number of operator inter- 
ventions. For this reason, many authors have proposed models 
of Shewhart control charts that modify the original scheme and 
allow the statistical properties of these charts to be improved. 
Traditionally, two main approaches have been investigated by the 
researchers: the adaptive schemes, which permit the sample size 
and sampling interval to be changed, and the run rules - that is, 
the introduction of warning zones within the control interval of 
the chart, which calls for an action not only when a point falls 
outside the control limits, but also when a sequence of points 
falling within a warning zone verify a particular rule. 

The former approach has been widely investigated in litera- 
ture for different kinds of control charts; Tagaras [1] presented 
a complete survey of the developments in the design of several 
adaptive charts; variable sampling interval (VSI) control charts 
have been investigated by Reynolds et al. [2], Runger and Pig- 
natiello [3], Runger and Montgomery [4], Reynolds [5]; the eco- 
nomic design of VSI control charts has been proposed by Das 
et al. [6], who compared the costs of the system when VSI and 
traditional control charts are implemented. The obtained results 
show that the cost savings obtained through a VSI approach with 
respect to the traditional scheme decreases when large shifts in 
the mean of the controlled parameter are considered. 

Variable sample size control charts schemes (VSS) have been 
proposed by Prabhu et al. [7], who considered several shift 
sizes and measured their effectiveness through an Avaerage Run 
Length (ARL) evaluation. Costa [8] investigated the efficiency 
of the VSS charts through a comparison with several other con- 
trol chart schemes, including an Exponentially Weighted Moving 



Average (EWMA) chart, a Cumulative Sum (CUSUM) control 
chart and a standard X chart with run rules. Zimmer et al. [9] 
evaluated the effectiveness of three-state adaptive schemes and 
demonstrated that the simpler two-state scheme works as well. 

Combined adaptive control charts (VSSI) with variable sam- 
ple size and variable sampling interval were also developed and 
tested. Prabhu et al. [10] proposed several examples to demon- 
strate the improvements obtained through the VSSI scheme; they 
also determined optimal values for the maximum sample size 
and studied a case from an industrial process to test their model. 
Costa [11] compared the performances of the VSSI adaptive 
scheme with Shewhart charts with and without run rules, and 
combined Shewhart-CUSUM and EWMA schemes when the 
assignable cause does not occur at the beginning of the pro- 
cess but during the production time. The parameter used for the 
comparison is the adjusted average time to signal, (AATS) and 
the occurrence of a shift in the mean of the controlled parame- 
ter is modelled as an exponentially distributed random variable. 
The economic statistical design of VSSI ..Y control charts was 
developed and compared to a traditional Shewhart scheme by 
Prabhu et al. [12]. The charts have been compared in terms of 
cost of operation and average time to signal. 

Control charts with run rules allow the statistical perform- 
ance of the .X chart to be improved through a set of warning 
limits acting within the control interval of the chart itself [13]. 
The width of the warning zones can be determined with re- 
spect to a statistical or an economic objective. Parkhideh and 
Parkhideb [14] adapted the economic design of a Shewhart 
chart to the improved scheme with run rules, (Western Elec- 
tric rules C1, C2 and C3) and showed how the introduction of 
the warning zones allows a reduction in the expected costs to 
be reached. Parkhideh and Parkhideh [15] analysed the statisti- 
cal performances of a flexible zone control chart for individual 
measurements with respect to a traditional Shewhart ~" chart; 
the optimisation of the statistical performances was obtained 
for both rules C1 and C2, (C12), as well as rules C1, C2 and 
C3, (C123). 

Adaptive control charts with run rules were developed to 
take into account the past history of the process, in order to im- 
prove the chart capability in detecting out-of-control conditions. 
Run rules were added by Reynolds et al. [2] to a VSI adaptive 
scheme to manage the presence of out-of-control conditions in 
the process; the selected run rules considered r I out of r sample 
means falling within the warning zones of the chart or a point 
falling outside the control limits as out-of-control signals: they 
developed a set of examples where a VSI chart with run rules 
considering r '  = 2 out of r = 3 (called rule 1) and r '  = 5 out of 
r = 5 (five consecutive points, called rule 2) was compared with 
a traditional Shewhart chart with the same run rules. They com- 
pared the two charts on the basis of the AATS, (the in-control 
AATS = ATS(0) should be the same for the different charts), 
which was evaluated through the Markov chain approach pro- 
posed by Champ and Woodall [16]. A similar approach was 
followed by Reynolds [5] to improve the statistical performance 
of a variable sampling interval control chart with sampling at 
fixed times (VSIFT). 
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Run rules were also introduced as switching rules in the se- 
lection of the sampling interval by Arpin and Letsinger [17] and 
Amin and Hemashina [18]. Here, the length of the sampling in- 
terval is a function of the last r plotted points on the chart: if r I 
out of r last plotted sample means fall within the warning zones, 
the sampling interval is reduced to tl ; otherwise, it is maintained 
such that t2 > tl. In this way, the number of switches between the 
different sampling intervals is reduced. 

Cui and Reynolds [19] developed VSI ,~ control charts where 
run rules work on both the signalling and switching procedure 
from one sampling interval to another. In this model, sequences 
of consecutive points are considered to decide if the process is 
in an out-of-control condition or which sampling interval must 
be selected to plot the following point in the chart. The results 
show how the improved performance in AATS with respect to 
a static chart is due to the run rules when small shifts are consid- 
ered and due to the VSI scheme for larger shifts. The economic 
design of the Cui and Reynolds [19] )~ chart was performed by 
Das et al. [6]. 

Even if several papers dealing with the statistical proper- 
ties of a variable sampling interval ,~ chart with run rules were 
investigated in literature, no research was devoted to the rule 
application to variable sample size (VSS) and combined vari- 
able sample size and interval (VSSI) schemes. Tagaras [ 1] does 
not mention any paper dealing with such models. For this rea- 
son, in this paper, the statistical properties of VSS and VSSI 
charts with run rules are investigated and compared with other 
existing models. Here, the rules are introduced only as signalling 
tools of an out-of-control condition; the selection of sampling 
intervals and sample sizes depends only on the position of the 
last plotted point on the chart. The AATS, when the process is 
out of control, is the statistical performance parameter used to 
compare the ability of the proposed schemes in the detection of 
the process shift f rom/z  = #0 to # = #1. The optimal statisti- 
cal designs of the chart have been determined through a heuristic 
algorithm; namely, simulated annealing, operating on a func- 
tion which depends on the AATS with process in "in-control" 
and "out-of-control" conditions and considering a specific set of 
constraints acting to make possible the comparison between the 
different chart schemes. 

The rest of the paper is organised as follows: in the next sec- 
tion, the formulation of the proposed charts without and with 
run rules is developed; then, the optimising heuristic proced- 
ure is presented; finally, the obtained results are reported and 
discussed. 

2 Description of the developed charts 

The developed adaptive X control charts have been investigated 
by assuming as a statistical performance index the adjusted aver- 
age time to signal (AATS). This performance measure repre- 
sents the expected time interval between the occurrence of an 
assignable cause and the time the charts signal an out-of-control 
condition. The AATS is computed with respect to the steady 
state performance of the chart, i.e. assuming a process evolution 
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characterised by a start in the "in-control" condition and a suc- 
cessive shift occurring at some random time in the future. The 
shift in the mean /xo of the controlled parameter is expressed 
as a multiple of the population standard deviation a ;  that is, as- 
suming/Zl = /zo  + 8a. The different adaptive schemes have been 
statistically compared through the evaluation of their AATS cor- 
responding to different values of the shift under the following 
constraints: equal in-control ATS(0), expected sample size no 
and sampling interval to. The following notation is adopted in the 
rest of the paper: 

n l, n2: smaller and larger sample size; 
q ,  t2: smaller and larger sampling interval; 
no: expected sample size when the process is "in-control"; 
to: expected sampling interval when the process is "in-control"; 
k, w, l: width of control and threshold limits; 
/zo: mean of the controlled parameter when the process is "in- 

control"; 
tZl: mean of the controlled parameter when the process is "out- 

of-control"; 
a :  standard deviation of the controlled parameter; 
8: shift in the mean of the controlled parameter; 
ARL(O): chart average run length when the process is "in- 

control", i.e. the average number of samples to be taken 
between two successive false alarms; 

ARL(6): chart average run length when the process is "out-of- 
control", i.e. average number of samples to be taken between 
the occurrence of the special cause and the signal; 

ATS(O): chart average time to signal when the process is "in- 
control", i.e. average elapsed time between two successive 
false alarms; 

AATS(8): chart adjusted average time to signal when the process 
is "out-of-control", i.e. average elapsed time between the oc- 
currence of the special cause and the signal; 

2.1 Adaptive charts without mn rules 

The classical two-state adaptive charts have been investigated in 
this paper. The schemes have been developed by considering the 
standardised mean: 

: ~ - ~ 0  
z = - -  (1) 

The control limits of the standardised charts, denoted as the 
upper control limit (UCL) and lower control limit (LCL) are po- 
sitioned at + k  apart from 0. The threshold limits are positioned 
at -4-w apart from 0, where w < k (see Fig. 1). 

In particular, for the adaptive sampling interval VSI scheme, 
the following function was adopted: 

[ t~ i f - k < Z < - w  

t =  t2 i f - w < Z < w  (2) 

tl i fw  < Z < k 

where tl represents the shorter sampling interval, and t2 is the 
larger sampling interval. The sample size is constant and equal 
to no. 

Zone A+B: 
(n2;h) 

Zone O: 
(nl;tz) 

Zone C+D: 
(n2;t0 

Time 
Fig. 1. The VSSI adaptive scheme without run rules 

k 
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The adaptive sample size VSS scheme was fonnalised 
through the following function: 

I 
n2 i f - k < Z < - w  

n =  nl i f - w < Z < w  (3) 

n2 i f w  < Z < k 

where n l is the smaller sample size and n2 is the larger sample 
size. The sampling interval is constant and equal to to. 

The combined adaptive sample size and interval VSSI 
scheme was formulated considering the following expression: 

I 
n2, tl if - k  < Z < - w  

n, t = n i, t2 if - w < Z < w (4) 

n2, tl if w < Z < k 

The Markov chain approach proposed in Zimmer et al. [9] was 
considered to evaluate the in-control and out-of-control ARLs, 
ARL(O) and ARL(8), corresponding to the developed adaptive 
schemes reported above: 

A R L ( O ) : b ' ( I - Q ~  

ARL(8) = b' ( ! -  Q'S) - 1 . 1  (5) 

where 8 > 0. b'(1 • 2) represents the vector of initial probabil- 
ities corresponding to steady-state performance, / (2  • 2) is the 
identity matrix, and Q(2 • 2) is the state transition matrix of the 
Markov chain. Therefore, Q0 and Q~ are the state transition ma- 
trices for an in-control and out-of-control process, respectively. 
Similarly, the in-control A TS is computed using the following 
expression: 

ATS(O)=b' ( I - Q ~  -1 .t  (6) 

t '  is the vector of sampling intervals. For more details about the 
evaluation of Eqs. 5 and 6, see Zimmer et al. [9]. The out-of- 
control ATS(8) evaluated here considers a process that starts in 
the in-control state and then shifts to the out-of-control condition 
after a generic time interval; therefore, the steady-state perform- 
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ance of the chart must be considered, and the A TS(8) coincides 
with the adjusted average time to signal AATS(8) [I, 3]: 

AATS(8) = E(Y) + E(ti) . (ARL(~) - 1) (7) 

where E(Y) is the time elapsed between the occurrence of the 
process shift and the next sample; E(ti) is the expected length 
of sampling frequency when the process is in an out-of-control 
condition. In this way, it is possible to determine the AATS(8) 
through the following expression: 

AATS(~) = " @ ( k ) -  @(-k)  to 

( ~ )  2 . ( ~ ( k ) - q b ( w ) >  t , l  

+ " ,t,(k) - , t , ( - k )  7 0  

- - t 0 +  { b ' } .  [ I -  Q ~ ] - I .  { t }  ( 8 )  

This equation coincides numerically with that proposed by Das 
et al. [6] for the VSI chart when the special cause is assumed 
to occur in the middle of a sampling interval, whose expected 
length is equal to to~2. 

2.2 Adaptive charts with run rules 

Run rules are added to control charts to improve their statisti- 
cal performance when small shifts in the mean of the controlled 
parameter are expected. The rules have been implemented in 
Shewhart control charts to detect possible shifts in the mean 
of the controlled parameter. Rules considering both consecu- 
tive and non-consecutive points have been developed by the re- 
searchers. For traditional Shewhart control charts, run rules that 
give an out-of-control signal when r of the last m plotted points 
fall within the interval (a, b) were considered by Champ and 
Woodall [16] and Parkhideh and Parkhideh [15]. They are usu- 
ally denoted by T(r, m, a, b). Following the notation proposed in 
Champ and Woodall [16], the following rules have been consid- 
ered in this paper: 

C1 = {T(1, 1, - o o ,  - k ) ,  T(1, 1, k, oo)} 

C2 = {T(2, 3, - k ,  - w ) ,  T(2, 3, w, k)] 

C3 = {T(4, 5, - k ,  -1),  T(4, 5, I, k)} (9) 

The AATS(8) evaluation for adaptive charts with run rules 
needs the formulation of a Markov chain approach as well. Cui 
and Reynolds [19] and later, Das et al. [6], developed a Markov 
chain model for VSI schemes when consecutive points are mon- 
itored to select the sampling interval and to call for an out- 
of-control condition. In this research, a proper Markov chain 
model, based on the approach given by Artiles-Leon et al. [20], 
is developed; this depends on the possibility of considering non- 
consecutive points and varying the sample sizes. Due to these 
two assumptions, each possible state of the process must consider 
almost the last m plotted points and the corresponding selected 
sample sizes. The implemented run rules operate only to signal 
out-of-control conditions and not as a decision rule to select the 
sample size and/or  the sampling interval. To explain the adopted 
Markov chain model, let us consider the adaptive VSSI scheme 
with run rules C1, C2 and C3 (VSSI123) reported in Fig. 2. 

The standardised chart control interval is divided by the 
threshold limits into five warning zones: A(w,k ) ,  B(l, w), 
O( - l ,  l), C ( - w ,  -1), and D ( - k ,  - w ) .  A dual sample size and 
sampling interval policy is adopted: 

n2, tt i f - k < Z < - l  

n , t = l n l , t 2  i f - l < Z < l  (10) 

n2, tl i f / < Z < k  

In the proposed scheme, the threshold limit l and the control 
limit k are used both for implementing the adaptive scheme and 
the run rules, whereas the threshold limit w works only on run 
rules. As an example, in Fig. 1, the points 7 and 9, falling within 
the A(w, k) zone, signal for an out-of-control condition, in ac- 
cordance with run rule C2. As threshold limit of the adaptive 
scheme l was selected instead of w to improve the statistical ef- 
fects of the chart; this allows the selection of the couple (n2, tt) 
to be extended to a wider portion of the control interval than with 
w as adaptive policy threshold limit. The same limits for an adap- 
tive scheme and run rules were selected in order to simplify the 
chart interpretation and construction. 

The developed Markov chain model requires the position 
of the last m plotted points on the chart to list all of the pos- 
sible states characterising the process. Considering the VSSI 123 

where l < w < k are the threshold limits whose values are op- 
timised with respect to the ATS. Rule C1 corresponds to the 
out-of-control condition of the standard Shewhart chart; rules C2 
and C3 consider short sequences of non-consecutive points to 
signal a possible out-of-control condition. The rules can be com- 
bined to improve the statistical properties of the chart. 

The AATS(8) of Shewhart control charts with run rules can 
be computed as t .  ARL(3),  where t is the length of the sampling 
interval and the ARL(3) is computed assuming that the process 
starts in the "in-control" condition, i.e. with a point falling in 
the internal zone of the chart control interval. A Markov chain 
approach based on the possible states of the process correspond- 
ing to the position of plotted points was proposed by Champ and 
Woodall [16] to compute the ARL(6). 

Zi 
k 

Zone A+B: A 2 [~]  .7  ) . 9  w 

Zone O: . . . . . . . . .  

(n,;t2) ~/ ~ 6  8 =l 

Zone C+D: 3 -W 
(n2;tl) [-D-] -k 

i i i i i i i i t - -  
Time 

Fig.2. The hybrid VSSI adaptive scheme with run rules C1, C2 and C3 
(VSSI123) 
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scheme, the five mentioned warning zones and the last m = 4 
plotted points must be considered to determine the set of non- 
absorbing states of the chain. By denoting a plotted point, i.e. 
a standardised mean Zi, falling within a warning zone with the 
corresponding zone identifier, (A, B, C, D, or O), the generic 
state of the process can be represented with a four-letter vec- 
tor [X X X X]. For example, four consecutive points falling 
within zone O constitute a possible state denoted as [O O O O]; 
similarly, in Fig. 1 points 1--4 correspond to [B A C O]. With 
consideration of this notation, it is possible to determine the en- 
tire set of non-absorbing states of the chain for the VSSI scheme 
with run rules C1, C2 and C3, (C~23 scheme). Denoting as S 
the complete space state, the total number of states ISI, includ- 
ing absorbing and non-absorbing ones, is equal to N r, where N 
is the number of warning zones and r the length of the sequence 
of consecutive points. For the VSSI123 scheme, ISI = 5 4 = 625. 
The absorbing states are those including one point falling out of 
control limits (rule C1), two out of three points falling within 
zones A or D (rule C2), and four out of five points falling within 
zones A and/or B or, alternatively, zones C and D (rule C3). 
As an example, [A O A O] is an absorbing state with respect 
to rule C2 and [ A B  A B] leads to absorption due to rule C3. 
Once the state space dimension has been fixed, it is possible 
to determine the state transition matrix P, whose dimension is 
625 x 625. Each element of this matrix represents the probability 
of transition from one state to another. Eliminating the absorb- 
ing states from the state space, the cardinality of S is reduced 
to [S*I = 423. As a consequence, the non-absorbing state tran- 
sition matrix Q can be obtained from P by deleting the rows 
and columns corresponding to absorbing states; therefore, Q has 
dimension 423 x 423: 

0 0 0 0  O 0 0 A  . . . . . .  DCOD 

0 0 0 0  PO PA 0 
O 0 0 A  0 0 0 

(2= 

DCOD 0 0 0 

( l l )  

The elements of this matrix equal to 0 correspond to non- 
allowable one-step transitions ([OOOO] --+ [DCOD]), or to 
transitions to absorbing conditions ([CCOC| ~ [COCC], i.e. 
four of the last five plotted points fall within zone C). The elem- 
ents of matrix Q not equal to 0 correspond to the probability of 
a point falling within a warning zone of the chart control inter- 
val. This probability is a function of k, w and I when the process 
works in an "in-control" condition and also of 3, n l ,  n2, when 
the process operates in an "out-of-control" condition. Therefore, 
by denoting as Q0 the "in-control" non-absorbing state transition 
matrix, the expressions of the transition probabilities are: 

pO = qs(~) _ ~ , ( w )  

pO = 4~(w) - 45 (1) 

p O  = 4,  (t)  - 4, ( - l )  

pO = q~ ( - l )  -- r  

pO = 4~(-w) -- 4~(-k) (12) 

whereas, in the "out-of-control" condition, by denoting as Q8 
the "out-of-control" non-absorbing state transition matrix, the 
transition probabilities are evaluated through the following 
expressions: 

P~A = , t ' (k  - -  ~ 4-~7)  - -  4 ' ( w  - -  ~ 4-n-7) 

p ~  = 4 , ( w  - ~4-ff7) - ~ ( l  - ~ 4 h - ; )  

p~ ,  = r  - ~ , / h S )  - r  - ~ , / h S )  

p ~  = , ~ ( - t  - 8 , / ~ )  - 4 , ( - ~  - ~ , / -hS) 

p~) = q~(-w - 3 ~ i )  - 4~(-k - 6~'h~) (13) 

where 6 is connected to the entity of the shift in the mean of the 
controlled parameter through the expression/z I = /Z 0 %-~O'. The 
values of ni (i = 1,2) to be introduced within the above expres- 
sions depend on the position of the last plotted point on the chart. 
If this point falls within zones A + B or C + D, i.e. considering 
transitions from states characterised by A, B, C, or D as final 
point, n2 > n l must be considered; otherwise, when transition 
probabilities from states characterised by a final point labelled 
as O are evaluated, it must be selected such that ni = nl .  The 
consequence of this assumption is that two standardised shifts, 
,41 = 8~n-i- and "42 = &v/-h2, must be defined. As stated before, 
the comparison between the different charts' statistical perfor- 
mances is carried out assuming the same "in-control" A TS(O), 
"in-control" expected sample size no and sampling interval to. 
The evaluation of these quantities requires the definition of two 
subsets of non-absorbing states S p and S" such that S ~ + S" = S. 
Subset S' includes all of the states characterised by O as the final 
point. A successive point to one of them is plotted considering 
the lower sample size n I and the larger sampling interval t2. Sub- 
set S" includes all of the states characterised by A, B, C, or D 
as the final point: a successive point to one of them is plotted 
considering the upper sample size n2 and the shorter sampling 
interval tl. Therefore, no and to are computed respectively as: 

no = Z yrjnl q- Z :rrkn2 (14) 
jES' kES" 

to = Z rcjt2 + Z ~rktl (15) 
jES' keS" 

where rri, (i = 1 . . . . .  IS*I), are the steady-state probabilities with 
an "in-control" process condition: 

/ g ~ - - / r  X Q 0 

IS*l 

~-~ ~ri = 1 (16) 
i=1 

The "in-control" ATS(O) is computed assuming that the process 
starts in the "in-control" condition in the state [O O O O]; as 
a consequence, the average time to signal before a false alarm is 
equal to the first element of the vector 

{E(T)} ~ = [ I -  Q0]-I x {t} r 

ATS(O) = E(T) ~ (17) 
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The AATS(8)  is computed in the same way as for simple adap- 
tive schemes - by introducing the summations of the steady-state 
probabilities with the process "in control" and, similarly to the 
ATS(O) computation, referring to [O O O O] as the initial state 
of the Markov chain: 

AATS(6)  = . E zrj . ; 
j E S '  

- -  to + A TS(8) 

a r s ( 8 )  = E(r)~ 

+ " 

kES ~ 

(18) 

3 The optimisaUon procedure 

The statistical designs of the charts were achieved by running 
a heuristic algorithm; namely, simulated annealing (SA). The al- 
gorithm was coded in FORTRAN and its structure refers to the 
one proposed by Kirkpatrick [21 ]. The efficiency of the proposed 
optimisation method in determining optimal designs for adap- 
tive control charts was tested in a previous paper, Campisi et 
al. [22], where a comparison with other numerical methods was 
carried out to economically design both static and adaptive con- 
trol charts. The SA algorithms operate through an analogy to sta- 
tistical mechanics of condensed matter physics. They represent 
an enhanced version of the traditional techniques of local opti- 
misation or iterative improvement and allow the probability of 
accepting poor local optimal solutions to be reduced. The latter 
issue is possible since SA gives the possibility to probabilisti- 
cally accepting "retrogressive" movements towards worse solu- 
tions, thus allowing new possible optimal solutions to be found. 

The variables needed to define the statistical design of the 
chart are grouped within a design vector D, whose length de- 
pends on the selected chart to be designed (see Table 1). 

The objective function OBJ(D) corresponding to each se- 
quence D was formulated assuming that a feasible design must 
respect the constraints relative to in-control ATS(O), (ATS(O) 
equal to an ATS(O)* properly selected by the decision-maker) 
and on no and to. All of the compared charts must be charac- 
terised by the same expected sample size and interval. Therefore, 
the following function OBJ(D) was adopted: 

[ IATS(O) -- ATS(O)*I + AATS(8.) 

i f I A T S ( 0 ) - A T S ( 0 )  I < s  s e ( 0 . 5 ; 1 )  
OBJ(D) 

| 10. (IATS(O) - ATS(O)*[ + AATS(8) )  
| 

[ if IATS(O) - ATS(O)*I > s 

(19) 

The constraints on no and to are respected by entire set of in- 
vestigated solutions when the static and adaptive chart schemes 
without rules are optimised. In fact, as shown in Table 1, some 
variables of the problem are determined as a function of the 
others assuming E(n)  = no and E(t) = to. For further details, see 
Prabhu et al. [12] and Zimmer et al. [9], When schemes with 
run rules are adopted, the design optimisation is more compli- 
cated, due to an higher number of variables and difficulty in 

Table 1. The sequences opt imised by the SA to design the investigated 
charts 

Shewhart Simple D = {n, k, t} 
C12 D = {n, k, w, t} 
CI23 D = {n, k, w, 1, t} 

VSS Simple D = {hi, n2, k, t} 
with n l < n2 and 
w = w(k, hi, n2) calculated 

Cj2 (VSS12) D ={nl,n2,k, w,t} 
with nl < n2 

C123 (VSS123) D = {nl, n2, k, w, l, t} 
with n l < n2 

VSI Simple D = {n, k, q, t2} 
with tl < t2 and 
w = w(k, tl, t2) calculated 

Ci2 (VSI12) D = {n, k, w, tl, t2} 
with t] < t2 

C123 (VSI123) D = {n, k, w, l, tt, t2} 
with tl < t2 

VSSI Simple D = {n j, n2, k, tl } 
with n] < n2 and 
tl < t2, w = w(k, nl, n2) and 
t2 calculated 

Cl2 (VSSI12) D = { n l , n z , k ,  w, q ,  t2} 
with nl < n2 and tl < t2 

C123 (VSSI123) D ---- {nl, n2, k, w, l, q ,  t2} 
with n] < n2 and tl < t2 

explaining a set of equations corresponding to the selected con- 
straints; therefore, the search of the optimal design is performed 
by following three successive stages: first of all, a subset of D 
including feasible control and threshold limits U, w ' and l ~ is 
determined within the space of solutions, which respects the fol- 
lowing constraint: 

[ARL(k ' ,  w ~, l') - ATS(O)*/tol < s' s' 6 (0; 0.5) (20) 

where ATS(O)* and to are fixed a priori. Once a candidate triple 
of limits has been identified, the heuristic search is focused on 
the sampling intervals ti and t2 (VSI and VSSI schemes); in the 
whole set of possible intervals, a candidate couple is selected, 
which satisfies 

IATS(O)[k', w', l', t 1,' t~] - ATSO*I < e" e" 6 (0; 0.5) (21) 

Finally, the sample sizes nt and n2 (VSS and VSSI schemes) are 
investigated in order to verify the constraint on expected sample 
size: 

E yrJ (k'' w"  l')n~l § E 7rk(k', w' , l ' )n t2--no < 81 t! 

j r S  k r S  tt 

s "  ~ (0; 0.5) (22) 

where no is fixed a priori. At the end of the three-stage procedure, 
a feasible design of the chart respecting all of the constraints is 
assumed as an actual sequence D of the simulated annealing and 
the search is continued by perturbing D and trying to determine 
better feasible solutions. 
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The SA investigates the space of allowable solutions through 
a neighbourhood search scheme, which modifies the actual se- 
quence D to the perturbed D t by randomly varying one or more 
elements of D and recalculating the dependent variables through 
the three-stage procedure in order to respect the fixed constraints. 

The SA algorithm evolves through a series of levels, called 
"temperatures". A cooling schedule based on the variation of the 
objective function OBJ(D) and on the actual temperature stage 
has been chosen, Kirkpatrick [21]. At each temperature stage Ti, 
a local search is performed in the neighbourhood of the current 
sequence according to a "last improvement-basis" scheme: the 
current sequence is perturbed according to the neighbourhood 
search scheme proposed above. If the newly evaluated vector D I 
has an objective function whose value is lower than the one cor- 
responding to the original vector D, it is accepted and becomes 
the new actual sequence. 

On the other hand, if the vector D I has a worse value of 
OBJ(Dt), it is accepted only if the following expression is 
verified: 

rand(x) < exp{-[OBJ(D')  - OBJ(D)]/T} (23) 

where rand(x) ~ [0, 1]. Therefore, the probabilistic acceptance of 
a worse sequence strongly depends on the counteraction between 
variation in the objective function and the actual temperature 
stage. 

The cardinality maxiter of the neighbourhood in the local 
search at each temperature level depends on the problem size; 
that is, on the length of vector D. The last accepted sequence dur- 
ing the local search will be the actual sequence in the successive 
temperature stage. A low value of 7) has been chosen in order 
to reach a good compromise ratio between the analysed and the 
worst accepted sequences. The algorithm is judged to be frozen 
when the temperature reaches a final value Tf. When adaptive 
schemes with run rules are investigated, the high computational 
effort due to the three-stage procedure and the dimensions of 
transition probability matrices require a shortened SA evolution 
with a reduced initial temperature and a low value of maxiter. 
The procedure of the modified SA algorithm for the adaptive 
charts with run rules is proposed below: 

Step 1: Initialise: T/, or, maxiter and iter = 1. Read the input 
data of the problem: ATSO*, to and no. 

Step 2: Randomly create a feasible seed sequence and assign it 
to the D and M E M  vectors. 

Step 3: Evaluate the OBJ(D) value for D and assign it to the 
variable BEST.  

Step 4: Generate the perturbed sequence D ~ with the neigh- 
bourhood operator following the three-stage procedure, 
iter = iter + 1. 

Step 5: Evaluate the OBJ(D t) value for D ~. 
Step 6: If OBJ(D') < BEST, then 

let D = D ~, M E M  = D'. Go to Step 11. 
Step 7: Evaluate A = OBJ(D ~) - OBJ(D). 
Step 8: If A < 0, then 

let D = D t. Go to Step 11. 
Generate a random number x. Step 9: 

Step 10: 

Step 11: 

Step 12: 
Step 13: 

If f ( x )  < exp(- -A/T) ,  then 
let D = D t. 
If iter < maxiter then 
Go to step 4 
else 
let T = a T  and iter = 1. 
If T > Tf, then go to Step 4. 
STOP. Best chart design memorised in M E M .  

4 Computational results 

The statistical performances of the investigated charts have been 
compared by taking into account different levels of in-control 
ATS(O), expected sample sizes E ( n ) =  no and expected sam- 
pling interval E(t) = to. In contrast to previous literature [10, 23], 
no specific values were imposed on the shorter sampling inter- 
val or on the sample size; thus, a fully optimised statistical de- 
sign can be achieved. However, a partial optimisation with fixed 
values for a subset of design variables can be easily obtained 
through the proposed SA algorithm by fixing a priori one or more 
of the elements of the array D. The following constraints have 
been considered to test the charts statistical performances: two 
levels for in-control ATS(0): ATS(O)* = 370.4 and 499.6; three 
levels for the expected sample size E(n) = no = 3, 5, l0 and one 
level for the expected sampling interval E(t) = to ---- I. As stated 
above, the adopted run rules are CI,  C2 and C3 (see Eq. 9). 
The sample size can range within the interval [1,30], whereas 
the sampling interval within [0.1,2]. The statistical design was 
determined for a wide range of process mean shifts between 0 
and 2.25. Tables 2-7 show the obtained results, grouped with 
reference to the value of in-control A TS(O) and expected sam- 
ple size no. The statistical designs corresponding to the lowest 
AATS(6) are reported with a bolded italic notation. From the re- 
suits, it can be noted that the VSSI scheme with rules C1, C2 and 
C3 (VSSI123) always outperforms the other charts when small 
shifts are expected in the mean of the controlled parameter; that 
is, when ~ < 0.6. Assuming ATS(O)* = 370.4 and no = 3, a max- 
imum reduction of AATS(3) between simple VSSI and VSSI123 
equal to approximately 50% can be achieved; this reduction in- 
creases to 55% and to 62% when no ---- 5, 10, respectively. When 
ATS(O)* = 499.6 is selected as in-control ATS, the gap goes up 
to 51%, 59% and 65% for no = 3, 5, 10, respectively. The same 
trend can be noted for VSI123 and VSS123. Thus, the larger the 
A TS(O) and expected sample size, the larger the statistical per- 
formance improvement of the adaptive scheme with run rules 
with respect to a simple adaptive scheme. As expected, when the 
entity of the shift is moderate to large, the performances of adap- 
tive schemes with run rules slightly deteriorate due to the run 
rules; however, their AATS(6) still remains quite similar to that 
of the other charts. This fact can be easily explained by compar- 
ing Shewhart charts with run rules and simple adaptive schemes. 
The run rules outperform the adaptive schemes only when very 
small shifts (8 < 0.3) occur to the mean of the controlled pa- 
rameter, whereas the adaptive schemes are particularly suited for 
moderate to large deviations. The positive effect of run rules is 
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Table 2. Comparison among the optimal AATS(8) corresponding to the charts: ATS(O) = 370.4, no = 3, to = 1 

8 
0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25 

No rules (Cj) 
Shewhart 370.40 321.60 275.16 227.22 183.74 147.03 117.24 93.54 60.19 39.53 21.98 9.26 4.45 2.41 1.45 0.97 0.73 
VSS 370.40 316.35 254.38 184.03 121.09 75.04 45.90 28.99 14.46 9.46 5.58 3.06 1.99 1.60 1.31 0.97 0.92 
VSI 370.40 318.43 268.77 217.79 171.74 132.83 101.92 77.96 45.86 26.85 12.94 4.35 1.86 1.85 0.89 0.83 0.67 
VSSI 370.40 314.91 252.85 181.22 117.85 72.27 43.58 27.50 1 3 . 9 3  7.91 4.69 2.82 1.60 1.46 0.83 0.97 0.73 

Rules CI, C2 (C12) 
Shewhart 370.40 290.98 227.90 172.23 128.61 96.17 72.49 54.87 32.72 20.64 11.32 5.13 2.87 1.87 1.35 1.04 0.83 
VSS 370.40 237.37 157.43 102.49 70.18 47.04 32 .51  23.42 13.56 9.01 5.80 3.68 2.71 2.06 1.61 1.32 1.09 
VSI 370.40 289.31 225.20 170.41 126.53 92.60 70.04 52.73 31.10 23.63 12 .31  4.98 2.45 1.41 0.94 0.71 0.60 
VSSI 370.40 236.82 157.19 103.21 68.28 45.66 32.66 23.37 13.23 8.76 5.27 2.96 1.92 1.56 1.14 0.89 0.73 

Rules C1, C2, C3 (C123) 
Shewhart 370.40 258.61 184.93 129.61 91.55 65.92 48.57 36.63 22 .31  14.76 9.05 5.22 3.70 2.83 2.17 1.65 1.27 
VSS 370.40 219.96 142.3l 92.61 62.21 43.36 31.34 23.45 14.41 9.84 6.48 4.21 3.12 2.43 1.99 1.74 1.61 
VSI 370.40 256.77 181.93 125.89 87.53 61.85 44.61 32.87 19.00 11.87 6.65 3.29 2.06 1.53 1.29 1.18 1.12 
VSSI 370.40 218.56 140.24 90.24 59.74 40.92 29.01 21.23 12.41 8.02 4.87 2.91 2.21 1.83 1.59 1.42 1.31 

Table 3. Comparison among the optimal AATS(~) corresponding to the charts: ATS(O) = 370.4, no = 5, to = 1 

S 
0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25 

No rules (C1) 
Shewhart 370.40 295.25 233.15 177.23 132.66 99.05 74.26 56.09 32.90 20.06 10.26 4.00 1.89 1.07 0.72 0.58 0.52 
VSS 370.40 285.85 204.08 128.40 74.46 42.11 24.48 15.94 7.91 5.30 3.68 1.92 1.34 0.97 0.80 0.65 0.56 
VSI 370.40 290.22 223.94 164.70 117.89 83 .71  59.58 41.87 21.87 11.56 4.89 1.90 0.97 0.89 0.66 0.57 0.53 
VSSI 370.40 283.06 199.74 123.41 69.81 38.05 21.56 1 2 . 8 7  6.73 3.90 2.50 1.28 0.85 0.79 0.71 0.65 0.62 

Rules C1, C2 (Cj2) 
Shewhart 370.40 253.97 178.65 122.58 84.46 59.15 42.30 30.54 17 .01  10.36 5.60 2.65 1.60 1.11 0.82 0.65 0.55 
VSS 370.40 206.46 125.91 77.50 48.98 32.24 22.16 15.50 8.54 5.50 3.49 2.24 1.88 1.06 0.72 0.57 0.52 
VSI 370.40 251.38 177.12 120.48 81.07 56.93 40.42 28.99 19 .21  11.15 5.52 2.22 1.15 0.75 0.59 0.53 0.51 
VSSI 370.40 206.38 125.55 76.69 48.22 30.95 21.03 14.52 7.76 4.82 2.85 1.67 1.04 0.78 0.65 0.58 0.55 

Rules C1, C2, C3 (C123) 
Shewhart 370.40 213.82 135.58 86.62 57.20 39.27 28.02 20.74 12.53 8.46 5.52 3.53 2.51 1.77 1.26 0.93 0.71 
VSS 370.40 168.46 95.67 57.14 36.37 24 .61  17 .61  13.25 8.51 6.25 4.59 3.21 2.43 2.01 1.81 1.69 1.60 
VSI 370.40 211.25 131.93 82.58 53.17 35.45 24.49 17.50 9.81 6.12 3.54 1.94 1.39 1.20 1.12 1.08 1.06 
VSSI 370.40 166.66 93.37 54.75 34.06 22.45 15.60 11.38 6.88 4.57 2.80 1.76 1.40 1.24 1.16 1.13 1.10 

Table 4. Comparison among the optimal AATS(~) corresponding to the charts: ATS(O) = 370.4, no = 10, to = 1 

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25 

No rules (Cl) 
Shewhart 370.40 243.64 165.33 109.47 72.77 49.11 33.76 23.67 12.33 6.90 3.27 1.27 0.71 0.54 0.51 0.50 0.50 
VSS 370.40 230.79 136.82 73.72 38.79 21.68 12.60 7.97 4.38 2.66 1.98 1A4 0.71 0.55 0.51 0.50 0.50 
VS1 370.40 234.88 151.88 93.97 57.83 35.67 21.96 1 3 . 8 7  6.19 2.96 1.57 0.84 0.65 0.55 0.52 0.52 0.52 
VSSI 370.40 223.77 127.78 64.74 31.80 15.78 8.67 5.45 2.60 1.84 1.60 0.80 0.70 0.54 0.51 0.50 0.50 

Rules C1, C2 (Cj2) 
Shewhart 370.40 190.33 111.87 66.69 41.34 26.80 18 .18  12.48 6.58 4.02 2.30 1.24 0.81 0.59 0.51 0.50 0.50 
VSS 370.40 156.87 83.61 46.48 27.50 17.37 11.69 7.94 4.30 2.87 1.97 1.38 0.82 0.75 0.58 0.51 0.50 
VSI 370.40 187.31 110.02 64.33 39.49 25.38 20.48 1 3 . 6 5  6.67 3.72 1.85 0.85 0.59 0.52 0.51 0.51 0.51 
VSSI 370.40 156.01 82 .41  45.25 26.34 16 .31  10.72 7.06 3.51 2.14 1.40 0.80 0.70 0.56 0.53 0.52 0.52 

Rules C1, C2, C3 (C123) 
Shewhart 370.40 146.71 78.05 44.48 27.40 18.14 12.82 9.58 6.14 4.50 3.24 2.00 1.23 0.81 0.59 0.52 0.50 
VSS 370.40 111.36 54.80 30.32 18 .73  12.74 9.42 7.47 5.44 4.42 3.48 2.59 2.19 1.97 1.80 1.69 1.60 
VSI 370.40 143.19 73.99 40.58 23.89 15.04 10.07 7.12 4.07 2.69 1.75 1.24 1.12 1.07 1.05 1.04 1.04 
VSSI 370.40 102.89 48.53 25.75 15.24 9.92 7.03 5.36 3.25 2.29 1.59 1.23 1.13 1.09 1.06 1.05 1.04 
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Table 5. Comparison among the optimal AATS(8) corresponding to the charts: ATS(O) = 499.6, no = 3, to = 1 

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25 

No rules (Cl) 
Shewhart 499.60 430.71 365.75 299.50 240.15 190.61 150.80 119.43 75.76 49.10 26.78 10.96 5.13 2.71 1.60 1.05 0.77 
VSS 499.60 418,86 334.83 236.48 150.80 90.22 53.21 32.43 14.14 9.14 5.86 3.46 2.77 1.72 1.27 1.06 0.95 
VSI 499.60 426.73 356.66 285.93 223.80 171.95 130.81 99.86 56.93 32.96 15 .83  4.86 2.37 1.43 0.89 0.68 0.90 
VSSI 499.60 420.67 331.95 232.52 146.67 86.50 50.48 30.80 13.84 8.78 4.67 2.24 1.46 0.94 0.82 0.74 0.84 

Rules C1, C2 (Cl2) 
Shewhart 499.60 399.93 317.06 241.77 181.34 135.61 101.85 76.73 44.99 27.69 14.55 6.13 3.19 2.21 1.39 0.97 0.74 
VSS 499.60 308.64 197.96 124.15 79.26 51.11 35.44 25.25 15.81 9.63 6.29 4.07 2.81 2.15 1.72 1.43 1.20 
VSI 499.60 397.88 324.24 249.30 181.87 135.65 105.86 79.56 46.11 27.86 14.10 5.48 2.60 1.46 0.94 0.70 0.59 
VSSI 499.60 300.88 197.82 123.98 79.10 52.32 36.17 27.04 14.54 9.68 6.21 3.49 2.30 1.72 1.41 0.88 0.77 

Rules C1, C2, C3 (C123) 
Shewhart 499.60 340.06 238.33 163.91 113.80 80.64 58.53 43.54 25.85 16 .73  10.00 5.63 3.97 3.09 2.41 1.83 1.38 
VSS 499.60 287.27 181.73 115.89 76.36 52.28 37.17 27.38 16 .37  10.94 7.01 4.39 3.16 2.38 1.94 1.71 1.57 
VSI 499.60 337.54 234.37 159.13 108.72 75.59 53.69 38.99 21.94 13.38 7.27 3.47 2.12 1.54 1.27 1.14 1.08 
VSSI 499.60 285.42 179.10 112.94 73.36 49.38 34.42 24.80 14.10 8.89 5.24 3.02 2.23 1.82 1.56 1.39 1.27 

Table 6. Comparison among the optimal AATS(S) corresponding to the charts: ATS(O) = 499.6, no = 5, to = 1 

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25 

No rules (Cj) 
Shewhart 499.60 393.76 307.64 231.33 171.36 126.69 94.10 70.45 40.62 24.37 12 .18  4.59 2.10 1.16 0.76 0.59 0.53 
VSS 499.60 379.91 265.61 162.42 91.20 49.88 28.04 16.90 8.85 5.29 3.37 1.94 1.42 1.93 0.95 0.89 0.79 
VSI 499.60 386.96 294.83 213.87 151.80 106.85 74 .91  52.85 25.88 13.98 5.53 1.94 0.99 0.72 0.89 0.88 0.82 
VSSI 499.60 376.44 259.41 155.40 84.80 44.74 24.32 14.74 7.30 4.76 2.73 1.27 0.90 0.70 0.69 0.61 0.57 

Rules C1, C2 (Cj2) 
Shewhart 499.60 352.14 250.78 172.88 118.75 82.38 58.05 41.65 22.70 13.33 6.82 3.59 1.65 1.06 0.74 0.59 0.53 
VSS 499.60 273.13 158,58 96.32 58.85 37.59 25 .21  17.35 9.41 6.05 3.84 2.36 1.68 1.29 1.00 0.79 0.65 
VSI 499.60 349.09 246,81 168.76 114.90 78.93 55.02 39 .01  20 .71  11.80 5.74 2.26 1.17 0.77 0.61 0.50 0.50 
VSSI 499.60 272.95 161.75 95.78 57 .61  36.34 23.97 16.55 8.92 5.56 3.66 1.80 1.71 0.86 0.73 0.64 0.60 

Rules C1, C2, C3 (CI23) 
Shewhart 499.60 277.88 171.86 107.38 69.49 46.83 32.85 23.94 1 4 . 0 9  9.32 5.96 3.80 2.77 1.97 1.37 0.98 0,74 
VSS 499.60 209.80 114,33 66.06 40.92 27.08 19.04 14.13 8.94 6.50 4.59 3.09 2.22 1.76 1.57 1.57 1.38 
VSI 499.60 274.44 167,15 102.29 64.52 42.20 28.63 20.13 10.95 6.67 3.75 1.99 1.39 1.17 1.08 1.03 1.01 
VSSI 499.60 207.46 111,50 63.22 38.25 24.63 16.79 12,06 7.14 4.67 2.99 1.99 1.57 1.33 1.20 1.13 1.10 

Table7. Comparison among the optimal AATS(3) corresponding to the charts: ATS(O) = 499.6, no = 10, to = 1 

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.75 1 1.25 1.5 1.75 2 2.25 

No rules (CI) 
Shewhart 499.60 322.10 215.24 140.48 92.16 61.42 41.72 28.91 14.73 8.08 3.73 1.39 0.74 0.55 0.51 0.50 0.50 
VSS 499.60 303.49 175.23 91,74 46.92 24.74 13.96 8.68 4.79 2.79 1.80 1.17 0.91 0.72 0.59 0.53 0.51 
VSI 499.60 309.96 197.73 120.84 72 .71  43.88 26.79 16.85 6.96 3.44 1.88 0.80 0.88 0.85 0.81 0.80 0.80 
VSSI 499.60 294.72 163.45 80,72 38.87 1 8 . 6 9  9.60 5.96 2.76 1.87 1.21 0.89 0.84 0.82 0.77 0.73 0.69 

Rules CI, C2 (C12) 
Shewhart 499.60 266.74 157.76 93.25 56.66 35.69 23.36 15.87 8.14 4.72 2.51 1.25 0.73 0.55 0.51 0.50 0.50 
VSS 499.60 204.25 105.72 56.97 32.60 19.86 12.85 8.80 4.82 3.14 2.10 1.4l 1.00 0~72  0.56 0.50 0.50 
VSI 499.60 274.08 157.78 96,78 58.35 36.24 23.26 15.44 7.49 4.08 1.97 0.88 0.61 0.55 0.54 0.53 0.53 
VSSI 499.60 205.60 105.04 56.42 32.14 19.47 12.51 8.50 4.57 2.92 1.89 1.23 0.89 0.67 0.55 0.50 0.50 

Rules C1, C2, C3 (C123) 
Shewhart 499.60 186.72 96.27 53,37 32.08 20.80 14.42 10.61 6.65 4.83 3.51 2.22 1.34 0.85 0.61 0.52 0.50 
VSS 499.60 129.40 60.07 31.85 19.06 12.66 9.17 7.14 5.03 3.89 2.86 1.85 1.45 1.24 1.01 0.77 0.61 
VSI 499.60 182.16 91.18 48 .61  27.89 17 .17  11.26 7.81 4.34 2.80 1.78 1.22 1.07 1.02 0.99 0.99 0.98 
VSSI 499.60 126.54 57.17 29.23 16.74 10.57 7.27 5.37 3.21 2.23 1.61 1.24 1.11 1.06 1.03 1.01 0.99 
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then reflected to the adaptive schemes when  the hybr id  charts  are 
considered.  Fur thermore,  this synergist ic effect  allows the opti-  

mal  interval to be extended to 8 = 0.5. Figures 3 -8  graphical ly  

show this behaviour  when  ATS(O)* = 370.4 or 499.6 and no = 3, 

5. Similar  conclusions can be drawn for the other  scenarios.  An-  
other  interest ing conclus ion that can be deduced by the analysis  
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of the results is that  the possibil i ty of  varying sample  size (VSS 

and VSSI)  allows more performing charts  to be implemented  

than with a variable sample interval  (VSI) scheme. Fur thermore ,  
this tendency is not  affected by  the int roduct ion of  run rules. This  

aspect  is shown in Figs. 9-10 ,  which  show AATS(8) versus shift  

8 for adaptive charts  with  run rules assuming ATS(O)* = 370.4, 

n0 = 5  a n d t 0  = 1. 
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corresponding to the adaptive schemes with rules C1, C2 and C3 

Once the positive effects of  adding run rules to adaptive 
schemes with variable sample size and/or  sampling interval have 
been demonstrated, a further interesting analysis examines the 
comparison with other kinds of  control charts. In a recent pub- 
lication, Carot et al. [24] proposed a chart, denoted as DSVSI,  

derived from the combination of  a double sampling .~ chart (DS) 
with a variable sampling interval (VSI) approach. They show 
how such a new hybrid scheme outperforms the tradition adap- 
tive and run rule Shewhart charts. Therefore, a comparison with 

the DSVSI  scheme allows the efficiency of  the proposed ap- 
proach to be confirmed. In Tables 8 and 9, the results of  this 
analysis are reported with respect to different scenarios. Further- 
more, Table 9 shows a comparison with C U S U M  and E W M A  
charts, in the same way as suggested by Carot et al. [24]. 

Table8, Comparison of AATS(3) for VSSI123 versus DSVSI (ATS(O) = 
370.4, no = 4, to = 1) 

Shift S DSVSI chart 
(nl, n2) = (1, 16) 

(hi, h2) = (0.25, 1.19) 
(kl, k2) = (4.191, 2.596) 
(wn, wl) = (1.318, 1.269) 

VSSI123 
(nl, n2)=(1,  11) 

(hi, h2)=(0.1, 1.371) 
(1, w,k)=(1.048, 2.678,4.019) 

0 370.37 370.36 
0.05 317.96 303.20 
o. 1 219.55 192.88 
0.125 170.3 149.4 
o. 15 139.88 115.71 
0.2 88.67 71.00 
0.25 52.63 45.48 
0.375 19.13 18.12 
0.5 8.45 9.14 
0.625 4.49 5.28 
0.75 2.79 3.52 
l 1.51 2.13 
1.5 0.92 1.39 
2 0.94 1.18 

The obtained results show how the adaptive scheme with run 
rules allows a reduction of  A A T S ( 3 )  for small shifts with respect 
to the DSVSI  chart and the C U S U M  (for moderate and large 
shifts, quite similar performances are provided) and allows equal 
results to be reached with respect to an E W M A  scheme. 

5 Conclusions 

In this research, sample size and sampling interval adaptive ,k" 
charts with run rules have been proposed to control the state of  
statistical control in a production process. The run rules were 
added to the adaptive schemes only for signalling purposes by 
considering sequences of  non-consecutive plotted points. The 
performances of  these charts were evaluated by determining their 
optimal statistical design and comparing it with that of  other 
chart schemes commonly  used in the literature. The optimal de- 
sign was obtained by a heuristic algorithm; namely, simulated 
annealing, which works to determine the min imum A A T S ( 3 )  

under the set of  selected constraints. The obtained results show 
how the positive effects of  adaptive chart parameters and run 
rules can be considered additive. The adaptive charts working 
together with run rules work better than the separated schemes 
when small to moderate shifts in the mean of  the controlled pa- 
rameter are expected. In particular, a combined sample size and 
sampling interval adaptive scheme added with western electric 

Table9. ATS(O) = 250, no = 3, 
to = 3. AATS(3) for VSSI123, 
DSVSI, CUSUM and EWMA 
charts 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

CUSUM 250 201.3 124.5 74.0 46.1 30.8 22.0 16.6 13.2 10.8 9.2 
EWMA 250 188.8 108.1 62.6 39.4 27.0 19.8 15.3 12.3 10.3 8.8 
DSVSI 250 195.0 115.4 67.0 41.5 27.9 20.3 15.7 12.9 10.9 9.6 
VSSI123 250.4 187.6 107.1 62.4 39.5 27.1 19.8 15.4 12.5 10.6 9.3 
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rules C1, C2 and C3 has been demonst ra ted  to be very effect- 
ive, a l lowing large AATS(8) reductions with respect  to the other  

schemes when  8 < 0.6; when  larger shifts are considered,  the 

VSSI123 statistical per formance  remains  quite s imilar  to that  
of  other  charts.  Fur thermore,  the statistical per formance  of  this 

chart  has also been  compared  with that of  C U S U M  and E W M A ,  

i.e. charts that  take into account  the past  history of the process.  

Once again, the results confirm the effect iveness of  the proposed 

scheme. 
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